Search results for: predicting factors
11477 Assessment and Forecasting of the Impact of Negative Environmental Factors on Public Health
Authors: Nurlan Smagulov, Aiman Konkabayeva, Akerke Sadykova, Arailym Serik
Abstract:
Introduction. Adverse environmental factors do not immediately lead to pathological changes in the body. They can exert the growth of pre-pathology characterized by shifts in physiological, biochemical, immunological and other indicators of the body state. These disorders are unstable, reversible and indicative of body reactions. There is an opportunity to objectively judge the internal structure of the adaptive body reactions at the level of individual organs and systems. In order to obtain a stable response of the body to the chronic effects of unfavorable environmental factors of low intensity (compared to production environment factors), a time called the «lag time» is needed. The obtained results without considering this factor distort reality and, for the most part, cannot be a reliable statement of the main conclusions in any work. A technique is needed to reduce methodological errors and combine mathematical logic using statistical methods and a medical point of view, which ultimately will affect the obtained results and avoid a false correlation. Objective. Development of a methodology for assessing and predicting the environmental factors impact on the population health considering the «lag time.» Methods. Research objects: environmental and population morbidity indicators. The database on the environmental state was compiled from the monthly newsletters of Kazhydromet. Data on population morbidity were obtained from regional statistical yearbooks. When processing static data, a time interval (lag) was determined for each «argument-function» pair. That is the required interval, after which the harmful factor effect (argument) will fully manifest itself in the indicators of the organism's state (function). The lag value was determined by cross-correlation functions of arguments (environmental indicators) with functions (morbidity). Correlation coefficients (r) and their reliability (t), Fisher's criterion (F) and the influence share (R2) of the main factor (argument) per indicator (function) were calculated as a percentage. Results. The ecological situation of an industrially developed region has an impact on health indicators, but it has some nuances. Fundamentally opposite results were obtained in the mathematical data processing, considering the «lag time». Namely, an expressed correlation was revealed after two databases (ecology-morbidity) shifted. For example, the lag period was 4 years for dust concentration, general morbidity, and 3 years – for childhood morbidity. These periods accounted for the maximum values of the correlation coefficients and the largest percentage of the influencing factor. Similar results were observed in relation to the concentration of soot, dioxide, etc. The comprehensive statistical processing using multiple correlation-regression variance analysis confirms the correctness of the above statement. This method provided the integrated approach to predicting the degree of pollution of the main environmental components to identify the most dangerous combinations of concentrations of leading negative environmental factors. Conclusion. The method of assessing the «environment-public health» system (considering the «lag time») is qualitatively different from the traditional (without considering the «lag time»). The results significantly differ and are more amenable to a logical explanation of the obtained dependencies. The method allows presenting the quantitative and qualitative dependence in a different way within the «environment-public health» system.Keywords: ecology, morbidity, population, lag time
Procedia PDF Downloads 8111476 Soccer Match Result Prediction System (SMRPS) Model
Authors: Ajayi Olusola Olajide, Alonge Olaide Moses
Abstract:
Predicting the outcome of soccer matches poses an interesting challenge for which it is realistically impossible to successfully do so for every match. Despite this, there are lots of resources that are being expended on the correct prediction of soccer matches weekly, and all over the world. Soccer Match Result Prediction System Model (SMRPSM) is a system that is proposed whereby the results of matches between two soccer teams are auto-generated, with the added excitement of giving users a chance to test their predictive abilities. Soccer teams from different league football are loaded by the application, with each team’s corresponding manager and other information like team location, team logo and nickname. The user is also allowed to interact with the system by selecting the match to be predicted and viewing of the results of completed matches after registering/logging in.Keywords: predicting, soccer match, outcome, soccer, matches, result prediction, system, model
Procedia PDF Downloads 49111475 Psychosocial Development: The Study of Adaptation and Development and Post-Retirement Satisfaction in Ageing Australians
Authors: Sahar El-Achkar, Mizan Ahmad
Abstract:
Poor adaptation of developmental milestones over the lifespan can significantly impact emotional experiences and Satisfaction with Life (SWL) post-retirement. Thus, it is important to understand how adaptive behaviour over the life course can predict emotional experiences. Broadly emotional experiences are either Positive Affect (PA) or Negative Affect (NA). This study sought to explore the impact of successful adaptation of developmental milestones throughout one’s life on emotional experiences and satisfaction with life following retirement. A cross-sectional self-report survey was completed by 132 Australian retirees between the ages 55 and 70 years. Three hierarchical regression models were fitted, controlling for age and gender, to predict PA, NA, and SWL. The full model predicting PA was statistically significant overall, F (8, 121) = 17.97, p < .001, account for 57% of the variability in PA. Industry/Inferiority were significantly predictive of PA. The full model predicting NA was statistically significant overall, F (8, 121) = 12.00, p < .001, accounting for 51% of the variability in NA. Age and Trust/Mistrust were significantly predictive of NA. The full model predicting NA was statistically significant overall, F (8, 121) = 12.00, p < .001, accounting for 51% of the variability in NA. Age and Trust/Mistrust were significantly predictive of NA. The full model predicting SWL, F (8, 121) = 11.05, p < .001, accounting for 45% of the variability in SWL. Trust/Mistrust and Ego Integrity/Despair were significantly predictive of SWL. A sense of industry post-retirement is important in generating PA. These results highlight that individuals presenting with adaptation and identity issues are likely to present with adjustment challenges and unpleasant emotional experiences post-retirement. This supports the importance of identifying and understanding the benefits of successful adaptation and development throughout the lifespan and its significance for the self-concept. Most importantly, the quality of lives of many may be improved, and the future risk of continued poor emotional experiences and SWL post-retirement may be mitigated. Specifically, the clinical implications of these findings are that they support the promotion of successful adaption over the life course and healthy ageing.Keywords: adaptation, development, negative affect, positive affect, retirement, satisfaction with life
Procedia PDF Downloads 7411474 Factor Influencing the Certification to ISO 9000:2008 among SME in Malaysia
Authors: Dolhadi Bin Zainudin
Abstract:
The study attempts to predict the relationship between influencing factors in the adoption of ISO 9000:2008 and to identify which how these factors play the main role in achieving ISO 9000 standard. A survey using structured questionnaire was employed. A total of 255 respondents from 255 small and medium enterprises participated in this study. With regards to influencing factors, a discriminant analysis was conducted and the results showed that three out of nine critical success factors is statistically significant between ISO 9000:2008 and non-ISO 9000 certified companies which are communication for quality, information and analysis and organizational culture.Keywords: ISO 9000, quality management, factors, small and medium enterprise, Malaysia, influencing factors
Procedia PDF Downloads 33711473 Listening Anxiety in Iranian EFL learners
Authors: Samaneh serraj
Abstract:
Listening anxiety has a detrimental effect on language learners. Through a qualitative study on Iranian EFL learners several factors were identified as having influence on their listening anxiety. These factors were divided into three categories, i.e. individual factors (nerves and emotionality, using inappropriate strategies and lack of practice), input factors (lack of time to process, lack of visual support, nature of speech and level of difficulty) and environmental factors (instructors, peers and class environment).Keywords: listening Comprehension, Listening Anxiety, Foreign language learners
Procedia PDF Downloads 47011472 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes
Authors: Frank Kuebler, Rolf Steinhilper
Abstract:
Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process
Procedia PDF Downloads 52411471 Utilization of Schnerr-Sauer Cavitation Model for Simulation of Cavitation Inception and Super Cavitation
Authors: Mohammadreza Nezamirad, Azadeh Yazdi, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi
Abstract:
In this study, the Reynolds-Stress-Navier-Stokes framework is utilized to investigate the flow inside the diesel injector nozzle. The flow is assumed to be multiphase as the formation of vapor by pressure drop is visualized. For pressure and velocity linkage, the coupled algorithm is used. Since the cavitation phenomenon inherently is unsteady, the quasi-steady approach is utilized for saving time and resources in the current study. Schnerr-Sauer cavitation model is used, which was capable of predicting flow behavior both at the initial and final steps of the cavitation process. Two different turbulent models were used in this study to clarify which one is more capable in predicting cavitation inception and super-cavitation. It was found that K-ε was more compatible with the Shnerr-Sauer cavitation model; therefore, the mentioned model is used for the rest of this study.Keywords: CFD, RANS, cavitation, fuel, injector
Procedia PDF Downloads 20911470 Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm
Authors: K. Roushanger, A. Soleymanzadeh
Abstract:
Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs.Keywords: discharge coefficient, genetic expression programming, trapezoidal weir
Procedia PDF Downloads 38711469 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws
Authors: Jia-Jang Wu
Abstract:
This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.Keywords: torsional vibration, full-size model, scale model, scaling laws
Procedia PDF Downloads 39611468 Comparative Assessment of Finite Element Methodologies for Predicting Post-Buckling Collapse in Stiffened Carbon Fiber-Reinforced Plastic (CFRP) Panels
Authors: Naresh Reddy Kolanu
Abstract:
The stability and collapse behavior of thin-walled composite structures, particularly carbon fiber-reinforced plastic (CFRP) panels, are paramount concerns for structural designers. Accurate prediction of collapse loads necessitates precise modeling of damage evolution in the post-buckling regime. This study conducts a comparative assessment of various finite element (FE) methodologies employed in predicting post-buckling collapse in stiffened CFRP panels. A systematic approach is adopted, wherein FE models with various damage capabilities are constructed and analyzed. The study investigates the influence of interacting intra- and interlaminar damage modes on the post-buckling response and failure behavior of the stiffened CFRP structure. Additionally, the capabilities of shell and brick FE-based models are evaluated and compared to determine their effectiveness in capturing the complex collapse behavior. Conclusions are drawn through quantitative comparison with experimental results, focusing on post-buckling response and collapse load. This comprehensive evaluation provides insights into the most effective FE methodologies for accurately predicting the collapse behavior of stiffened CFRP panels, thereby aiding structural designers in enhancing the stability and safety of composite structures.Keywords: CFRP stiffened panels, delamination, Hashin’s failure, post-buckling, progressive damage model
Procedia PDF Downloads 4211467 Proposal of Innovative Risk Assessment of Ergonomic Factors in the Production of Jet Engines Using AHP (Analytic Hierarchy Process)
Authors: Jose Cristiano Pereira, Gilson Brito Alves Lima
Abstract:
Ergonomics is a key factor affecting the operational safety and quality in the aircraft engine manufacturing industry and evidence shows that the lack of attention to it can increase the risk of accidents. In order to emphasize the importance of ergonomics, this paper systematically reviews the critical processes used in the aircraft engine production industry with focus on the ergonomic factors. about the subject to identify key ergonomic factors. Experts validated the factors and used AHP to rank the factors in order of significance. From the six key risk factors identified, the ones with the highest weight are psychological demand followed by understanding of operational side. These factors suggest that measures must be taken to improve ergonomic factors, quality and safety in the manufacturing of aircraft engines.Keywords: ergonomics, safety, aviation, aircraft engine production
Procedia PDF Downloads 31411466 Investigate the Effect and the Main Influencing Factors of the Accelerated Reader Programme on Chinese Primary School Students’ Reading Achievement
Authors: Fujia Yang
Abstract:
Alongside technological innovation, the current “double reduction” policy and English Curriculum Standards for Compulsory Education in China both emphasise and encourage appropriately integrating educational technologies into the classroom. Therefore, schools are increasingly using digital means to engage students in English reading, but the impact of such technologies on Chinese pupils’ reading achievement remains unclear. To serve as a reference for reforming English reading education in primary schools under the double reduction policy, this study investigates the effects and primary influencing factors of a specific reading programme, Accelerated Reader (AR), on Chinese primary school students’ reading achievement. A quantitative online survey was used to collect 37 valid questionnaires from teachers, and the results demonstrate that, from teachers’ perspectives, the AR program seemed to positively affect students’ reading achievement by recommending material at the appropriate reading levels and developing students’ reading habits. Although the reading enjoyment derived from the AR program does not directly influence students’ reading achievement, these factors are strongly correlated. This can be explained by the self-paced, independent learning AR format, its high accuracy in predicting reading level, the quiz format and external motivation, and the importance of examinations and resource limitations in China. The results of this study may support reforming English reading education in Chinese primary schools.Keywords: educational technology, reading programme, primary students, accelerated reader, reading effects
Procedia PDF Downloads 8411465 Factors Impacting Entrepreneurial Intention: A Literature Review
Authors: Abir S. AL-Harrasi, Eyad B. AL-Zadjali, Zahran S. AL-Salti
Abstract:
Entrepreneurship has captured the attention of policy-makers, educators and researchers in the last few decades. It has been regarded as a main driver for economic growth, development and employment generation in many countries worldwide. However, scholars have not agreed on the key factors that impact entrepreneurial intention. This study attempts, through an extensive literature review, to provide a holistic view and a more comprehensive understanding of the key factors that lead university undergraduate students to become entrepreneurs. A systematic literature review is conducted and several scientific articles and reports have been examined. The results of this study indicate that there are four main sets of factors: the personality-traits factors, contextual factors, motivational factors, and personal background factors. This research will serve as a base for future studies and will have valuable implications for policy makers and educators.Keywords: entrepreneurship, entrepreneurial intention, literature review, economic growth
Procedia PDF Downloads 29911464 Associated Factors to Depression of the Elderly in Ladboakao Sub-District, Banpong District, Ratchaburi Province, Thailand
Authors: Yadchol Tawetanawanich
Abstract:
Depression of elderly is a mental health problem that impacts tremendously on the elderly themselves, their family, and society. the purposes of this descriptive research were to examine prevalence rate of elderly depression and to study factors related to depression in elderly including 1) individual factors: sex, education, marital status, 2) economic factors: occupation, adequate income 3) health factors: chronic illnesses , disability, 4) social factors: family relationship, community relationship, 5) knowledge of depression, and 6) self-care behavior. The subject in this study included 273 elderly in Ladboakao sub-district, Banpong district, Ratchaburi province, Thailand. Data were collected through questionnaires and were analyzed using percentage, mean, standard deviation, chi-square, and one-way ANOVA. The results of the study revealed that: The prevalence rate of elderly depression were 21.61%, factors included economic factors, health factors, knowledge about depression, and self-care behavior were statistically significant positively related to depression of elderly (p<0.05), but individual factors and social factors were not significantly related to depression. It is also important for nurses to assess factors related to depression of the elderly in order to develop the model of care and use self-care strategies to contribute the positive outcomes.Keywords: associated factors, depression, elderly, self-care
Procedia PDF Downloads 39311463 Exposure of Emergency Department Staff in Jordanian Hospitals to Workplace Violence: A Cross Sectional Study
Authors: Ibrahim Bashayreh Al-Bashtawy Mohammed, Al-Azzam Manar Ahmad Rawashda, Abdul-Monim Batiha Mohammad Sulaiman
Abstract:
Background: Workplace violence against emergency department staff (EDS) is considered one of the most common and widespread phenomena of violence. Purpose: The purpose of this research is to determine the incidence rates of workplace violence and the predicting factors of violent behaviors among emergency departments’ staff in Jordanian hospitals. Methods: A cross-sectional study was used to investigate workplace violence towards a convenience sample of 355 emergency staff departments from 8 governmental and 4 private Jordanian hospitals. Data were collected by a self-administered questionnaire that was developed for the purpose of this study. Results: 72% of workers in emergency departments within Jordanian hospitals are exposed to violent acts, and that patients and their relatives are the main source of workplace violence. The contributing factors as reported by the participants were related to overcrowding, lack of resources, staff shortages, and the absence of effective antiviolence policies. Conclusions/implications for Practice: Policies and legislation regarding violence should be instituted and developed, and emergency department staff should be given training on how to deal with violent incidents, as well as on violence-management policies.Keywords: Jordan, emergency staff department, workplace violence, community health
Procedia PDF Downloads 33211462 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer
Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom
Abstract:
Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN
Procedia PDF Downloads 7511461 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 11811460 Evaluation of the Factors Affecting Violence Against Women (Case Study: Couples Referring to Family Counseling Centers in Tehran)
Authors: Hassan Manouchehri
Abstract:
The present study aimed to identify and evaluate the factors affecting violence against women. The statistical population included all couples referring to family counseling centers in Tehran due to domestic violence during the past year. A number of 305 people were selected as a statistical sample using simple random sampling and Cochran's formula in unlimited conditions. A researcher-made questionnaire including 110 items was used for data collection. The face validity and content validity of the questionnaire were confirmed by 30 experts and its reliability was obtained above 0.7 for all studied variables in a preliminary test with 30 subjects and it was acceptable. In order to analyze the data, descriptive statistical methods were used with SPSS software version 22 and inferential statistics were used for modeling structural equations in Smart PLS software version 2. Evaluating the theoretical framework and domestic and foreign studies indicated that, in general, four main factors, including cultural and social factors, economic factors, legal factors, as well as medical factors, underlie violence against women. In addition, structural equation modeling findings indicated that cultural and social factors, economic factors, legal factors, and medical factors affect violence against women.Keywords: violence against women, cultural and social factors, economic factors, legal factors, medical factors
Procedia PDF Downloads 14111459 Study of Circulatory MiR-122 and MiR-130a Expression among Chronic Hepatitis C Egyptian Patients
Authors: Hend K. Moosa, Eman A. Rashwan, Ezzat M. Hassan, Amany A. Ghazy, Amel G. Sheredy
Abstract:
The stability of microRNA (miR) in the circulation can show a great progress toward the discovery of non-invasive diagnostic and prognostic biomarkers in many diseases. In the present study, circulatory miR-122 and miR-130a were analysed in chronic hepatitis C Egyptian patients in predicting the clinical outcome of interferon treatment. In addition, their expression levels were correlated to viral RNA levels, necro-inflammatory markers (AST, ALT) and to each other. This study was conducted on 51 subjects where 36 were chronic HCV patients in which they were divided into naive and interferon treated HCV patients (responders and non-responders) and 15 matched healthy controls. Serum quantification of miR-122 and miR-130a were performed by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The results showed a significant upregulation of miR-122 in non-responder patients (P=0.049). By receiver operating characteristic analysis curve, miR-122 revealed 65% sensitivity and 92.3% specificity in predicting non-responsiveness of patients to IFN treatment, while miR-130a showed a sensitivity of 100% and specificity of 53.85%. Remarkably, there was a significant positive correlation between miR-122 and miR-130a in naive HCV patients (r=0.714, p=0.003). However, there was no significant correlation between serum miR-122, miR-130a expression levels and necro-inflammatory markers (AST, ALT). To conclude, miR-122 and miR-130a have a significant association with viral RNA levels and accordingly, they may have a synergistic power in promoting viral replication. Interestingly, miR-122 and miR-130a have a predictive power in predicting clinical outcome of IFN treatment which can be further studied in currently used drugs in order to reduce the socio-economic burden of potentially non-responders.Keywords: hepatitis C, microRNA, miR-122, miR-130a
Procedia PDF Downloads 17011458 Factors Influencing the Decision of International Tourists to Revisit Bangkok,Thailand
Authors: Taksina Bunbut, Kevin Wongleedee
Abstract:
The purposes of this research were to study factors influencing the decision of international tourists to revisit Bangkok, Thailand. A random 200 samples was collected. Half the sample group was male and the other half was female. A questionnaire was used to collect data and small in-depth interviews were also used to get their opinions about importance of tourist decision making factors. The findings revealed that the majority of respondents rated these factors at medium level of importance. The ranking showed that the first three important factors were a safe place to stay, friendly people, and clean food. The three least important factors were a convenience transportation, clean country, and child friendly. In addition there was no significance difference between male and female in their ratings of the factors of influencing the decision of international tourists to revisit Bangkok, Thailand.Keywords: factors, international tourists, revisit, Thailand
Procedia PDF Downloads 32711457 Secondary Traumatic Stress and Related Factors in Australian Social Workers and Psychologists
Authors: Cindy Davis, Samantha Rayner
Abstract:
Secondary traumatic stress (STS) is an indirect form of trauma affecting the psychological well-being of mental health workers; STS is found to be a prevalent risk in mental health occupations. Various factors impact the development of STS within the literature; including the level of trauma individuals are exposed to and their level of empathy. Research is limited on STS in mental health workers in Australia; therefore, this study examined STS and related factors of empathetic behavior and trauma caseload among mental health workers. The research utilized an online survey quantitative research design with a purposive sample of 190 mental health workers (176 females) recruited via professional websites and unofficial social media groups. Participants completed an online questionnaire comprising of demographics, the secondary traumatic stress scale and the empathy scale for social workers. A standard hierarchical regression analysis was conducted to examine the significance of covariates, traumatized clients, traumatic stress within workload and empathy in predicting STS. The current research found 29.5% of participants to meet the criteria for a diagnosis of STS. Age and past trauma within the covariates were significantly associated with STS. Amount of traumatized clients significantly predicted 4.7% of the variance in STS, traumatic stress within workload significantly predicted 4.8% of the variance in STS and empathy significantly predicted 4.9% of the variance in STS. These three independent variables and the covariates accounted for 18.5% of the variance in STS. Practical implications include a focus on developing risk strategies and treatment methods that can diminish the impact of STS.Keywords: mental health, PTSD, social work, trauma
Procedia PDF Downloads 33211456 Punching Shear Behavior of RC Column Footing on Stabilized Ground
Authors: Sukanta K. Shill, Md. M. Hoque, Md. Shaifullah
Abstract:
An experiment on the punching of RC column footing, comparison of test result to established different codes for punching shear calculation of column footings is presented in the paper. The principal aim of this study is to investigate the punching shear behavior of an isolated column footing using brick aggregate as coarse aggregate. Consequence, a RC model footing was constructed on a stabilized soil and tested the footing under field condition. The test result yields that the experimental punching shear capacity is greater than all the theoretical punching shear capacities obtained by using different codes of practices. It can be stated that BNBC 1993, as well as ACI 318, 2002 code formulae are very conservative in predicting the punching shear resistance of RC footing, whereas the CEB-FIP MC, 1990 formula and Eurocode2 formula are less conservative in predicting the punching shear resistance of footing.Keywords: footing, punching shear, field condition, stabilized soil, brick aggregate
Procedia PDF Downloads 40911455 Interaction between Space Syntax and Agent-Based Approaches for Vehicle Volume Modelling
Authors: Chuan Yang, Jing Bie, Panagiotis Psimoulis, Zhong Wang
Abstract:
Modelling and understanding vehicle volume distribution over the urban network are essential for urban design and transport planning. The space syntax approach was widely applied as the main conceptual and methodological framework for contemporary vehicle volume models with the help of the statistical method of multiple regression analysis (MRA). However, the MRA model with space syntax variables shows a limitation in vehicle volume predicting in accounting for the crossed effect of the urban configurational characters and socio-economic factors. The aim of this paper is to construct models by interacting with the combined impact of the street network structure and socio-economic factors. In this paper, we present a multilevel linear (ML) and an agent-based (AB) vehicle volume model at an urban scale interacting with space syntax theoretical framework. The ML model allowed random effects of urban configurational characteristics in different urban contexts. And the AB model was developed with the incorporation of transformed space syntax components of the MRA models into the agents’ spatial behaviour. Three models were implemented in the same urban environment. The ML model exhibit superiority over the original MRA model in identifying the relative impacts of the configurational characters and macro-scale socio-economic factors that shape vehicle movement distribution over the city. Compared with the ML model, the suggested AB model represented the ability to estimate vehicle volume in the urban network considering the combined effects of configurational characters and land-use patterns at the street segment level.Keywords: space syntax, vehicle volume modeling, multilevel model, agent-based model
Procedia PDF Downloads 14511454 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 32211453 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 14311452 The Extent to Which Social Factors Affect Urban Functional Mutations and Transformations
Authors: Skirmante Mozuriunaite
Abstract:
Contemporary metropolitan areas and large cities are dynamic, rapidly growing and continuously changing. Thus, urban transformations and mutations are not a new phenomenon, but rather a continuous process. Basic factors of urban transformation are related to development of technologies, globalisation, lifestyle, etc., which, in combination with local factors, have generated an extremely great variety of urban development conditions. This article discusses the main urbanisation processes in Lithuania during last 50 year period and social factors affecting urban functional mutations.Keywords: dispersion, functional mutations, urbanization, urban mutations, social factors
Procedia PDF Downloads 52611451 Determinants of Success of University Industry Collaboration in the Science Academic Units at Makerere University
Authors: Mukisa Simon Peter Turker, Etomaru Irene
Abstract:
This study examined factors determining the success of University-Industry Collaboration (UIC) in the science academic units (SAUs) at Makerere University. This was prompted by concerns about weak linkages between industry and the academic units at Makerere University. The study examined institutional, relational, output, and framework factors determining the success of UIC in the science academic units at Makerere University. The study adopted a predictive cross-sectional survey design. Data was collected using a questionnaire survey from 172 academic staff from the six SAUs at Makerere University. Stratified, proportionate, and simple random sampling techniques were used to select the samples. The study used descriptive statistics and linear multiple regression analysis to analyze data. The study findings reveal a coefficient of determination (R-square) of 0.403 at a significance level of 0.000, suggesting that UIC success was 40.3% at a standardized error of estimate of 0.60188. The strength of association between Institutional factors, Relational factors, Output factors, and Framework factors, taking into consideration all interactions among the study variables, was at 64% (R= 0.635). Institutional, Relational, Output and Framework factors accounted for 34% of the variance in the level of UIC success (adjusted R2 = 0.338). The remaining variance of 66% is explained by factors other than Institutional, Relational, Output, and Framework factors. The standardized coefficient statistics revealed that Relational factors (β = 0.454, t = 5.247, p = 0.000) and Framework factors (β = 0.311, t = 3.770, p = 0.000) are the only statistically significant determinants of the success of UIC in the SAU in Makerere University. Output factors (β = 0.082, t =1.096, p = 0.275) and Institutional factors β = 0.023, t = 0.292, p = 0.771) turned out to be statistically insignificant determinants of the success of UIC in the science academic units at Makerere University. The study concludes that Relational Factors and Framework Factors positively and significantly determine the success of UIC, but output factors and institutional factors are not statistically significant determinants of UIC in the SAUs at Makerere University. The study recommends strategies to consolidate Relational and Framework Factors to enhance UIC at Makerere University and further research on the effects of Institutional and Output factors on the success of UIC in universities.Keywords: university-industry collaboration, output factors, relational factors, framework factors, institutional factors
Procedia PDF Downloads 6111450 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 2011449 The Factors of Supply Chain Collaboration
Authors: Ghada Soltane
Abstract:
The objective of this study was to identify factors impacting supply chain collaboration. a quantitative study was carried out on a sample of 84 Tunisian industrial companies. To verify the research hypotheses and test the direct effect of these factors on supply chain collaboration a multiple regression method was used using SPSS 26 software. The results show that there are four factors direct effects that affect supply chain collaboration in a meaningful and positive way, including: trust, engagement, information sharing and information qualityKeywords: supply chain collaboration, factors of collaboration, principal component analysis, multiple regression
Procedia PDF Downloads 4911448 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 255