Search results for: personalized learning paths
7660 The Guideline of Overall Competitive Advantage Promotion with Key Success Paths
Authors: M. F. Wu, F. T. Cheng, C. S. Wu, M. C. Tan
Abstract:
It is a critical time to upgrade technology and increase value added with manufacturing skills developing and management strategies that will highly satisfy the customers need in the precision machinery global market. In recent years, the supply side, each precision machinery manufacturers in each country are facing the pressures of price reducing from the demand side voices that pushes the high-end precision machinery manufacturers adopts low-cost and high-quality strategy to retrieve the market. Because of the trend of the global market, the manufacturers must take price reducing strategies and upgrade technology of low-end machinery for differentiations to consolidate the market. By using six key success factors (KSFs), customer perceived value, customer satisfaction, customer service, product design, product effectiveness and machine structure quality are causal conditions to explore the impact of competitive advantage of the enterprise, such as overall profitability and product pricing power. This research uses key success paths (KSPs) approach and f/s QCA software to explore various combinations of causal relationships, so as to fully understand the performance level of KSFs and business objectives in order to achieve competitive advantage. In this study, the combination of a causal relationships, are called Key Success Paths (KSPs). The key success paths guide the enterprise to achieve the specific outcomes of business. The findings of this study indicate that there are thirteen KSPs to achieve the overall profitability, sixteen KSPs to achieve the product pricing power and seventeen KSPs to achieve both overall profitability and pricing power of the enterprise. The KSPs provide the directions of resources integration and allocation, improve utilization efficiency of limited resources to realize the continuous vision of the enterprise.Keywords: precision machinery industry, key success factors (KSFs), key success paths (KSPs), overall profitability, product pricing power, competitive advantages
Procedia PDF Downloads 2677659 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework
Authors: Ma Cecilia Siva
Abstract:
This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.Keywords: tokenized, sigmoid activation, transformer, multi category classification
Procedia PDF Downloads 87658 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 4647657 A Dynamic Curriculum as a Platform for Continuous Competence Development
Authors: Niina Jallinoja, Anu Moisio
Abstract:
Focus on adult learning is vital to overcome economic challenges as well as to respond to the demand for new competencies and sustained productivity in the digitalized world economy. Employees of all ages must be able to carry on continuous professional development to remain competitive in the labor market. According to EU policies, countries should offer more flexible opportunities for adult learners who study online and in so-called ‘second chance’ qualification programmes. Traditionally, adult education in Finland has comprised of not only liberal adult education but also the government funding to study for Bachelor, Master's, and Ph.D. degrees in Finnish Universities and Universities of Applied Sciences (UAS). From the beginning of 2021, public funding is allocated not only to degrees but also to courses to achieve new competencies for adult learners in Finland. Consequently, there will be degree students (often younger of age) and adult learners studying in the same evening, online and blended courses. The question is thus: How are combined studies meeting the different needs of degree students and adult learners? Haaga-Helia University of Applied Sciences (UAS), located in the metropolitan area of Finland, is taking up the challenge of continuous learning for adult learners. Haaga-Helia has been reforming the bachelor level education and respective shorter courses from 2019 in the biggest project in its history. By the end of 2023, Haaga-Helia will have a flexible, modular curriculum for the bachelor's degrees of hospitality management, business administration, business information technology, journalism and sports management. Building on the shared key competencies, degree students will have the possibility to build individual study paths more flexibly, thanks to the new modular structure of the curriculum. They will be able to choose courses across all degrees, and thus, build their own unique competence combinations. All modules can also be offered as separate courses or learning paths to non-degree students, both publicly funded and as commercial services for employers. Consequently, there will be shared course implementations for degree studies and adult learners with various competence requirements. The newly designed courses are piloted in parallel of the designing of the curriculum in Haaga-Helia during 2020 and 2021. Semi-structured online surveys are composed among the participants for the key competence courses. The focus of the research is to understand how students in the bachelor programme and adult learners from Open UAE perceive the learning experience in such a diverse learning group. A comparison is also executed between learning methods of in-site teaching, online implementation, blended learning and virtual self-learning courses to understand how the pedagogy is meeting the learning objectives of these two different groups. The new flexible curricula and the study modules are to be designed to fill the most important competence gaps that exist in the Finnish labor markets. The new curriculum will be dynamic and constantly evolving over time according to the future competence needs in the labor market. This type of approach requires constant dialogue between Haaga-Helia and workplaces during and after designing of the shared curriculum.Keywords: ccompetence development, continuous learning, curriculum, higher education
Procedia PDF Downloads 1277656 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 617655 Psychophysiological Adaptive Automation Based on Fuzzy Controller
Authors: Liliana Villavicencio, Yohn Garcia, Pallavi Singh, Luis Fernando Cruz, Wilfrido Moreno
Abstract:
Psychophysiological adaptive automation is a concept that combines human physiological data and computer algorithms to create personalized interfaces and experiences for users. This approach aims to enhance human learning by adapting to individual needs and preferences and optimizing the interaction between humans and machines. According to neurosciences, the working memory demand during the student learning process is modified when the student is learning a new subject or topic, managing and/or fulfilling a specific task goal. A sudden increase in working memory demand modifies the level of students’ attention, engagement, and cognitive load. The proposed psychophysiological adaptive automation system will adapt the task requirements to optimize cognitive load, the process output variable, by monitoring the student's brain activity. Cognitive load changes according to the student’s previous knowledge, the type of task, the difficulty level of the task, and the overall psychophysiological state of the student. Scaling the measured cognitive load as low, medium, or high; the system will assign a task difficulty level to the next task according to the ratio between the previous-task difficulty level and student stress. For instance, if a student becomes stressed or overwhelmed during a particular task, the system detects this through signal measurements such as brain waves, heart rate variability, or any other psychophysiological variables analyzed to adjust the task difficulty level. The control of engagement and stress are considered internal variables for the hypermedia system which selects between three different types of instructional material. This work assesses the feasibility of a fuzzy controller to track a student's physiological responses and adjust the learning content and pace accordingly. Using an industrial automation approach, the proposed fuzzy logic controller is based on linguistic rules that complement the instrumentation of the system to monitor and control the delivery of instructional material to the students. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the delivery of academic content based on the working memory demand without compromising students’ health. This work has a potential application in the instructional design of virtual reality environments for training and education.Keywords: fuzzy logic controller, hypermedia control system, personalized education, psychophysiological adaptive automation
Procedia PDF Downloads 807654 Blended Learning through Google Classroom
Authors: Lee Bih Ni
Abstract:
This paper discusses that good learning involves all academic groups in the school. Blended learning is learning outside the classroom. Google Classroom is a free service learning app for schools, non-profit organizations and anyone with a personal Google account. Facilities accessed through computers and mobile phones are very useful for school teachers and students. Blended learning classrooms using both traditional and technology-based methods for teaching have become the norm for many educators. Using Google Classroom gives students access to online learning. Even if the teacher is not in the classroom, the teacher can provide learning. This is the supervision of the form of the teacher when the student is outside the school.Keywords: blended learning, learning app, google classroom, schools
Procedia PDF Downloads 1467653 Methodology of Personalizing Interior Spaces in Public Libraries
Authors: Baharak Mousapour
Abstract:
Creating public spaces which are tailored for the specific demands of the individuals is one of the challenges for the contemporary interior designers. Improving the general knowledge as well as providing a forum for all walks of life to exploit is one of the objectives of a public library. In this regard, interior design in consistent with the demands of the individuals is of paramount importance. Seemingly, study spaces, in particular, those in close relation to the personalized sector, have proven to be challenging, according to the literature. To address this challenge, attributes of individuals, namely, perception of people from public spaces and their interactions with the so-called spaces, should be analyzed to provide interior designers with something to work on. This paper follows the analytic-descriptive research methodology by outlining case study libraries which have personalized public libraries with the investigation of the type of personalization as its primary objective and (I) recognition of physical schedule and the know-how of the spatial connection in indoor design of a library and (II) analysis of each personalized space in relation to other spaces of the library as its secondary objectives. The significance of the current research lies in the concept of personalization as one of the most recent methods of attracting people to libraries. Previous research exists in this regard, but the lack of data concerning personalization makes this topic worth investigating. Hence, this study aims to put forward approaches through real-case studies for the designers to deal with this concept.Keywords: interior design, library, library design, personalization
Procedia PDF Downloads 1477652 The Design of the Blended Learning System via E-Media and Online Learning for the Asynchronous Learning: Case Study of Process Management Subject
Authors: Pimploi Tirastittam, Suppara Charoenpoom
Abstract:
Nowadays the asynchronous learning has granted the permission to the anywhere and anything learning via the technology and E-media which give the learner more convenient. This research is about the design of the blended and online learning for the asynchronous learning of the process management subject in order to create the prototype of this subject asynchronous learning which will create the easiness and increase capability in the learning. The pattern of learning is the integration between the in-class learning and online learning via the internet. This research is mainly focused on the online learning and the online learning can be divided into 5 parts which are virtual classroom, online content, collaboration, assessment and reference material. After the system design was finished, it was evaluated and tested by 5 experts in blended learning design and 10 students which the user’s satisfaction level is good. The result is as good as the assumption so the system can be used in the process management subject for a real usage.Keywords: blended learning, asynchronous learning, design, process management
Procedia PDF Downloads 4077651 Empowering Middle School Math Coordinators as Agents of Transformation: The Impact of the Mitar Program on Mathematical Literacy and Social-Emotional Learning Integration
Authors: Saleit Ron
Abstract:
The Mitar program was established to drive a shift in middle school mathematics education, emphasizing the connection of math to real-life situations, exploring mathematical modeling and literacy, and integrating social and emotional learning (SEL) components for enhanced excellence. The program envisions math coordinators as catalysts for change, equipping them to create educational materials, strengthen leadership skills, and develop SEL competencies within coordinator communities. These skills are then employed to lead transformative efforts within their respective schools. The program engaged 90 participants across six math coordinator communities during 2022-2023, involving 30-60 hours of annual learning. The process includes formative and summative evaluations through questionnaires and interviews, revealing participants' high contentment and successful integration of acquired skills into their schools. Reflections from participants highlighted the need for enhanced change leadership processes, often seeking more personalized mentoring to navigate challenges effectively.Keywords: math coordinators, mathematical literacy, mathematical modeling, SEL competencies
Procedia PDF Downloads 507650 Screen Casting Instead of Illegible Scribbles: Making a Mini Movie for Feedback on Students’ Scholarly Papers
Authors: Kerri Alderson
Abstract:
There is pervasive awareness by post secondary faculty that written feedback on course assignments is inconsistently reviewed by students. In order to support student success and growth, a novel method of providing feedback was sought, and screen casting - short, narrated “movies” of audio visual instructor feedback on students’ scholarly papers - was provided as an alternative to traditional means. An overview of the teaching and learning experience as well as the user-friendly software utilized will be presented. This study covers an overview of this more direct, student-centered medium for providing feedback using technology familiar to post secondary students. Reminiscent of direct personal contact, the personalized video feedback is positively evaluated by students as a formative medium for student growth in scholarly writing.Keywords: education, pedagogy, screen casting, student feedback, teaching and learning
Procedia PDF Downloads 1197649 A Study on the HTML5 Based Multi Media Contents Authority Tool
Authors: Heesuk Seo, Yongtae Kim
Abstract:
Online learning started in the 1990s, the spread of the Internet has been through the era of e-learning paradigm of online education in the era of smart learning change. Reflecting the different nature of the mobile to anywhere anytime, anywhere was also allows the form of learning, it was also available through the learning content and interaction. We are developing a cloud system, 'TLINKS CLOUD' that allows you to configure the environment of the smart learning without the need for additional infrastructure. Using the big-data analysis for e-learning contents, we provide an integrated solution for e-learning tailored to individual study.Keywords: authority tool, big data analysis, e-learning, HTML5
Procedia PDF Downloads 4067648 The Role of Genetic Markers in Prostate Cancer Diagnosis and Treatment
Authors: Farman Ali, Asif Mahmood
Abstract:
The utilization of genetic markers in prostate cancer management represents a significant advance in personalized medicine, offering the potential for more precise diagnosis and tailored treatment strategies. This paper explores the pivotal role of genetic markers in the diagnosis and treatment of prostate cancer, emphasizing their contribution to the identification of individual risk profiles, tumor aggressiveness, and response to therapy. By integrating current research findings, we discuss the application of genetic markers in developing targeted therapies and the implications for patient outcomes. Despite the promising advancements, challenges such as accessibility, cost, and the need for further validation in diverse populations remain. The paper concludes with an outlook on future directions, underscoring the importance of genetic markers in revolutionizing prostate cancer care.Keywords: prostate cancer, genetic markers, personalized medicine, BRCA1 and BRCA2
Procedia PDF Downloads 627647 The Different Learning Path Analysis of Students with Different Learning Attitudes and Styles in Arts Creation
Authors: Tracy Ho, Huann-Shyang Lin, Mina Lin
Abstract:
This study investigated the different learning path of students with different learning attitude and learning styles in Arts Creation. Based on direct instruction, guided-discovery learning, and discovery learning theories, a tablet app including the following three learning areas were developed for students: (1) replication and remix practice area, (2) guided creation area, and (3) free creation area. Thirty. students with different learning attitude and learning styles were invited to use this app. Students’ learning behaviors were categorized and defined. The results will provide both educators and researchers with insights that can form a useful foundation for designing different content and strategy with the application of new technologies in school teaching. It also sheds light on how an educational App can be designed to enhance Arts Creation.Keywords: App, arts creation, learning attitude, learning style, tablet
Procedia PDF Downloads 2777646 Modern Machine Learning Conniptions for Automatic Speech Recognition
Authors: S. Jagadeesh Kumar
Abstract:
This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition.Keywords: automatic speech recognition, deep learning methods, machine learning archetypes, Bayesian learning, supervised and unsupervised learning
Procedia PDF Downloads 4477645 The Effect of Online Learning During the COVID-19 Pandemic on Student Mental
Authors: Adelia Desi Agnesita
Abstract:
The advent of a new disease called covid-19 made many major changes in the world, one of which is the process of learning and teaching. Learning formerly offline but now is done online, which makes students need adaptation to the learning process. The covid-19 pandemic that occurs almost worldwide causes activities that involve many people to be avoided, one of which is learning to teach. In Indonesia, since March 2020, the process of college learning is turning into online/ long-distance learning. It's to prevent the spread of the covid-19. Student online learning presents some of the obstacles to poor signals, many of the tasks, lack of focus, difficulty sleeping, and resulting stress.Keywords: learning, online, covid-19, pandemic
Procedia PDF Downloads 2147644 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma
Procedia PDF Downloads 1557643 The Role of Artificial Intelligence in Creating Personalized Health Content for Elderly People: A Systematic Review Study
Authors: Mahnaz Khalafehnilsaz, Rozina Rahnama
Abstract:
Introduction: The elderly population is growing rapidly, and with this growth comes an increased demand for healthcare services. Artificial intelligence (AI) has the potential to revolutionize the delivery of healthcare services to the elderly population. In this study, the various ways in which AI is used to create health content for elderly people and its transformative impact on the healthcare industry will be explored. Method: A systematic review of the literature was conducted to identify studies that have investigated the role of AI in creating health content specifically for elderly people. Several databases, including PubMed, Scopus, and Web of Science, were searched for relevant articles published between 2000 and 2022. The search strategy employed a combination of keywords related to AI, personalized health content, and the elderly. Studies that utilized AI to create health content for elderly individuals were included, while those that did not meet the inclusion criteria were excluded. A total of 20 articles that met the inclusion criteria were identified. Finding: The findings of this review highlight the diverse applications of AI in creating health content for elderly people. One significant application is the use of natural language processing (NLP), which involves the creation of chatbots and virtual assistants capable of providing personalized health information and advice to elderly patients. AI is also utilized in the field of medical imaging, where algorithms analyze medical images such as X-rays, CT scans, and MRIs to detect diseases and abnormalities. Additionally, AI enables the development of personalized health content for elderly patients by analyzing large amounts of patient data to identify patterns and trends that can inform healthcare providers in developing tailored treatment plans. Conclusion: AI is transforming the healthcare industry by providing a wide range of applications that can improve patient outcomes and reduce healthcare costs. From creating chatbots and virtual assistants to analyzing medical images and developing personalized treatment plans, AI is revolutionizing the way healthcare is delivered to elderly patients. Continued investment in this field is essential to ensure that elderly patients receive the best possible care.Keywords: artificial intelligence, health content, older adult, healthcare
Procedia PDF Downloads 667642 Implementation of the Collaborative Learning Approach in Learning of Second Language English
Authors: Ashwini Mahesh Jagatap
Abstract:
This paper presents the language learning strategy with respect to speaking skill with collaborative learning approach. Collaborative learning has been proven to be efficient learning methodology for all kinds of students. Students are working in groups of two or more, reciprocally searching for understanding, Solutions, or meanings, or creating a product. The presentation highlights the different stages which can be implemented during actual implementation of the methodology in the class room teaching learning process.Keywords: collaborative classroom, collaborative learning approach, language skills, traditional teaching
Procedia PDF Downloads 5737641 Online vs. in vivo Workshops in a Masters’ Degree Course in Mental Health Nursing: Students’ Views and Opinions
Authors: Evmorfia Koukia, Polyxeni Mangoulia
Abstract:
Workshops tend to be a vivid and productive way as an in vivo teaching method. Due to the pandemic, COVID-19 university courses were conducted through the internet. Method It was tried for the first time to integrate online art therapy workshops in a core course named “Special Themes of Mental Health Nursing” in a MSc Program in Mental Health. The duration of the course is 3-hours per week for 11 weeks in a single semester. The course has a main instructor, a professor of psychiatric nursing experienced in arts therapies workshops and visiting art therapists. All art therapists were given a certain topic to cover. Students were encouraged to keep a logbook that was evaluated at the end of the semester and was submitted as a part of the examination process of the course. An interview of 10 minutes was conducted with each student at the end of the course from an independent investigator (an assistant professor) Participants The students (sample) of the program were: nurses, psychologists, and social workers Results: All students who participated in the courses found that the learning process was vivid, encouraging participation and self-motivation, and there were no main differences from in vivo learning. The students identified their personal needs, and they felt a personal connection with the learning experience. The result of the personalized learning was that students discovered their strengths and weaknesses and developed skills like critical thinking. All students admitted that the workshops were the optimal way for them to comprehend the courses’ content, their capability to become therapists, as well as their obstacles and weaknesses while working with patients in mental health. Conclusion: There were no important differences between the views of students in online and in vivo teaching method of the workshops. The result has shown that workshops in mental health can contribute equally in the learning experience.Keywords: mental health, workshops, students, nursing
Procedia PDF Downloads 2097640 Implications of Learning Resource Centre in a Web Environment
Authors: Darshana Lal, Sonu Rana
Abstract:
Learning Resource Centers (LRC) are acquiring different kinds of documents like books, journals, thesis, dissertations, standard, databases etc. in print and e-form. This article deals with the different types of sources available in LRC. It also discusses the concept of the web, as a tool, as a multimedia system and the different interfaces available on the web. The reasons for establishing LRC are highlighted along with the assignments of LRC. Different features of LRC‘S like self-learning and group learning are described. It also implements a group of activities like reading, learning, educational etc. The use of LRC by students and faculties are given and concluded with the benefits.Keywords: internet, search engine, resource centre, opac, self-learning, group learning
Procedia PDF Downloads 3777639 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling
Authors: Md Yeasin, Ranjit Kumar Paul
Abstract:
In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.Keywords: agriculture, casual inference, machine learning, recommendation system
Procedia PDF Downloads 797638 Special Properties of the Zeros of the Analytic Representations of Finite Quantum Systems
Authors: Muna Tabuni
Abstract:
The paper contains an investigation on the special properties of the zeros of the analytic representations of finite quantum systems. These zeros and their paths completely define the finite quantum system. The present paper studies the construction of the analytic representation from its zeros. The analytic functions of finite quantum systems are introduced. The zeros of the analytic theta functions and their paths have been studied. The analytic function f(z) have exactly d zeros. The analytic function has been constructed from its zeros.Keywords: construction, analytic, representation, zeros
Procedia PDF Downloads 2077637 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 1227636 Active Learning: Increase Learning through Engagement
Authors: Jihan Albayati, Kim Abdullah
Abstract:
This poster focuses on the significance of active learning strategies and their usage in the ESL classroom. Active learning is a big shift from traditional lecturing to active student engagement which can enhance and enrich student learning; therefore, engaging students is the core of this approach. Students learn more when they participate in the process of learning such as discussions, debates, analysis, synthesis, or any form of activity that requires student involvement. In order to achieve active learning, teachers can use different instructional strategies that are conducive to learning and the selection of these strategies depends on student learning outcomes. Active learning techniques must be carefully designed and integrated into the classroom to increase critical thinking and student participation. This poster provides a concise definition of active learning and its importance, instructional strategies, active learning techniques and their impact on student engagement. Also, it demonstrates the differences between passive and active learners.Keywords: active learning, learner engagement, student-centered, teaching strategies
Procedia PDF Downloads 4947635 GIS-Based Topographical Network for Minimum “Exertion” Routing
Authors: Katherine Carl Payne, Moshe Dror
Abstract:
The problem of minimum cost routing has been extensively explored in a variety of contexts. While there is a prevalence of routing applications based on least distance, time, and related attributes, exertion-based routing has remained relatively unexplored. In particular, the network structures traditionally used to construct minimum cost paths are not suited to representing exertion or finding paths of least exertion based on road gradient. In this paper, we introduce a topographical network or “topograph” that enables minimum cost routing based on the exertion metric on each arc in a given road network as it is related to changes in road gradient. We describe an algorithm for topograph construction and present the implementation of the topograph on a road network of the state of California with ~22 million nodes.Keywords: topograph, RPE, routing, GIS
Procedia PDF Downloads 5467634 Gender Diversity in Early Years Education: An Exploratory Study Applied to Preschool Curriculum System in Romania
Authors: Emilia-Gheorghina Negru
Abstract:
As an EU goal, gender diversity in early year’s education aims and promotes equality of chances and respect for gender peculiarities of the pupils which are involved in formal educational activities. Early year’s education, as the first step to the Curriculum, prints to teachers the need to identify the role of the gender dimension on this stage, depending on the age level of preschool children through effective, complex, innovative and analytical awareness of gender diversity teaching and management strategies. Through gender educational work we, as teachers, will examine the effectiveness of the PATHS (Promoting Alternative Thinking Strategies) curriculum the gender development of school-aged children. PATHS and a school-based preventive intervention model are necessary to be designed to improve children's ability to discuss and understand equality and gender concepts. Our teachers must create an intervention model and provide PATHS lessons during the school year. Results of the intervention will be effective for both low- and high-risk children in improving their range of math’s skills for girls and vocabulary, fluency and emotional part for boys in discussing gender experiences, their efficacy beliefs regarding the management of equality in gender area, and their developmental understanding of some aspects of gender.Keywords: gender, gender differences, gender equality, gender role, gender stereotypes
Procedia PDF Downloads 3787633 Pharmacokinetic Model of Warfarin and Its Application in Personalized Medicine
Authors: Vijay Kumar Kutala, Addepalli Pavani, M. Amresh Rao, Naushad Sm
Abstract:
In this study, we evaluated the impact of CYP2C9*2 and CYP2C9*3 variants on binding and hydroxylation of warfarin. In silico data revealed that warfarin forms two hydrogen bonds with protein backbone i.e. I205 and S209, one hydrogen bond with protein side chain i.e. T301 and stacking interaction with F100 in CYP2C9*1. In CYP2C9*2 and CYP2C9*3 variants, two hydrogen bonds with protein backbone are disrupted. In double variant, all the hydrogen bonds are disrupted. The distances between C7 of S-warfarin and Fe-O in CYP2C9*1, CYP2C9*2, CYP2C9*3 and CYP2C9*2/*3 were 5.81A°, 7.02A°, 7.43° and 10.07°, respectively. The glide scores (Kcal/mol) were -7.698, -7.380, -6.821 and -6.986, respectively. Increase in warfarin/7-hydroxy warfarin ratio was observed with increase in variant alleles. To conclude, CYP2C9*2 and CYP2C9*3 variants result in disruption of hydrogen bonding interactions with warfarin and longer distance between C7 and Fe-O thus impairing warfarin 7-hydroxylation due to lower binding affinity of warfarin.Keywords: warfarin, CYP2C9 polymorphism, personalized medicine, in Silico
Procedia PDF Downloads 3227632 An Ontology for Smart Learning Environments in Music Education
Authors: Konstantinos Sofianos, Michail Stefanidakis
Abstract:
Nowadays, despite the great advances in technology, most educational frameworks lack a strong educational design basis. E-learning has become prevalent, but it faces various challenges such as student isolation and lack of quality in the learning process. An intelligent learning system provides a student with educational material according to their learning background and learning preferences. It records full information about the student, such as demographic information, learning styles, and academic performance. This information allows the system to be fully adapted to the student’s needs. In this paper, we propose a framework and an ontology for music education, consisting of the learner model and all elements of the learning process (learning objects, teaching methods, learning activities, assessment). This framework can be integrated into an intelligent learning system and used for music education in schools for the development of professional skills and beyond.Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web
Procedia PDF Downloads 1397631 The Impact of Online Learning on Visual Learners
Authors: Ani Demetrashvili
Abstract:
As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.Keywords: online learning, visual learners, digital education, technology in learning
Procedia PDF Downloads 38