Search results for: improve efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13117

Search results for: improve efficiency

13027 Organizational Efficiency in the Age of the Current Financial Crisis Strategies and Tracks Progress

Authors: Aharouay Soumaya

Abstract:

Efficiency is a relative concept. It is measured by comparing the productivity obtained in what is intended as standard or objective criteria. The quantity and quality of output achieved and the level of service are also compared to targets or standards, to determine to what extent they could cause changes in efficiency. Efficiency improves when more outputs of a specified quality are produced with the same resource inputs or less, or when the same amount of output is produced with fewer resources. This article proposes a review of the literature on strategies adopted by firms in the age of the financial crisis to overcome these negative effects, and tracks progress chosen by the organization to remain successful despite the plight of firms.

Keywords: effectiveness, efficiency, organizational capacity, strategy, management tool, progress, performance

Procedia PDF Downloads 321
13026 Proposals for the Thermal Regulation of Buildings in Algeria: A New Energy Label for Social Housing

Authors: Marco Morini, Nicolandrea Calabrese, Dario Chello

Abstract:

Despite the international commitment of Algeria towards the development of energy efficiency and renewable energy in the country, the internal energy demand has been continuously growing during the last decade due to the substantial increase of population and of living conditions, which in turn has led to an unprecedented expansion of the residential building sector. The thermal building regulation is the technical document that establishes the calculation framework for the thermal performance of buildings in Algeria, setting up minimum obligatory targets for the thermal performance of new buildings. An update of this regulation is due in the coming years, and this paper discusses some proposals in this regard, with the aim to improve the energy efficiency of the building sector, particularly with regard to social housing. In particular, it proposes a methodology for drafting an energy performance label of new Algerian residential buildings, moving from the results of the thermal compliance verification and sizing of technical systems as defined in the RTB. Such an energy performance label – whose calculation method is briefly described in the paper – aims to raise citizens' awareness of the benefits of energy efficiency. It can represent the first step in a process of integrating technical installations into the calculation of the energy performance of buildings in Algeria.

Keywords: building, energy certification, energy efficiency, social housing, international cooperation, Mediterranean region

Procedia PDF Downloads 114
13025 Motorist Driving Strategy-Related Factors Affecting Vehicle Fuel Efficiency

Authors: Aydin Azizi, Abdurrahman Tanira

Abstract:

With the onset of climate change and limited fuel resources, improving fuel efficiency has become an important part of the motor industry. To maximize fuel efficiency, development of technologies must come hand-in-hand with awareness of efficient driving strategies. This study aims to explore the various driving habits that can impact fuel efficiency by reviewing available literature. Such habits include sudden and unnecessary acceleration or deceleration, improper hardware maintenance, driving above or below optimum speed and idling. By studying such habits and ultimately applying it to driving techniques, in combination with improved mechanics of the car, will optimize the use of fuel.

Keywords: fuel efficiency, driving techniques, optimum speed, optimizing fuel consumption

Procedia PDF Downloads 434
13024 Evaluation the Financial and Social Efficiency of Microfinance Institutions Using Data Envelope Analysis - A Sample Study of Active Microfinance Institutions in India

Authors: Hiba Mezaache

Abstract:

The study aims to assess the financial and social efficiency of microfinance institutions in india for the period 2015-2019 by using two models of economies of scale and choosing the output direction of the data envelope analysis (DEA) method and using the MIX MARKET database. The study concluded that microfinance institutions focus on achieving financial efficiency beyond their focus on achieving social efficiency to ensure their continuity in the market. Convergence in the efficiency ratios that have been achieved, but the optimum ratios have been achieved under the changing economies of scale; Efficiency is affected by the depth of reaching low-income groups, as serving this group raises costs and risks. The importance of lending to women in rural areas and raising their awareness to ensure their financial and social empowerment; Make improvements in operating expenses, asset management, and loan personnel control in order to maximize output.

Keywords: microfinance, financial efficiency, social efficiency, mix market, microfinance institutions

Procedia PDF Downloads 128
13023 Readiness Assessment to Implement Net-Zero Energy Building Program of Government Buildings in the Philippines

Authors: Patrick T. Aquino, Jimwel B. Balunday, Cephas Olivier V. Cabatit, Mary Grace Q. Razonable

Abstract:

In 2023, the Philippine Department of Energy (PDOE) published the National Energy Efficiency and Conservation Plan (NEECP) and Roadmap 2023-2050 to be the basis of a comprehensive program for the efficient supply and economical use of energy. The building sector, as one of the most energy-intensive sectors, shall conform to the energy-conserving design to reduce the use of energy. The concept of Net-Zero Energy Building (NZEB), and its definitions promote to improve energy efficiency of the buildings. The PDOE partnered with Meralco Power Academy to survey and conduct focus group discussions to establish the readiness into NZE-aspiring buildings of government entities. This paper outlines important NZEB principles, best practices from other countries, issues and gaps relating to energy management program, and the recommendations on the development of a framework for NZEB under government building in the Philippines. Results revealed the limitation on specific data to establish a baseline building energy efficiency performance index and significant energy uses; the need to update the Guidelines for Energy Conservation Design of Buildings, including NZEB definition and requirements; appropriate enabling infrastructures and programs to transition government buildings into NZE-aspiring buildings to Nearly Zero Energy Buildings by 2050.

Keywords: NZEB, energy efficiency, buildings, Philippines

Procedia PDF Downloads 57
13022 First and Second Analysis on the Reheat Organic Rankine Cycle

Authors: E. Moradimaram, H. Sayehvand

Abstract:

In recent years the increasing use of fossil fuels has led to various environmental problems including urban pollution, ozone layer depletion and acid rains. Moreover, with the increased number of industrial centers and higher consumption of these fuels, the end point of the fossil energy reserves has become more evident. Considering the environmental pollution caused by fossil fuels and their limited availability, renewable sources can be considered as the main substitute for non-renewable resources. One of these resources is the Organic Rankine Cycles (ORCs). These cycles while having high safety, have low maintenance requirements. Combining the ORCs with other systems, such as ejector and reheater will increase overall cycle efficiency. In this study, ejector and reheater are used to improve the thermal efficiency (ηth), exergy efficiency (η_ex) and net output power (w_net); therefore, the ORCs with reheater (RORCs) are proposed. A computational program has been developed to calculate the thermodynamic parameters required in Engineering Equations Solver (EES). In this program, the analysis of the first and second law in RORC is conducted, and a comparison is made between them and the ORCs with Ejector (EORC). R245fa is selected as the working fluid and water is chosen as low temperature heat source with a temperature of 95 °C and a mass transfer rate of 1 kg/s. The pressures of the second evaporator and reheater are optimized in terms of maximum exergy efficiency. The environment is at 298.15 k and at 101.325 kpa. The results indicate that the thermodynamic parameters in the RORC have improved compared to EORC.

Keywords: Organic Rankine Cycle (ORC), Organic Rankine Cycle with Reheater (RORC), Organic Rankine Cycle with Ejector (EORC), exergy efficiency

Procedia PDF Downloads 137
13021 Effect of Aging on the Second Law Efficiency, Exergy Destruction and Entropy Generation in the Skeletal Muscles during Exercise

Authors: Jale Çatak, Bayram Yılmaz, Mustafa Ozilgen

Abstract:

The second law muscle work efficiency is obtained by multiplying the metabolic and mechanical work efficiencies. Thermodynamic analyses are carried out with 19 sets of arms and legs exercise data which were obtained from the healthy young people. These data are used to simulate the changes occurring during aging. The muscle work efficiency decreases with aging as a result of the reduction of the metabolic energy generation in the mitochondria. The reduction of the mitochondrial energy efficiency makes it difficult to carry out the maintenance of the muscle tissue, which in turn causes a decline of the muscle work efficiency. When the muscle attempts to produce more work, entropy generation and exergy destruction increase. Increasing exergy destruction may be regarded as the result of the deterioration of the muscles. When the exergetic efficiency is 0.42, exergy destruction becomes 1.49 folds of the work performance. This proportionality becomes 2.50 and 5.21 folds when the exergetic efficiency decreases to 0.30 and 0.17 respectively.

Keywords: aging mitochondria, entropy generation, exergy destruction, muscle work performance, second law efficiency

Procedia PDF Downloads 402
13020 Effects of Ergonomics on Labor Productivity in Office Design

Authors: Abdullah Erden, Filiz Erden

Abstract:

In the present information society era, a change is seen in every field together with changing technology. Along with this change, importance given to information and human who is the producer of information increased. Work life and working conditions included in these changes have also been affected. The most important factors that disturb employees in offices are lighting, ventilation, noise and office furniture. Upon arrangement of these according to ergonomic principles, performance and efficiency of employees will increase. Fatigue and stress resulting from office environment are harmful for employees. Attention and efficiency of employee who feels bad will decrease. It should be noted that office employees are human and affected from environment. It should be allowed them to work in comfortable, healthy and peaceful environment. As a result, efficiency will increase and target will be reached. In this study, it has been focused on basic concepts such as office management and efficiency, effects of ergonomics on office efficiency has been examined. Also, a place is given to the factors affecting operational efficiency and effects of physical environment on employees.

Keywords: ergonomics, efficiency, office design, office

Procedia PDF Downloads 435
13019 Design and Evaluation of Corrective Orthosis Knee for Hyperextension

Authors: Valentina Narvaez Gaitan, Paula K. Rodriguez Ramirez, Derian D. Espinosa

Abstract:

Corrective orthosis has great importance in orthopedic treatments providing assistance in improving mobility and stability in order to improve the quality of life for a different patient. The corrective orthosis studied in this article can correct deformities, reduce pain, and improve the ability to perform daily activities. This work describes the design and evaluation of a corrective orthosis for knee hyperextension. This orthosis is capable of generating a progressive and variable alignment of the joint, limiting the range of motion according to medical criteria. The main objective was to design a corrective knee orthosis capable of correcting knee hyperextension progressively to return to its natural angle with greater economic affordability and adjustable size. The limiting mechanism is based on a goniometer to determine the desired angles. The orthosis was made of acrylic to reduce costs and maintenance; neoprene is also used to make comfortable contact; additionally, Velcro was used in order to adjust the orthosis for various sizes. Simulations of static and fatigue analysis of the mechanism were performed to verify its resistance and durability under normal conditions. A biomechanical gait study of gait was carried out on 10 healthy subjects without the orthosis and limiting their knee extension capacity in a normal gait cycle with the orthosis to observe the efficiency of the proposed system. In the results obtained, the knee angle curves show that the maximum extension angle was the established angle by the orthosis. Showing the efficiency of the proposed design for different leg sizes.

Keywords: biomechanical study, corrective orthosis, efficiency, goniometer, knee hyperextension.

Procedia PDF Downloads 50
13018 An Empirical Study of the Impacts of Big Data on Firm Performance

Authors: Thuan Nguyen

Abstract:

In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.

Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient

Procedia PDF Downloads 215
13017 Biodiesel Production from Animal Fat Using Trans-Esterification Process with Zeolite as a Solid Catalyst to Improve the Efficiency of Production

Authors: Dinda A. Utami, Muhammad N. Alfarizi

Abstract:

The purpose of this study was to determine the ability of zeolite catalyst for the trans- esterification reaction in biodiesel production from animal fat. The ability of the zeolite as a catalyst is determined by the structure and composition of the zeolite. An important factor that determines the properties of zeolites in catalysis includes adsorption capability to the compound of the reactants. Zeolites with a pore size of specific properties selectively adsorbing molecules. A molecule can be adsorbed by either the zeolite cavities if the size and shape of the molecule in accordance with the size and shape of the cavity in the zeolite. At this time, it is common to use homogeneous catalysts for biodiesel. We know these catalysts have some disadvantages in its use. Such as the difficulty of separation of the product with the catalyst, the generation of waste that is harmful to the environment due to residual catalysts can’t be reused, and the difficulty of handling and storage. But nowadays, solid catalyst developed technically to improve the efficiency of biodiesel production. In this case of study, we used trans-esterification process wherein the triglyceride is reacted with an alcohol with zeolite as a solid catalyst and it will produce biodiesel and glycerol as a byproduct. Development of solid catalyst seems to be the perfect solution to address the problems associated with homogeneous catalysts.

Keywords: biodiesel, animal fat, trans esterification, zeolite catalyst

Procedia PDF Downloads 225
13016 Development of Non-Point Pollutants Removal Equipments Using Media with Bacillus sp.

Authors: Han-Seul Lee, Min-Koo Kang, Sang-Ill Lee

Abstract:

This study was conducted to reduce runoff by rainwater infiltration facility using attached growth with Bacillus sp., which are reported to remove nitrogen and phosphorus, as well as organic matter effectively. This study was investigated non-point pollutants removal efficiency of organic, nitrogen, and phosphorus in column using the media attached growth with Bacillus sp. To compare attached growth with bacillus sp. and detached media, two columns filled with perlite, zeolite, vermiculite, pumice, peat-moss was installed. In A column (attached growth with bacillus sp.), in case of infiltration velocity 30 mm/hr in high concentration of influent, it showed the removal efficiency (after aging term) is SS (suspended solid) 85.8±1.2 %, T-P (total phosphorus) 67.0±8.1 %, T-N (total nitrogen) 66.0±4.9 %, COD (chemical oxygen demand) 73.6±2.9 %, NH4+-N 72.7±3.0 %. In B column (detached media), in case of infiltration velocity 30 mm/hr in high concentration of influent, it showed the removal efficiency (after aging term) is SS 86.0±2.2 %, T-P 62.5±11.3 %, T-N 53.3±3.9 %, COD 34.6±3.7 %, NH4+-N 61.5±2.8 %. Removal efficiency of A column is better than B column. As the result from this study, using media with Bacillus sp. can improve an effective removal of non-point source pollutants.

Keywords: non-point source pollutants, Bacillus sp., rainwater, infiltration facility

Procedia PDF Downloads 299
13015 Livestock Production in Vietnam: Technical Efficiency and Productivity Performance Based on Regional Differences

Authors: Diep Thanh Tung

Abstract:

This study aims to measure technical efficiency and examine productivity performance of livestock production in regions of Vietnam based on a panel data of 2008–2012. After four years, although there are improvements in efficiency of some regions, low technical efficiency, poor performance of productivity and its compositions are dominant features in almost regions. Households which much depend on livestock income in agricultural income or agricultural income in total income are more vulnerable than the others in term of livestock production.

Keywords: data envelopment analysis, meta-frontier, Malmquist, technical efficiency, livestock production

Procedia PDF Downloads 672
13014 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency

Authors: F. Ahwide, Y. Aldali

Abstract:

This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).

Keywords: power plant, efficiency improvement, carbon dioxide emissions, energy situation in Libya

Procedia PDF Downloads 445
13013 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 152
13012 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: parameterization, response surface, structure optimization, pressure hull

Procedia PDF Downloads 206
13011 Hybrid Nano Material of Ground Egg Shells with Metal Oxide for Lead Removal

Authors: A. Threepanich, S. Youngme, P. Praipipat

Abstract:

Although ground egg shells had the ability to eliminate lead in water, their efficiency may decrease in a case of contaminating of other cations such as Na⁺, Ca²⁺ in the water. The development of ground egg shells may solve this problem in which metal oxides are a good choice for this case since they have the ability to remove any heavy metals including lead in the water. Therefore, this study attempts to use this advantage for improving ground egg shells for the specific lead removal efficiency in the water. X-ray fluorescence (XRF) technique was used for the chemical element contents analysis of ground egg shells (GES) and ground egg shells with metal oxide (GESM), and Transmission electron microscope (TEM) technique was used to examine the material sizes. The batch test studies were designed to investigate the factor effects on dose (5, 10, 15 grams), pH (5, 7, 9), and settling time (1, 3, 5 hours) for the lead removal efficiency in the water. The XRF analysis results showed GES contained calcium (Ca) 91.41% and Silicon (Si) 4.03% and GESM contained calcium (Ca) 91.41%, Silicon (Si) 4.03%, and Iron (Fe) 3.05%. TEM results confirmed the sizes of GES and GESM in the range of 1-20 nm. The batch test studies showed the best optimum conditions for the lead removal in the water of GES and GESM in dose, pH, and settling time were 10 grams, pH 9, 5 hours and 5 grams, pH 9, 3 hours, respectively. The competing ions (Na⁺ and Ca²⁺) study reported GESM had the higher % lead removal efficiency than GES at 90% and 60%, respectively. Therefore, this result can confirm that adding of metal oxide to ground egg shells helps to improve the lead removal efficiency in the water.

Keywords: nano material, ground egg shells, metal oxide, lead

Procedia PDF Downloads 113
13010 A Multimodal Approach to Improve the Performance of Biometric System

Authors: Chander Kant, Arun Kumar

Abstract:

Biometric systems automatically recognize an individual based on his/her physiological and behavioral characteristics. There are also some traits like weight, age, height etc. that may not provide reliable user recognition because of there common and temporary nature. These traits are called soft bio metric traits. Although soft bio metric traits are lack of permanence to uniquely and reliably identify an individual, yet they provide some beneficial evidence about the user identity and may improve the system performance. Here in this paper, we have proposed an approach for integrating the soft bio metrics with fingerprint and face to improve the performance of personal authentication system. In our approach we have proposed a combined architecture of three different sensors to elevate the system performance. The approach includes, soft bio metrics, fingerprint and face traits. We have also proven the efficiency of proposed system regarding FAR (False Acceptance Ratio) and total response time, with the help of MUBI (Multimodal Bio metrics Integration) software.

Keywords: FAR, minutiae point, multimodal bio metrics, primary bio metric, soft bio metric

Procedia PDF Downloads 317
13009 Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell

Authors: Rajesh P.P., Md. Tabish Noori, Makarand M. Ghangrekar

Abstract:

Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC.

Keywords: coulombic efficiency, methanogenesis inhibition, microbial fuel cell, nitroethane

Procedia PDF Downloads 291
13008 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation

Authors: Yongjian Gu

Abstract:

Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.

Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ

Procedia PDF Downloads 167
13007 Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use.

Keywords: passive solar systems, heating, cooling, thermal comfort, ventilation systems

Procedia PDF Downloads 272
13006 Sustainability in Space: Implementation of Circular Economy and Material Efficiency Strategies in Space Missions

Authors: Hamda M. Al-Ali

Abstract:

The ultimate aim of space exploration has been centralized around the possibility of life on other planets in the solar system. This aim is driven by the detrimental effects that climate change could potentially have on human survival on Earth in the future. This drives humans to search for feasible solutions to increase environmental and economical sustainability on Earth and to evaluate and explore the ability of human survival on other planets such as Mars. To do that, frequent space missions are required to meet the ambitious human goals. This means that reliable and affordable access to space is required, which could be largely achieved through the use of reusable spacecrafts. Therefore, materials and resources must be used wisely to meet the increasing demand. Space missions are currently extremely expensive to operate. However, reusing materials hence spacecrafts, can potentially reduce overall mission costs as well as the negative impact on both space and Earth environments. This is because reusing materials leads to less waste generated per mission, and therefore fewer landfill sites are required. Reusing materials reduces resource consumption, material production, and the need for processing new and replacement spacecraft and launch vehicle parts. Consequently, this will ease and facilitate human access to outer space as it will reduce the demand for scarce resources, which will boost material efficiency in the space industry. Material efficiency expresses the extent to which resources are consumed in the production cycle and how the waste produced by the industrial process is minimized. The strategies proposed in this paper to boost material efficiency in the space sector are the introduction of key performance indicators that are able to measure material efficiency as well as the introduction of clearly defined policies and legislation that can be easily implemented within the general practices in the space industry. Another strategy to improve material efficiency is by amplifying energy and resource efficiency through reusing materials. The circularity of various spacecraft materials such as Kevlar, steel, and aluminum alloys could be maximized through reusing them directly or after galvanizing them with another layer of material to act as a protective coat. This research paper has an aim to investigate and discuss how to improve material efficiency in space missions considering circular economy concepts so that space and Earth become more economically and environmentally sustainable. The circular economy is a transition from a make-use-waste linear model to a closed-loop socio-economic model, which is regenerative and restorative in nature. The implementation of a circular economy will reduce waste and pollution through maximizing material efficiency, ensuring that businesses can thrive and sustain. Further research into the extent to which reusable launch vehicles reduce space mission costs have been discussed, along with the environmental and economic implications it could have on the space sector and the environment. This has been examined through research and in-depth literature review of published reports, books, scientific articles, and journals. Keywords such as material efficiency, circular economy, reusable launch vehicles and spacecraft materials were used to search for relevant literature.

Keywords: circular economy, key performance indicator, material efficiency, reusable launch vehicles, spacecraft materials

Procedia PDF Downloads 99
13005 Investigation into Relationship between Spaced Repetitions and Problems Solving Efficiency

Authors: Sidharth Talan, Rajlakshmi G. Majumdar

Abstract:

Problem-solving skill is one the few skills which is constantly endeavored to improve upon by the professionals and academicians around the world in order to sustain themselves in the ever-growing competitive environment. The given paper focuses on evaluating a hypothesized relationship between the problems solving efficiency of an individual with spaced repetitions, conducted with a time interval of one day over a period of two weeks. The paper has utilized uni-variate regression analysis technique to assess the best fit curve that can explain the significant relationship between the given two variables. The paper has incorporated Anagrams solving as the appropriate testing process for the analysis. Since Anagrams solving involves rearranging a jumbled word to form a correct word, it projects to be an efficient process to observe the attention span, visual- motor coordination and the verbal ability of an individual. Based on the analysis for a sample population of 30, it was observed that problem-solving efficiency of an individual, measured in terms of the score in each test was found to be significantly correlated with time period measured in days.

Keywords: Anagrams, histogram plot, moving average curve, spacing effect

Procedia PDF Downloads 130
13004 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions

Authors: Tesfaye Mengistu

Abstract:

This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.

Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission

Procedia PDF Downloads 56
13003 Analysis of Technical Efficiency and Its Determinants among Cattle Fattening Enterprises in Kebbi State, Nigeria

Authors: Gona Ayuba, Isiaka Mohammed, Kotom Mohammed Baba, Mohammed Aabubakar Maikasuwa

Abstract:

The study examined the technical efficiency and its determinants of cattle fattening enterprises in Kebbi state, Nigeria. Data were collected from a sample of 160 fatteners between June 2010 and June 2011 using the multistage random sampling technique. Translog stochastic frontier production function was employed for the analysis. Results of the analysis show that technical efficiency indices varied from 0.74 to 0.98%, with a mean of 0.90%, indicating that there was no wide gap between the efficiency of best technical efficient fatteners and that of the average fattener. The result also showed that fattening experience and herd size influenced the level of technical efficiency at 1% levels. It is recommended that credit agencies should ensure that credit made available to the fatteners is monitored to ensure appropriate utilization.

Keywords: technical efficiency, determinants, cattle, fattening enterprises

Procedia PDF Downloads 408
13002 Quality Based Approach for Efficient Biologics Manufacturing

Authors: Takashi Kaminagayoshi, Shigeyuki Haruyama

Abstract:

To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process.

Keywords: antibody drugs, biologics, manufacturing efficiency, PDCA cycle, quality engineering

Procedia PDF Downloads 322
13001 Improving Rural Access to Specialist Emergency Mental Health Care: Using a Time and Motion Study in the Evaluation of a Telepsychiatry Program

Authors: Emily Saurman, David Lyle

Abstract:

In Australia, a well serviced rural town might have a psychiatrist visit once-a-month with more frequent visits from a psychiatric nurse, but many have no resident access to mental health specialists. Access to specialist care, would not only reduce patient distress and benefit outcomes, but facilitate the effective use of limited resources. The Mental Health Emergency Care-Rural Access Program (MHEC-RAP) was developed to improve access to specialist emergency mental health care in rural and remote communities using telehealth technologies. However, there has been no current benchmark to gauge program efficiency or capacity; to determine whether the program activity is justifiably sufficient. The evaluation of MHEC-RAP used multiple methods and applied a modified theory of access to assess the program and its aim of improved access to emergency mental health care. This was the first evaluation of a telepsychiatry service to include a time and motion study design examining program time expenditure, efficiency, and capacity. The time and motion study analysis was combined with an observational study of the program structure and function to assess the balance between program responsiveness and efficiency. Previous program studies have demonstrated that MHEC-RAP has improved access and is used and effective. The findings from the time and motion study suggest that MHEC-RAP has the capacity to manage increased activity within the current model structure without loss to responsiveness or efficiency in the provision of care. Enhancing program responsiveness and efficiency will also support a claim of the program’s value for money. MHEC-RAP is a practical telehealth solution for improving access to specialist emergency mental health care. The findings from this evaluation have already attracted the attention of other regions in Australia interested in implementing emergency telepsychiatry programs and are now informing the progressive establishment of mental health resource centres in rural New South Wales. Like MHEC-RAP, these centres will provide rapid, safe, and contextually relevant assessments and advice to support local health professionals to manage mental health emergencies in the smaller rural emergency departments. Sharing the application of this methodology and research activity may help to improve access to and future evaluations of telehealth and telepsychiatry services for others around the globe.

Keywords: access, emergency, mental health, rural, time and motion

Procedia PDF Downloads 207
13000 Effect of Urea Deep Placement Technology Adoption on the Production Frontier: Evidence from Irrigation Rice Farmers in the Northern Region of Ghana

Authors: Shaibu Baanni Azumah, William Adzawla

Abstract:

Rice is an important staple crop, with current demand higher than the domestic supply in Ghana. This has led to a high and unfavourable import bill. Therefore, recent policies and interventions in the agricultural sub-sector aim at promoting various improved agricultural technologies in order to improve domestic production and reduce the importation of rice. In this study, we examined the effect of the adoption of Urea Deep Placement (UDP) technology by rice farmers on the position of the production frontier. This involved 200 farmers selected through a multi stage sampling technique in the Northern region of Ghana. A Cobb-Douglas stochastic frontier model was fitted. The result showed that the adoption of UDP technology shifts the output frontier outward and also move the farmers closer to the frontier. Farmers were also operating under diminishing returns to scale which calls for redress. Other factors that significantly influenced rice production were farm size, labour, use of certified seeds and NPK fertilizer. Although there was an opportunity for improvement, the farmers were highly efficient (92%), compared to previous studies. Farmers’ efficiency was improved through increased education, household size, experience, access to credit, and lack of extension service provision by MoFA. The study recommends the revision of Ghana’s agricultural policy to include the UDP technology. Agricultural Extension officers of the Ministry of Food and Agriculture (MoFA) should be trained on the UDP technology to support IFDC’s drive to improve adoption by rice farmers. Rice farmers are also encouraged to expand their farm lands, improve plant population, and also increase the usage of fertilizer to improve yields. Mechanisms through which credit can be made easily accessible and effectively utilised should be identified and promoted.

Keywords: efficiency, rice farmers, stochastic frontier, UDP technology

Procedia PDF Downloads 387
12999 Energy Efficiency Measures in Canada’s Iron and Steel Industry

Authors: A. Talaei, M. Ahiduzzaman, A. Kumar

Abstract:

In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.

Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation

Procedia PDF Downloads 376
12998 Exploratory Analysis and Development of Sustainable Lean Six Sigma Methodologies Integration for Effective Operation and Risk Mitigation in Manufacturing Sectors

Authors: Chukwumeka Daniel Ezeliora

Abstract:

The Nigerian manufacturing sector plays a pivotal role in the country's economic growth and development. However, it faces numerous challenges, including operational inefficiencies and inherent risks that hinder its sustainable growth. This research aims to address these challenges by exploring the integration of Lean and Six Sigma methodologies into the manufacturing processes, ultimately enhancing operational effectiveness and risk mitigation. The core of this research involves the development of a sustainable Lean Six Sigma framework tailored to the specific needs and challenges of Nigeria's manufacturing environment. This framework aims to streamline processes, reduce waste, improve product quality, and enhance overall operational efficiency. It incorporates principles of sustainability to ensure that the proposed methodologies align with environmental and social responsibility goals. To validate the effectiveness of the integrated Lean Six Sigma approach, case studies and real-world applications within select manufacturing companies in Nigeria will be conducted. Data were collected to measure the impact of the integration on key performance indicators, such as production efficiency, defect reduction, and risk mitigation. The findings from this research provide valuable insights and practical recommendations for selected manufacturing companies in South East Nigeria. By adopting sustainable Lean Six Sigma methodologies, these organizations can optimize their operations, reduce operational risks, improve product quality, and enhance their competitiveness in the global market. In conclusion, this research aims to bridge the gap between theory and practice by developing a comprehensive framework for the integration of Lean and Six Sigma methodologies in Nigeria's manufacturing sector. This integration is envisioned to contribute significantly to the sector's sustainable growth, improved operational efficiency, and effective risk mitigation strategies, ultimately benefiting the Nigerian economy as a whole.

Keywords: lean six sigma, manufacturing, risk mitigation, sustainability, operational efficiency

Procedia PDF Downloads 169