Search results for: hazardous waste (HW)
2942 Recovery of Copper from Edge Trims of Printed Circuit Boards Using Acidithiobacillus Ferrooxidans: Bioleaching
Authors: Shashi Arya, Nand L. Singh, Samiksha Singh, Pradeep K. Mishra, Siddh N. Upadhyay
Abstract:
The enormous generation of E- waste and its recycling have greater environmental concern especially in developing countries like India. A major part of this waste comprises printed circuit boards (PCBs). Edge trims of PCBs have high copper content ranging between 25-60%. The extraction of various metals out of these PCBs is more or less a proven technology, wherein various hazardous chemicals are being used in the resource recovery, resulting into secondary pollution. The current trend of extracting of valuable metals is the utilization of microbial strains to eliminate the problem of a secondary pollutant. Keeping the above context in mind, this work aims at the enhanced recovery of copper from edge trims, through bioleaching using bacterial strain Acidithiobacillus ferrooxidans. The raw material such as motherboards, hard drives, floppy drives and DVD drives were obtained from the warehouse of the University. More than 90% copper could be extracted through bioleaching using Acidithiobacillus ferrooxidans. Inoculate concentration has merely insignificant effect over copper recovery above 20% inoculate concentration. Higher concentration of inoculation has the only initial advantage up to 2-4 days. The complete recovery has been obtained between 14- 24 days.Keywords: acidithiobacillus ferrooxidans, bioleaching, e-waste, printed circuit boards
Procedia PDF Downloads 3292941 Eco-Friendly Electricity Production from the Waste Heat of Air Conditioners
Authors: Anvesh Rajak
Abstract:
This is a new innovation that can be developed. Here I am going to use the waste heat of air conditioner so as to produce the electricity by using the Stirling engine because this waste heat creates the thermal pollution in the environment. The waste heat from the air conditioners has caused a temperature rise of 1°–2°C or more on weekdays in the Tokyo office areas. This heating promotes the heat-island phenomenon in Tokyo on weekdays. Now these air conditioners creates the thermal pollution in the environment and hence rising the temperature of the environment. Air conditioner generally emit the waste heat air whose temperature is about 50°C which heat the environment. Today the demand of energy is increasing tremendously, but available energy lacks in supply. Hence, there is no option for proper and efficient utilization and conservation of energy. In this paper the main stress is given on energy conservation by using technique of utilizing waste heat from Air-conditioning system. Actually the focus is on the use of the waste heat rather than improving the COP of the air- conditioners; if also we improve the COP of air conditioners gradually it would emit some waste heat so I want that waste heat to be used up. As I have used air conditioner’s waste heat to produce electricity so similarly there are various other appliances which emit the waste heat in the surrounding so here also we could use the Stirling engines and Geothermal heat pump concept to produce the electricity and hence can reduce the thermal pollution in the environment.Keywords: stirling engine, geothermal heat pumps, waste heat, air conditioners
Procedia PDF Downloads 3582940 XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder
Authors: Hyeonuk Shin, Hun Song, Yongsik Chu, Jongkyu Lee, Dongcheon Park
Abstract:
Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement.Keywords: Low carbon type cement, Waste cementitious powder, Waste recycling
Procedia PDF Downloads 4642939 Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production
Authors: Deokyeong Choe, Keonwook Nam, Young Hoon Roh
Abstract:
Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production.Keywords: wood waste, H₃PO₄-acetone, bioethanol, fermentation
Procedia PDF Downloads 5712938 Smart Trash Can Interface between Origin and Destination Waste Management
Authors: Fatemeh Ghorbani
Abstract:
The increase in population in the cities has also led to the increase and accumulation of urban waste. Managing and organizing waste is an action that must be taken to prevent environmental pollution. Separation of waste from the source is the first step that must be taken to determine whether the waste should be buried, burned, recycled, or used in the industry according to its type. Separation of trash is a cultural work that the general public must learn the necessity of doing; then, it is necessary to provide suitable conditions for collecting this waste. It is necessary to put segregated garbage cans in the city so that people can put the garbage in the right place. In this research, a smart trash can has been designed, which is connected to the central system of the municipality and has information on the units of each neighborhood separately. By entering the postal code on the page connected to each bin and entering the type of waste, the section related to the waste in the existing bin is opened and the person places the waste in the desired section. In addition, all the bins are connected to the municipal system, and the sensors in it warn each relevant body about the fullness and emptiness of the bins. Also, people can know how full and empty the bins around their building are through the designed application connected to the system. In this way, each organization collects its desired waste, wet and dry waste are separated from the beginning, and city pollution and unpleasant odors are also prevented.Keywords: connector, smart trash can, waste management
Procedia PDF Downloads 662937 Comparative Study of Stone Column with and without Encasement Using Waste Aggregate
Authors: V. K. Stalin, V. Paneerselvam, M. Bharath, M. Kirithika
Abstract:
In developing countries like India due to the rapid urbanization, large amount of waste materials are produced every year. These waste materials can be utilized in the improvement of problematic soils. Stone column is one of the best methods to improve soft clay deposits. In this study, load tests were conducted to ensure the suitability of waste as column materials. The variable parameters studied are material, number of column and encasement. The materials used for the study are stone aggregate, copper slag, construction waste, for one, two and three number of columns with geotextile and geogrid encasement. It was found that the performance of waste as column material are comparable to that of conventional stone column with and without encasement. Hence, it is concluded that the copper slag and construction waste may be used as a column material in place of conventional stone aggregate to improve the soft clay advantage being utilization of waste.Keywords: stone column, geocomposite, construction waste, copper slag
Procedia PDF Downloads 3792936 Re-Defining Food Waste and Food Waste Management in the Food Service Sector: A Case Study in a University Food Service Unit
Authors: Boineelo P. Lefadola, Annemarie T. Viljoen, Gerrie E. Du Rand
Abstract:
The food service sector wastes staggering quantities of food. More than one-third of food produced today gets wasted. This is both perplexing and daunting given that not all that is wasted is accounted for when measuring food waste. It is recognised that the present food waste definitions are ambiguous and do not really take into account all food waste generated. The contention is that food waste in the food service sector can be prevented or reduced if we have an explicit food waste definition in the context of food service. This study, therefore, explores the definition of the concept of food waste in the food service sector and its implications on sustainable food waste management strategies. An ethnographic research approach was adopted. A university food service unit was selected as a research site. Data collection techniques employed included document analyses, participant observations, focus group discussions with front-of-house and back-of-house staff, and one-on-one interviews with staff on managerial positions. A grounded theory approach was applied to analyse data. The concept of food waste was constructed differently by different levels of staff. Whereas managers raised discussion from a financial perspective, BOH and FOH staff drew upon socio-cultural implications. This study lays the foundation for a harmonised definition of the concept of food waste in food service.Keywords: food service, food waste, food waste management, sustainability
Procedia PDF Downloads 2732935 Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite
Authors: Pattamaphorn Phuangngamphan, Rewadee Anuwattana, Narumon Soparatana, Nestchanok Yongpraderm, Atiporn Jinpayoon, Supinya Sutthima, Saroj Klangkongsub, Worapong Pattayawan
Abstract:
This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products.Keywords: agricultural waste, waste utilization, biomaterials, cellulose fiber, composite material
Procedia PDF Downloads 4202934 Neutralization of Sulphurous Waste (AMD) Using Recycled Waste Concrete
Authors: Ercument Koc, Banu Yaylali, Gulsen Tozsin, Haci Deveci
Abstract:
Re-using of concrete waste materials for the neutralization of acid mine drainage (AMD) can protect the environment and contribute the national economy. The aim of this study was to investigate the prevention of AMD formation and heavy metal release using concrete wastes which are alkaline and generated by demolition of buildings within the urban renewal process. Shake flask test was conducted to determine the neutralization effects. Concrete wastes are rich in CaCO3 and they are used as a pH regulator for AMD neutralization. The results showed that pH of the AMD increased from 3.33 to 6.84 with the application of concrete waste materials.Keywords: AMD, neutralization, sulphurous waste, urban renewal
Procedia PDF Downloads 3032933 Design of Collection and Transportation System of Municipal Solid Waste in Meshkinshahr City
Authors: Ebrahim Fataei, Seyed Ali Hosseini, Zahra Arabi, Habib farhadi, Mehdi Aalipour Erdi, Seiied Taghi Seiied Safavian
Abstract:
Solid waste production is an integral part of human life and management of waste require full scientific approach and essential planning. The allocation of most management cost to collection and transportation and also the necessity of operational efficiency in this system, by limiting time consumption, and on the other hand optimum collection system and transportation is the base of waste design and management. This study was done to optimize the exits collection and transportation system of solid waste in Meshkinshahr city. So based on the analyzed data of municipal solid waste components in seven zones of Meshkinshahr city, and GIS software, applied to design storage place based on origin recycling and a route to collect and transport. It was attempted to represent an appropriate model to store, collect and transport municipal solid waste. The result shows that GIS can be applied to locate the waste container and determine a waste collection direction in an appropriate way.Keywords: municipal solid waste management, transportation, optimizing, GIS, Iran
Procedia PDF Downloads 5322932 Municipal Solid Waste Management and Analysis of Waste Generation: A Case Study of Bangkok, Thailand
Authors: Pitchayanin Sukholthaman
Abstract:
Gradually accumulated, the enormous amount of waste has caused tremendous adverse impacts to the world. Bangkok, Thailand, is chosen as an urban city of a developing country having coped with serious MSW problems due to the vast amount of waste generated, ineffective and improper waste management problems. Waste generation is the most important factor for successful planning of MSW management system. Thus, the prediction of MSW is a very important role to understand MSW distribution and characteristic; to be used for strategic planning issues. This study aims to find influencing variables that affect the amount of Bangkok MSW generation quantity.Keywords: MSW generation, MSW quantity prediction, MSW management, multiple regression, Bangkok
Procedia PDF Downloads 4212931 The Role of Environmental Citizenship in Household Waste Management
Authors: Lizette Grobler
Abstract:
Although the notion of environmental citizenship has become an established concept linked to scholarship on sustainability internationally, it is not the case in South Africa. This literature review aims to investigate whether the concept is a viable construct in the South African household waste management context. This literature review firstly examines different approaches to environmental citizenship and the normative notions of environmental values, attitudes, and behaviour advocated by proponents of each tradition. Secondly, this paper deals with the application of environmental citizenship as a measure to address household waste. Thirdly, this paper interrogates the utilization of the concept in South African scholarly literature on waste management. The paper argues for the introduction of the concept as a potential approach to behavioural change in the household waste management context.Keywords: environmental citizenship, environmental responsibility, household waste, ownership of waste
Procedia PDF Downloads 1602930 The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst
Authors: Silindile Gumede, Amir Hossein Mohammadi, Mbuyu Germain Ntunka
Abstract:
Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution.Keywords: eco-friendly leaching, optimization, metal recovery, leaching
Procedia PDF Downloads 672929 Manufacturing Commercial Bricks with Construction and Demolition Wastes
Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal
Abstract:
This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.Keywords: commercial brick, construction and demolition waste, manufacturing, recycling
Procedia PDF Downloads 3572928 Utilizing IoT for Waste Collection: A Review of Technologies for Eco-Friendly Waste Management
Authors: Fatemehsadat Mousaviabarbekouh
Abstract:
Population growth and changing consumption patterns have led to waste management becoming a significant global challenge. With projections indicating that nearly 67% of the Earth's population will live in megacities by 2050, there is a pressing need for smart solutions to address citizens' demands. Waste collection, facilitated by the Internet of Things (IoT), offers an efficient and cost-effective approach. This study aims to review the utilization of IoT for waste collection and explore technologies that promote eco-friendly waste management. The research focuses on information and communication technologies (ICTs), including spatial, identification, acquisition, and data communication technologies. Additionally, the study examines various energy harvesting technologies to further reduce costs. The findings indicate that the application of these technologies can lead to significant cost savings, energy efficiency, and ultimately reshape the future of waste management.Keywords: waste collection, IoT, smart cities, eco-friendly, information and communication technologies, energy harvesting
Procedia PDF Downloads 1112927 Moving Towards Zero Waste in a UK Local Authority Area: Challenges to the Introduction of Separate Food Waste Collections
Authors: C. Cole, M. Osmani, A. Wheatley, M. Quddus
Abstract:
EU and UK Government targets for minimising and recycling household waste has led the responsible authorities to research the alternatives to landfill. In the work reported here the local waste collection authority (Charnwood Borough Council) has adopted the aspirational strategy of becoming a “Zero Waste Borough” to lead the drive for public participation. The work concludes that the separate collection of food waste would be needed to meet the two regulatory standards on recycling and biologically active wastes. An analysis of a neighbouring Authority (Newcastle-Under-Lyne Borough Council (NBC), a similar sized local authority that has a successful weekly food waste collection service was undertaken. Results indicate that the main challenges for Charnwood Borough Council would be gaining householder co-operation, the extra costs of collection and organising alternative treatment. The analysis also demonstrated that there was potential offset value via anaerobic digestion for CBC to overcome these difficulties and improve its recycling performance.Keywords: England, food waste collections, household waste, local authority
Procedia PDF Downloads 4142926 Reactive Learning about Food Waste Reduction in a Food Processing Plant in Gauteng Province, South Africa
Authors: Nesengani Elelwani Clinton
Abstract:
This paper presents reflective learning as an opportunity commonly available and used for food waste learning in a food processing company in the transition to sustainable and just food systems. In addressing how employees learn about food waste during food processing, the opportunities available for food waste learning were investigated. Reflective learning appeared to be the most used approach to learning about food waste. In the case of food waste learning, reflective learning was a response after employees wasted a substantial amount of food, where process controllers and team leaders would highlight the issue to employees who wasted food and explain how food waste could be reduced. This showed that learning about food waste is not proactive, and there continues to be a lack of structured learning around food waste. Several challenges were highlighted around reflective learning about food waste. Some of the challenges included understanding the language, lack of interest from employees, set times to reach production targets, and working pressures. These challenges were reported to be hindering factors in understanding food waste learning, which is not structured. A need was identified for proactive learning through structured methods. This is because it was discovered that in the plant, where food processing activities happen, the signage and posters that are there are directly related to other sustainability issues such as food safety and health. This indicated that there are low levels of awareness about food waste. Therefore, this paper argues that food waste learning should be proactive. The proactive learning approach should include structured learning materials around food waste during food processing. In the structuring of the learning materials, individual trainers should be multilingual. This will make it possible for those who do not understand English to understand in their own language. And lastly, there should be signage and posters in the food processing plant around food waste. This will bring more awareness around food waste, and employees' behaviour can be influenced by the posters and signage in the food processing plant. Thus, will enable a transition to a just and sustainable food system.Keywords: sustainable and just food systems, food waste, food waste learning, reflective learning approach
Procedia PDF Downloads 1292925 A Case Study at Lara's Landfill: Solid Waste Management and Energy Recovery
Authors: Kelly Danielly Da Silva Alcantara, Daniel Fernando Molina Junqueira, Graziella Colato Antonio
Abstract:
The Law No. 12,305/10, established by the National Solid Waste Policy (PNRS), provides major changes in the management and managing scenario of solid waste in Brazil. The PNRS established since changes from population behavior as environmental and the consciousness and commitment of the companies with the waste produced. The objective of this project is to conduct a benchmarking study of the management models of Waste Management Municipal Solid (MSW) in national and international levels emphasizing especially in the European Union (Portugal, France and Germany), which are reference countries in energy development, sustainability and consequently recovery of waste generated. The management that encompasses all stages that are included in this sector will be analyzed by benchmarking, as the collection, transportation, processing/treatment and final disposal of waste. Considering the needs to produce clean energy in Brazil, this study will allow the determination to the best treatment of the waste in order to reduce the amount of waste and increase the lifetime of the landfill. Finally, it intends to identify the energy recovery potential through a study analysis of economic viability, energy and sustainable based on a holistic approach.Keywords: benchmarking, energy recovery, landfill, municipal solid waste
Procedia PDF Downloads 4262924 Advanced Separation Process of Hazardous Plastics and Metals from End-Of-Life Vehicles Shredder Residue by Nanoparticle Froth Flotation
Authors: Srinivasa Reddy Mallampati, Min Hee Park, Soo Mim Cho, Sung Hyeon Yoon
Abstract:
One of the issues of End of Life Vehicles (ELVs) recycling promotion is technology for the appropriate treatment of automotive shredder residue (ASR). Owing to its high heterogeneity and variable composition (plastic (23–41%), rubber/elastomers (9–21%), metals (6–13%), glass (10–20%) and dust (soil/sand) etc.), ASR can be classified as ‘hazardous waste’, on the basis of the presence of heavy metals (HMs), PCBs, BFRs, mineral oils, etc. Considering their relevant concentrations, these metals and plastics should be properly recovered for recycling purposes before ASR residues are disposed of. Brominated flame retardant additives in ABS/HIPS and PVC may generate dioxins and furans at elevated temperatures. Moreover, these BFRs additives present in plastic materials may leach into the environment during landfilling operations. ASR thermal process removes some of the organic material but concentrates, the heavy metals and POPs present in the ASR residues. In the present study, Fe/Ca/CaO nanoparticle assisted ozone treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing its wettability and thereby promoting its separation from ASR plastics by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR respectively. Under froth flotation conditions at 50 rpm, about 99.5% and 99.5% of HIPS in ASR samples sank, resulting in a purity of 98% and 99%. Furthermore, at 150 rpm a 100% PVC separation in the settled fraction, with 98% of purity in ASR, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. This process improved the quality of recycled ASR plastics by removing surface contaminants or impurities. Further, a hybrid ball-milling and with Fe/Ca/CaO nanoparticle froth flotation process was established for the recovery of HMs from ASR. After ball-milling with Fe/Ca/CaO nanoparticle additives, the flotation efficiency increased to about 55 wt% and the HMs recovery were also increased about 90% for the 0.25 mm size fractions of ASR. Coating with Fe/Ca/CaO nanoparticles associated with subsequent microbubble froth flotation allowed the air bubbles to attach firmly on the HMs. SEM–EDS maps showed that the amounts of HMs were significant on the surface of the floating ASR fraction. This result, along with the low HM concentration in the settled fraction, was confirmed by elemental spectra and semi-quantitative SEM–EDS analysis. Developed hybrid preferential hazardous plastics and metals separation process from ASR is a simple, highly efficient, and sustainable procedure.Keywords: end of life vehicles shredder residue, hazardous plastics, nanoparticle froth flotation, separation process
Procedia PDF Downloads 2772923 Management Options and Life Cycle Assessment of Municipal Solid Waste in Madinah, KSA
Authors: Abdelkader T. Ahmed, Ayed E. Alluqmani
Abstract:
The population growth in the KSA beside the increase in the urbanization level and standard of living improvement have resulted in the rapid growth of the country’s Municipal Solid Waste (MSW) generation. Municipalities are managing the MSW system in the KSA by collecting and getting rid of it by dumping it in nearest open landfill sites. Solid waste management is one of the main critical issues considered worldwide due to its significant impact on the environment and the public health. In this study, municipal solid waste (MSW) generation, composition and collection of Madinah city, as one of largest cities in KSA, were examined to provide an overview of current state of MSW management, an analysis of existing problem in MSW management, and recommendations for improving the waste treatment and management system in this area. These recommendations would be not specific to Madinah region, but also would be applied to other cities in KSA or any other regions with similar features. The trend of waste generation showed that current waste generation would be increased as much as two to three folds in 2030. Approximately 25% of total generated waste is disposed to a sanitary landfill, while 75% is sent to normal dumpsites. This study also investigated the environmental impacts of MSW through the Life Cycle Assessment (LCA) of waste generations and related processes. LCA results revealed that among the seven scenarios, recycling and composting are the best scenario for the solid waste management in Madinah and similar regions.Keywords: municipal solid waste, waste recycling and land-filling, waste management, life cycle assessment
Procedia PDF Downloads 4622922 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery
Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi
Abstract:
Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell
Procedia PDF Downloads 1162921 Green Technology for the Treatment of Industrial Effluent Contaminated with Dyes
Authors: Afzaal Gulzar, Shafaq Mubarak, M. Zia-Ur-Rehman
Abstract:
Industrial waste waters put environmental constrains to the water quality of aqueous reserves. Number of techniques has been used to treat them before disposal to water bodies. In this work a novel green approach is study by using poultry waste eggshells as a low cost efficient adsorbent for the dyes present in industrial effluent of textile and paper industries. The developed technique not only used to treat contaminated waters but also resulted in the utilization of poultry eggshell waste which in turn assists in solid waste management. Batch sorption studies like contact time, adsorbent dose, dye concentration, temp and pH has been conducted to find the optimum adsorption parameters.Keywords: green technology, solid waste management, industrial effluent, eggshell waste utilization, waste water treatment
Procedia PDF Downloads 4682920 The Implementation of Incineration for Waste Reduction
Authors: Kong Wing Man
Abstract:
The purpose of this paper is to review the waste generation and management in different parts of the world. It is undeniable that waste generation and management has become an alarming environmental issue. Solid waste generation links inextricably to the degree of industrialization and economic development. Urbanization increases with the economic wealth of the countries. As the income of people and standard of living enhances, so does their consumption of goods and services, leading to a corresponding increase in waste generation. Based on the latest statistics from What A Waste Report published by World Bank (2012), it is estimated that the current global Municipal Solid Waste (MSW) generation levels are about 1.3 billion tonnes per year (1.2 kg per capita per day). By 2050, it is projected that the waste generation will be doubled. Although many waste collection practices have been implemented in various countries, the amount of waste generation keeps increasing. An integrated solid waste management is needed in order to reduce the continuous significant increase in waste generation rates. Although many countries have introduced and implemented the 3Rs strategy and landfill, however, these are only the ways to diverse waste, but cannot reduce the volume. Instead, the advanced thermal treatment technology, incineration, can reduce up to 90% volume of disposed waste prior to dispose at landfills is discussed. Sweden and Tokyo were chosen as case studies, which provide an overview of the municipal solid waste management system. With the condition of escalating amount of wastes generated, it is crucial to build incinerators to relief pressing needs of landfill. Two solutions are proposed to minimize waste generation, including one incineration in one city and several small incinerators in different cities. While taking into consideration of a sustainable model and the perspectives of all stakeholders, building several incinerators at different cities and different sizes would be the best option to reduce waste. Overall, the solution to the global solid waste management should be a holistic approach with the involvement of both government and citizens.Keywords: Incineration, Municipal Solid Waste, Thermal Treatment, Waste generation
Procedia PDF Downloads 4742919 Determinants of Effective Food Waste Management in an Urban Area in Pakistan
Authors: Nazia Jabeen, Denis Hyams-Ssekasi
Abstract:
The study focuses on the determinants of food waste management (FWM) in one of the urban areas of Pakistan. One hundred and two households from the urban areas of Pakistan took part in the study via self-completed questionnaires, and data were analyzed. The research findings indicate that food waste management is a recurring issue, and households must do more to minimize or create business opportunities. Most households agree that food waste has significant implications for the community if not utilized and managed correctly. The value creation deriving from this zero-value resource provides a platform where householders see the benefit of food waste management. Based on the findings, this study acknowledges that food waste has significant economic and social impacts on the community. It concludes that minimization and optimum utilization of food waste create a pathway to business opportunities in urban areas.Keywords: economic, social, food waste management, business opportunities, value creation
Procedia PDF Downloads 982918 Bioremediation of Disposed X-Ray Film for Nanoparticles Production
Authors: Essam A. Makky, Siti H. Mohd Rasdi, J. B. Al-Dabbagh, G. F. Najmuldeen
Abstract:
The synthesis of silver nano particles (SNPs) extensively studied by using chemical and physical methods. Here, the biological methods were used and give benefits in research field in the aspect of very low cost (from waste to wealth) and safe time as well. The study aims to isolate and exploit the microbial power in the production of industrially important by-products in nano-size with high economic value, to extract highly valuable materials from hazardous waste, to quantify nano particle size, and characterization of SNPs by X-Ray Diffraction (XRD) analysis. Disposal X-ray films were used as substrate because it consumes about 1000 tons of total silver chemically produced worldwide annually. This silver is being wasted when these films are used and disposed. Different bacterial isolates were obtained from various sources. Silver was extracted as nano particles by microbial power degradation from disposal X-ray film as the sole carbon source for ten days incubation period in darkness. The protein content was done and all the samples were analyzed using XRD, to characterize of silver (Ag) nano particles size in the form of silver nitrite. Bacterial isolates CL4C showed the average size of SNPs about 19.53 nm, GL7 showed average size about 52.35 nm and JF Outer 2A (PDA) showed 13.52 nm. All bacterial isolates partially identified using Gram’s reaction and the results obtained exhibited that belonging to Bacillus sp.Keywords: nanotechnology, bioremediation, disposal X-ray film, nanoparticle, waste, XRD
Procedia PDF Downloads 4832917 Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)
Authors: M. A. El-Khateeb
Abstract:
The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste.Keywords: bioremediation, bacteria, fungi, Sakaka
Procedia PDF Downloads 3622916 Recyclable Household Solid Waste Generation and Collection in Beijing, China
Authors: Tingting Liu, Yufeng Wu, Xi Tian, Yu Gong, Tieyong Zuo
Abstract:
The household solid waste generated by household in Beijing is increasing quickly due to rapid population growth and lifestyle changes. However, there are no rigorous data on the generation and collection of the recyclable household solid wastes. The Beijing city government needs this information to make appropriate policies and plans for waste management. To address this information need, we undertook the first comprehensive study of recyclable household solid waste for Beijing. We carried out a survey of 500 families across sixteen districts in Beijing. We also analyzed the quantities, spatial distribution and categories of collected waste handled by curbside recyclers and permanent recycling centers for 340 of the 9797 city-defined residential areas of Beijing. From our results, we estimate that the total quantity of recyclable household solid waste was 1.8 million tonnes generated by Beijing household in 2013 and 71.6% of that was collected. The main generation categories were waste paper (24.4%), waste glass bottle (23.7%) and waste furniture (14.3%). The recycling rate was varied among different kinds of municipal solid waste. Also based on our study, we estimate there were 22.8 thousand curbside recyclers and 5.7 thousand permanent recycling centers in Beijing. The problems of household solid waste collecting system were inadequacies of authorized collection centers, skewed ratios of curbside recyclers and authorized permanent recycling centers, weak recycling awareness of residents and lack of recycling resources statistics and appraisal system. According to the existing problems, we put forward the suggestions to improve household solid waste management.Keywords: Municipal waste; Recyclable waste; Waste categories; Waste collection
Procedia PDF Downloads 2962915 Quantification of Biomethane Potential from Anaerobic Digestion of Food Waste at Vaal University of Technology
Authors: Kgomotso Matobole, Pascal Mwenge, Tumisang Seodigeng
Abstract:
The global urbanisation and worldwide economic growth have caused a high rate of food waste generation, resulting in environmental pollution. Food waste disposed on landfills decomposes to produce methane (CH4), a greenhouse gas. Inadequate waste management practices contribute to food waste polluting the environment. Thus effective organic fraction of municipal solid waste (OFMSW) management and treatment are attracting widespread attention in many countries. This problem can be minimised by the employment of anaerobic digestion process, since food waste is rich in organic matter and highly biodegradable, resulting in energy generation and waste volume reduction. The current study investigated the Biomethane Potential (BMP) of the Vaal University of Technology canteen food waste using anaerobic digestion. Tests were performed on canteen food waste, as a substrate, with total solids (TS) of 22%, volatile solids (VS) of 21% and moisture content of 78%. The tests were performed in batch reactors, at a mesophilic temperature of 37 °C, with two different types of inoculum, primary and digested sludge. The resulting CH4 yields for both food waste with digested sludge and primary sludge were equal, being 357 Nml/g VS. This indicated that food waste form this canteen is rich in organic and highly biodegradable. Hence it can be used as a substrate for the anaerobic digestion process. The food waste with digested sludge and primary sludge both fitted the first order kinetic model with k for primary sludge inoculated food waste being 0.278 day-1 with R2 of 0.98, whereas k for digested sludge inoculated food waste being 0.034 day-1, with R2 of 0.847.Keywords: anaerobic digestion, biogas, bio-methane potential, food waste
Procedia PDF Downloads 2342914 Development of Catalyst from Waste Egg Shell for Biodiesel Production by Using Waste Vegetable Oil
Authors: Victor Chinecherem Ejeke, Raphael Eze Nnam
Abstract:
The main objective of this research is to produce biodiesel from waste vegetable oil using activated eggshell waste as solid catalysts. A transesterification reaction was performed for the conversion to biodiesel. Waste eggshells were calcined at 700°C, 800°C and 900°C for a time period of 3hrs for the preparation of the renewable catalyst. The calcined waste eggshell catalyst was characterized using X-Ray Florescence (XRF) Spectroscopy, which revealed CaO as the major constituent (90.86%); this was further confirmed by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analyses. The prepared catalyst was used for transesterification reaction and the effects of calcination temperature (700 to 900°C), Deep Eutectic Solvent DES loading (3 to 18 wt. %), Waste Egg Shell (WES) catalyst loading (6 to 14 wt. %) on the conversion to biodiesel were studied. The yield of biodiesel using a waste eggshell catalyst (91%) is comparable to conventional catalyst like sodium hydroxide with a yield of 80-90%. The maximum biodiesel production yield was obtained at a specific oil-to methanol molar ratio of 1:10, a temperature of 65°C and a catalyst loading of 14g-wt%. The biodiesel produced was characterized as being composed of methyl Tetradecanoate (C₁₄H₂₈O₂) 30.92% using the Gas Chromatographic (GC-MS) analysis. The fuel properties of the biodiesel (Flashpoint 138ᵒC) were comparable to commercial diesel, and hence it can be used in compression-ignition engines. The results indicated that the catalysts derived from waste eggshell had high potential to be used as biodiesel production catalysts in transesterification of waste vegetable oil with the advantage of reusability and also not requiring water washing steps.Keywords: waste vegetable oil, catalyst , biodiesel , waste egg shell
Procedia PDF Downloads 2112913 Impact of Life Cycle Assessment for Municipal Plastic Waste Treatment in South Africa
Authors: O. A. Olagunju, S. L. Kiambi
Abstract:
Municipal Plastic Wastes (MPW) can have several negative effects on the environment, and this is causing a growing concern which requires urgent intervention. Addressing these environmental challenges by proffering alternative end-of-life (EOL) techniques for MPW treatment is thus critical for designing and implementing effective long-term remedies. In this study, the environmental implications of several MPW treatment technologies were assessed using life cycle assessment (LCA). Our focus was on four potential waste treatment scenarios for MPW: waste disposal via landfill, waste incineration, waste regeneration, and reusability of recycled waste. The findings show that recycling has a greater benefit over landfilling and incineration methods. The most important environmental benefit comes from the recycling of plastics, which may serve as reliable source materials for environmentally friendly products. Following a holistic evaluation, five major factors that influence the overall impact on the environment were outlined: the mass fraction in waste, the recycling rate, the conversion efficiency, the waste-to-energy conversion rate, and the type of energy which can be utilized from incineration generated energyKeywords: end-of-life, incineration, landfill, life cycle assessment, municipal plastic waste, recycling, waste-to-energy
Procedia PDF Downloads 79