Search results for: four glass cover
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2183

Search results for: four glass cover

2093 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 128
2092 Investigating Optical Properties of Unsaturated Polyurethane Matrix and Its Glass Fiber Composite Under Extreme Temperatures

Authors: Saad Ahmed, Sanjeev Khannaa

Abstract:

Glass fiber reinforced polymers are widely used in structural systems as load-bearing elements at both high and low temperatures. This investigation presents the evaluation of glass fiber reinforced unsaturated polyurethane under harsh conditions of changing temperature and moisture content. This study Explores how these parameters affect the optical properties of the polymer matrix and the composite. Using the hand layup method, the polyurethane resin was modified by E-glass fibers (15 vol. %) to manufacture fiber-reinforced composite. This work includes the preparation of glass-like polyurethane resin sheets and estimates all light transmittance properties at high and very low temperatures and wet conditions. All-optical properties were retested to evaluate the level of improvement or failure. The results found that when comprising reinforced composite fiber to the unreinforced specimens, the reinforced composite shows a fair optical property at high temperatures and good performance at low temperatures.

Keywords: unsaturated polyurethane, extreme temperatures, light transmittance, haze number

Procedia PDF Downloads 115
2091 Assessing Land Cover Change Trajectories in Olomouc, Czech Republic

Authors: Mukesh Singh Boori, Vít Voženílek

Abstract:

Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socio-economic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment.

Keywords: remote sensing, land use/cover, change trajectories, image classification

Procedia PDF Downloads 384
2090 Effect of BaO-Bi₂O₃-P₂O₅ Glass Additive on Structural and Dielectric Properties of BaTiO₃ Ceramics

Authors: El Mehdi Haily, Lahcen Bih, Mohammed Azrour, Bouchaib Manoun

Abstract:

The effects of xBi₂O₃-yBaO-zP₂O₅ (BBP) glass addition on the sintering, structural, and dielectric properties of BaTiO₃ ceramic (BT) are studied. The BT ceramic was synthesized by the conventional solid-state reaction method while the glasses BaO-Bi₂O₃-P₂O₅ (BBP) were elaborated by melting and quenching process. Different composites BT-xBBP were formed by mixing the BBP glasses with BT ceramic. For each glass composition, where the ratio (x:y:z) is maintained constant, we have developed three composites with different glass weight percentage (x = 2.5, 5, and 7.5 wt %). Addition of the glass helps in better sintering at lower temperatures with the presence of liquid phase at the respective sintering temperatures. The results showed that the sintering temperature decreased from more than 1300°C to 900°C. Density measurements of the composites are performed using the standard Archimedean method with water as medium liquid. It is found that their density and molar volume decrease and increase with glass content, respectively. Raman spectroscopy is used to characterize their structural approach. This technique has allowed the identification of different structural units of phosphate and the characteristic vibration modes of the BT. The electrical properties of the composite samples are carried out by impedance spectroscopy in the frequency range of 10 Hz to 1 MHz under various temperatures from 300 to 473 K. The obtained results show that their dielectric properties depend both on the content of the glass in the composite and the Bi/P ratio in the glasses.

Keywords: phosphate, glasses, composite, Raman spectroscopy, dielectric properties

Procedia PDF Downloads 138
2089 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain

Abstract:

As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development

Procedia PDF Downloads 350
2088 A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material

Authors: Berkay Ergene, Çağın Bolat

Abstract:

In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects.

Keywords: composite, elastic behaviour, footbed, simulation

Procedia PDF Downloads 238
2087 Ceramic Glazes from Recycled Bottle Glass

Authors: Suraphan Rattanavadi

Abstract:

This research was a study based on an application of used glass in producing glaze on ceramics. The aim was to identify the factors in the production process that affected ceramic product property when used glass was applied as the ceramic glaze. The study factors included appropriate materials, appropriate temperature used in fusion process, percentage of water absorption, fluidity, crazing and appropriate proportion in glaze production by Biaxial Blend Technique and use of oxide in glaze coloring both on test and real product. The test of fluidity revealed that the glazes number 15 and 16 had appropriate fluidity ratio for use as basic glaze. When each glaze was mixed with oxide at different proportion, it was discovered that the glaze number 16 showed glossy brown with beautiful but not clear crazing, due to its dark shade. This was from the mixture of kaolin and pieces of glass at the ratio of 1:3 (kaolin : pieces of glass), affecting at 10% with iron oxide. When 0.5% of copper carbonate and 0.1% of tin oxide were added, the result was the glaze with glossy, Muzo emerald (green- blue) color with beautiful and clear crazing. Lastly, 0.4% of cobalt carbonate was added, ending in the glaze with glossy, bright blue with beautiful but not clear, due to its dark shade.

Keywords: glaze, recycled, bottle glass, ceramic

Procedia PDF Downloads 286
2086 Influence of Titanium Oxide on Crystallization, Microstructure and Mechanical Behavior of Barium Fluormica Glass-Ceramics

Authors: Amit Mallik, Anil K. Barik, Biswajit Pal

Abstract:

The galloping advancement of research work on glass-ceramics stems from their wide applications in electronic industry and also to some extent in application oriented medical dentistry. TiO2, even in low concentration has been found to strongly influence the physical and mechanical properties of the glasses. Glass-ceramics is a polycrystalline ceramic material produced through controlled crystallization of glasses. Crystallization is accomplished by subjecting the suitable parent glasses to a regulated heat treatment involving the nucleation and growth of crystal phases in the glass. Mica glass-ceramics is a new kind of glass-ceramics based on the system SiO2•MgO•K2O•F. The predominant crystalline phase is synthetic fluormica, named fluorophlogopite. Mica containing glass-ceramics flaunt an exceptional feature of machinability apart from their unique thermal and chemical properties. Machinability arises from the randomly oriented mica crystals with a 'house of cards' microstructures allowing cracks to propagate readily along the mica plane but hindering crack propagation across the layers. In the present study, we have systematically investigated the crystallization, microstructure and mechanical behavior of barium fluorophlogopite mica-containing glass-ceramics of composition BaO•4MgO•Al2O3•6SiO2•2MgF2 nucleated by addition of 2, 4, 6 and 8 wt% TiO2. The glass samples were prepared by the melting technique. After annealing, different batches of glass samples for nucleation were fired at 730°C (2wt% TiO2), 720°C (4 wt% TiO2), 710°C (6 wt% TiO2) and 700°C (8 wt% TiO2) batches respectively for 2 h and ultimately heated to corresponding crystallization temperatures. The glass batches were analyzed by differential thermal analysis (DTA) and x-ray diffraction (XRD), scanning electron microscopy (SEM) and micro hardness indenter. From the DTA study, it is found that the fluorophlogopite mica crystallization exotherm appeared in the temperature range 886–903°C. Glass transition temperature (Tg) and crystallization peak temperature (Tp) increased with increasing TiO2 content up to 4 wt% beyond this weight% the glass transition temperature (Tg) and crystallization peak temperature (Tp) start to decrease with increasing TiO2 content up to 8 wt%. Scanning electron microscopy confirms the development of an interconnected ‘house of cards’ microstructure promoted by TiO2 as a nucleating agent. The increase in TiO2 content decreases the vicker’s hardness values in glass-ceramics.

Keywords: crystallization, fluormica glass, ‘house of cards’ microstructure, hardness

Procedia PDF Downloads 220
2085 Plants as Alternative Covers at Contaminated Sites

Authors: M. Grifoni, G. Petruzzelli, M. Barbafieri, I. Rosellini, B. Pezzarossa, F. Pedron

Abstract:

Evapotranspiration (ET) covers are an alternative cover system that utilizes water balance approach to maximize the ET process to reduce the contaminants leaching through the soil profile. Microcosm tests allow to identify in a short time the most suitable plant species to be used as alternative covers, their survival capacity, and simultaneously the transpiration and evaporation rate of the cover in a specific contaminated soil. This work shows the soil characterization and ET results of microcosm tests carried out on two contaminated soils by using Triticum durum and Helianthus annuus species. The data indicated that transpiration was higher than evaporation, supporting the use of plants as alternative cover at this contaminated site.

Keywords: contaminated sites, evapotranspiration cover, evapotranspiration, microcosm experiments

Procedia PDF Downloads 269
2084 New Drug Discoveries and Packaging Challenges

Authors: Anupam Chanda

Abstract:

Presently Packaging plays a significant role for drug discoveries. The process of selecting materials and the type of packaging also offers an opportunity for the Packaging scientist to look for biological delivery choices. Most injectable protein products were supplied in some sort of glass vial, prefilled syringe, cartridge. Those product having high Ph content there is a chance of “delamination “from inner surface of glass vial. With protein-based drugs, the biggest issue is the effect of packaging derivatives on the protein’s threedimensional and surface structure. These are any effects that relate to denaturation or aggregation of the protein due to oxidation or interactions from contaminants or impurities in the preparation. The potential for these effects needs to be carefully considered in choosing the container and the container closure system to avoid putting patients in jeopardy. Cause of Delamination : -Formulations with a high pH include phosphate and citrate buffers increase the risk of glass delamination. -High alkali content in glass could accelerate erosion. -High temperature during the vial-forming process increase the risk of glass delamination. -Terminal sterilization (irradiated at 20-40 kGy for 150 min) also is a risk factor for specific products(veterinary parenteral administration),could cause delamination. -High product-storage temperatures and long exposure times can increase the rate and severity of glass delamination. How to prevent Delamination -Treating the surface of the glass vials with materials, such as ammonium sulfate or siliconization can reduce the rate of glass erosion. -Consider alternative sterilization methods only in rare cases. -The correct specification for the glass to ensure its suitability for the pH of the product. -Use Cyclic olefin copolymer(COC)/Cyclic olefin Polymer(COP) Adsorption of protein and Solutions: Option#1 Coat with linear methoxylated polyglycerol and hyperbranchedmethoxylated polyglycerol. Option#2 Thehyperbranched non-methoxylated coating performed best. Option#3 Coat with hyperbranched polyglycerol Option#4 Right selection of Sterilization of glass vial/syringe.

Keywords: delamination of glass, ptrotien adoptions inside the glass surface, extractable & leachable solutions, injectable designs for new drugs

Procedia PDF Downloads 77
2083 Preparation and Characterization of Titania-Coated Glass Fibrous Filters Using Aqueous Peroxotitanium Acid Solution

Authors: Ueda Honoka, Yasuo Hasegawa, Fumihiro Nishimura, Jae-Ho Kim, Susumu Yonezawa

Abstract:

Aqueous peroxotitanium acid solution prepared from the TiO₂ fluorinated by F₂ gas was used for the TiO₂ coating on glass fibrous filters in this study. The coating of TiO₂ on the surface of glass fibers was carried out at 120℃ and for 15 min ~ 24 h with aqueous peroxotitanium acid solution using a hydrothermal synthesis autoclave reactor. The morphology TiO₂ coating layer was largely dependent on the reaction time, as shown in the results of scanning electron microscopy and energy dispersive X-ray spectroscopy. Increasing the reaction times, the TiO₂ layer on the glass expanded uniformly. Moreover, the surface fluorination of glass fibers can promote the formation of the TiO₂ layer on the surface. The photocatalytic activity of prepared titania-coated glass fibrous filters was investigated by both the degradation test of methylene blue (MB) and the decomposition test of gaseous acetaldehyde. The MB decomposition ratio with fluorinated samples was about 95% for 30 min of UV irradiation time, and it was much higher than that (70%) with the untreated thing. The decomposition ratio (50%) of gaseous acetaldehyde with fluorinated samples was also higher than that (30%) with the untreated thing. Consequently, photocatalytic activity is enhanced by surface fluorination.

Keywords: aqueous peroxotitanium acid solution, titania-coated glass fibrous filters, photocatalytic activity, surface fluorination

Procedia PDF Downloads 61
2082 Theoretical Study of Flexible Edge Seals for Vacuum Glazing

Authors: Farid Arya, Trevor Hyde

Abstract:

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Keywords: flexible edge seal, stress, support pillar, vacuum glazing

Procedia PDF Downloads 203
2081 Retro-Reflectivity and Diffuse Reflectivity Degradation of Thermoplastic Pavement Marking: A Case Study on Asphaltic Road in Thailand

Authors: Kittichai Thanasupsin, Satis Sukniam

Abstract:

Pavement marking is an essential task of road construction and maintenance. One of several benefits of pavement markings has been used to provide information about road alignment and road conditions ahead. In some cases, retro-reflectivity of road marking at night may not meet the standard. This degradation may be caused by internal factors such as the size of glass beads and the number of glass beads or external factors such as traffic volume, lane width, vehicle weight, and so on. This research aims to investigate the reflective efficiency of thermoplastic road marking with the glass beads. Ratios of glass beads, ranging from 359 to 553 grams per square meter on an asphaltic concrete, have been tested. The reflective efficiency data was collected at the beginning and at a specific time interval for a total of 8 months. It was found that the difference in glass beads quantity affects the rate of retro-reflectivity but does not affect the diffuse reflectivity. It was also found that other factors affect retro-reflectivity, such as duration, the position of road marking, traffic density, the quantity of glass beads, and dirt coating on top. The dirt coating on top is the most crucial factor that deteriorating retro-reflectivity.

Keywords: thermoplastic pavement marking, retro-reflectivity, diffuse reflectivity, asphalt concrete

Procedia PDF Downloads 108
2080 Interaction between the Main Crack and Dislocation in the Glass Material

Authors: A. Mezzidi, H. Hamli Benzahar

Abstract:

The present study evaluates the stress and stress intensity factor during the propagation of a crack at presence of a dislocation near of crack tip. The problem is formulated using a glass material having an equivalent elasticity modulus and a Poisson ratio. In this research work, the proposed material is a plate form with a main crack in one of these ends and a dislocation near this crack, subjected to tensile stresses according to the mode 1 opening. For each distance between the two cracks, we can determine these stresses. This study is treated by finite elements method by using the software (ABAQUS) rate. It is shown here in that obtained results agreed with those determined by other researchers

Keywords: crack, dislocation, finite element, glass

Procedia PDF Downloads 351
2079 Assessing the Bioactivity and Cell Viability of Apatite-Wollastonite Glass Ceramics Prepared via Spray Pyrolysis

Authors: Andualem Workie

Abstract:

In this study, we examined the sinterability and bioactivity of MgO-SiO₂-P₂O₅-CaO-CaF₂ glass compositions created through spray pyrolysis. We evaluated the bioactivity of the materials by immersing them for varying periods of time in simulated bodily fluid (SBF) and found that bioactivity was related to the sintering temperature and soaking time. The material's pH value during immersion in SBF was within the range of 7.4-8.2, which is below 8.5 and improves compatibility and reduces toxicity in biological applications. We used X-ray diffraction and scanning electron microscopy to determine the phase compositions and morphologies of the samples and found that the 1100°C sintered A-W GC sample exhibited the highest bioactivity after soaking in SBF. This sample was dominated by fluorapatite, wollastonite, and whitlockite crystals scattered throughout the glass matrix. The crystallinity (%) of the A-W GC increased as its bioactivity improved, making it more suitable for use in pharmaceutical applications. We also conducted a cytotoxicity test on A-W GC samples sintered at different temperatures and found that the glass-ceramics were non-toxic to MC3T3-E1 cells at all extraction concentrations, except for those sintered at 700°C at concentrations of 250, 200, and 150 mg/ml where cell viability (%) was below the threshold of 70%.

Keywords: apatite wollastonite glass ceramics, bioactivity, calcination, cell viability

Procedia PDF Downloads 68
2078 Influence of Stacking Sequence on Properties of Sheep-Wool/Glass Reinforced Epoxy Hybrid Composites

Authors: G. B. Manjunatha

Abstract:

Natural fibers have been considerable demand in recent years due to their ecofriendly and renewable nature. The advantages of low density, acceptable specific properties, better thermal and insulate properties with low cost.In the present study, hybrid composite associating Sheep wool fiber and glass fiber reinforced with epoxy were developed and investigated the effect of stacking sequence on physical and chemical properties. The hybrid composite was designed for engineering applications as an alternative material to glass fiber composites. The hybrid composite laminates were fabricated by using hand lay-up technique at total fiber volume fraction of 60% (Sheep wool fiber 30% and Glass fiber 30%) and 40% reinforcement. The specimen preparation and testing were conducted as per American Society for Testing and Materials (ASTM) standards. Three different stacking are used. The result shows that tensile and bending tests of sequence of glass fiber between sheep wool fiber have high strength and maximum bending compared to other sequence of composites. At the same time better moisture and chemical absorption were observed.

Keywords: hybrid composites, mechanical properties, polymer composites, stacking sequence

Procedia PDF Downloads 130
2077 A Novel Approach of Secret Communication Using Douglas-Peucker Algorithm

Authors: R. Kiruthika, A. Kannan

Abstract:

Steganography is the problem of hiding secret messages in 'innocent – looking' public communication so that the presence of the secret message cannot be detected. This paper introduces a steganographic security in terms of computational in-distinguishability from a channel of probability distributions on cover messages. This method first splits the cover image into two separate blocks using Douglas – Peucker algorithm. The text message and the image will be hided in the Least Significant Bit (LSB) of the cover image.

Keywords: steganography, lsb, embedding, Douglas-Peucker algorithm

Procedia PDF Downloads 330
2076 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems

Authors: Craig Mahlasi

Abstract:

The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.

Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time

Procedia PDF Downloads 134
2075 Strength Properties of Concrete Paving Blocks with Fly Ash and Glass Powder

Authors: Joel Santhosh, N. Bhavani Shankar Rao

Abstract:

Problems associated with construction site have been known for many years. Construction industry has to support a world of continuing population growth and economic development. The rising costs of construction materials and the need to adhere to sustainability, alternative construction techniques and materials are being sought. To increase the applications of concrete paving blocks, greater understanding of products produced with locally available materials and indigenously produced mineral admixtures is essential. In the present investigation, concrete paving blocks may be produced with locally available aggregates, cement, fly ash and waste glass powder as the mineral admixture. The ultimate aim of this work is to ascertain the performance of concrete paving blocks containing fly ash and glass powder and compare it with the performance of conventional concrete paving blocks. Mix design is carried out to form M40 grade of concrete by using IS: 10262: 2009 and specification given by IRC: SP: 63: 2004. The paving blocks are tested in accordance to IS: 15658: 2006. It showed that the partial replacement of cement by fly ash and waste glass powder satisfies the minimum requirement as specified by the Indian standard IS: 15658: 2006 for concrete paving blocks to be used in non traffic, light traffic and medium-heavy traffic areas. The study indicated that fly ash and waste glass powder can effectively be used as cement replacement without substantial change in strength.

Keywords: paving block, fly ash, glass powder, strength, abrasion resistance, durability

Procedia PDF Downloads 275
2074 The Differences on the Surface Roughness of Glass Ionomer Cement as the Results of Brushing with Whitening and Conventional Toothpaste

Authors: Aulina R. Rahmi, Farid Yuristiawan, Annisa Ibifadillah, Ummu H. Amri, Hidayati Gunawan

Abstract:

Glass ionomer cement is one of the filling material that often used on the field of dentistry because it is relatively less expensive and mostly available. Restoration materials could undergo changes in their clinical properties such as changes in roughness of the restoration`s surface. An increase of surface roughness accelerates bacterial colonization and plaque maturation. In the oral cavity, GIC was exposed to various substances, such as toothpaste, an oral care product used during toothbrushing. One of the popular toothpaste is whitening toothpaste. Abrasive and chemical agents such as hydrogen peroxide in whitening toothpaste could increase the surface roughness of restorative materials. Objective: To determine the differences on the surface roughness of glass ionomer cement that was brushed with whitening and conventional toothpaste. Method: This study was done using experimental laboratory method with pre and post test design. There were 36 samples which were divided into 2 groups. The first group was brushed with whitening toothpaste and the second group was brushed with conventional toothpaste, each for 2 minutes. Surface roughness value of the specimens was measured by using Roughness Tester test. Result: The data was analyzed by using independent t-test and the result of this study showed there was a significant difference between the surface of glass ionomer cement which was brushed with whitening and conventional toothpaste (p=0,000). Conclusion: Glass ionomer cement that was brushed with whitening toothpaste produced more roughness than conventional toothpaste.

Keywords: glass ionomer cement, surface roughness, toothpaste, roughness tester

Procedia PDF Downloads 275
2073 Investigation of Bending Behavior of Ultra High Performance Concrete with Steel and Glass Fiber Polymer Reinforcement

Authors: Can Otuzbir

Abstract:

It is one of the most difficult areas of civil engineering to provide long-lasting structures with the rapid development of concrete and reinforced concrete structures. Concrete is a living material, and the structure where the concrete is located is constantly exposed to external influences. One of these effects is reinforcement corrosion. Reinforcement corrosion of reinforced concrete structures leads to a significant decrease in the carrying capacity of the structural elements, as well as reduced service life. It is undesirable that the service life should be completed sooner than expected. In recent years, advances in glass fiber technology and its use with concrete have developed rapidly. As a result of inability to protect steel reinforcements against corrosion, fiberglass reinforcements have started to be investigated as an alternative material to steel reinforcements, and researches and experimental studies are still continuing. Glass fiber reinforcements have become an alternative material to steel reinforcement because they are resistant to corrosion, lightweight and simple to install compared to steel reinforcement. Glass fiber reinforcements are not corroded and have higher tensile strength, longer life, lighter and insulating properties compared to steel reinforcement. In experimental studies, glass fiber reinforcements have been shown to show superior mechanical properties similar to beams produced with steel reinforcement. The performance of long-term use of glass fiber fibers continues with accelerated experimental studies.

Keywords: glass fiber polymer reinforcement, steel fiber concrete, ultra high performance concrete, bending, GFRP

Procedia PDF Downloads 103
2072 Design and Fabrication of Electricity Generating Speed Breaker

Authors: Haider Aamir, Muhammad Ali Khalid

Abstract:

Electricity harvesting speed bump (EHSB) is speed breaker of conventional shape, but the difference is that it is not fixed, rather it moves up and down, and electricity can be generated from its vibrating motion. This speed bump consists of an upper cover which will move up and down, a shaft mechanism which will be used to drive the generator and a rack and pinion mechanism which will connect the cover and shaft. There is a spring mechanism to return the cover to its initial state when a vehicle has passed over the bump. Produced energy in the past was up to 80 Watts. For this purpose, a clutch mechanism is used so that both the up-down movements of the cover can be used to drive the generator. Mechanical Motion Rectifier (MMR) mechanism ensures the conversion of both the linear motions into rotational motion which is used to drive the generator.

Keywords: electricity harvesting, generator, rack and pinion, stainless steel shaft

Procedia PDF Downloads 246
2071 Manufacturing of Vacuum Glazing with Metal Edge Seal

Authors: Won Kyeong Kang, Tae-Ho Song

Abstract:

Vacuum glazing (VG) is a super insulator, which is able to greatly improve the energy efficiency of building. However, a significant amount of heat loss occurs through the welded edge of conventional VG. The joining method should be improved for further application and commercialization. For this purpose VG with metal edge seal is conceived. In this paper, the feasibility of joining stainless steel and soda lime glass using glass solder is assessed numerically and experimentally. In the case of very thin stainless steel, partial joining with glass is identified, which need further improvement for practical application.

Keywords: VG, metal edge seal, vacuum glazing, manufacturing,

Procedia PDF Downloads 585
2070 Studies on Distribution of the Doped Pr3+ Ions in the LaF3 Based Transparent Oxyfluoride Glass-Ceramic

Authors: Biswajit Pal, Amit Mallik, Anil K. Barik

Abstract:

Current years have witnessed a phenomenal growth in the research on the rare earth-doped transparent host materials, the essential components in optoelectronics that meet up the increasing demand for fabrication of high quality optical devices especially in telecommunication system. The combination of low phonon energy (because of fluoride environment) and high chemical durability with superior mechanical stability (due to oxide environment) makes the oxyfluoride glass–ceramics the promising and useful materials in optoelectronics. The present work reports on the undoped and doped (1 mol% Pr2O3) glass ceramics of composition 16.52 Al2O3•1.5AlF3• 12.65LaF3•4.33Na2O•64.85 SiO2 (mol%), prepared by melting technique initially that follows annealation at 450 ºC for 1 h. The glass samples so obtained were heat treated at constant 600 ºC with a variation in heat treatment schedule (10- 80 h). TEM techniques were employed to structurally characterize the glass samples. Pr2O3 affects the phase separation in the glass and delays the onset of crystallization in the glass ceramic. The modified crystallization mechanism is established from the analysis of advanced STEM/EDXS results. The phase separated droplets after annealing turn into 10-20 nm of LaF3 nano crystals those upon scrutiny are found to be dotted with the doped Pr3+ ions within the crystals themselves. The EDXS results also suggest that the inner LaF3 crystal core is swallowed by an Al enriched layer that follows a Si enriched surrounding shell as the outer core. This greatly increases the viscosity in the periphery of the crystals that restricts further crystal growth to account for the formation of nano sized crystals.

Keywords: advanced STEM/EDXS, crystallization mechanism, nano crystals, pr3+ ion doped glass and glass ceramic, structural characterization

Procedia PDF Downloads 169
2069 Using Recycled Wastes (Glass Powder) as Partially Replacement for Cement

Authors: Passant Youssef, Ahmed El-Tair, Amr El-Nemr

Abstract:

Lately, with the environmental changes, enthusiasts trigger to stop the contamination of environment. Thus, various efforts were exerted for innovating environmental friendly concrete to sustain as a ‘Green Building’ material. Green building materials consider the cement industry as one of the most sources of air pollutant with high rate of carbon dioxide (CO₂) emissions. Several methods were developed to extensively reduce the influence of cement industry on environment. These methods such as using supplementary cementitious material or improving the cement manufacturing process are still under investigation. However, with the presence of recycled wastes from construction and finishing materials, the use of supplementary cementitious materials seems to provide an economic solution. Furthermore, it improves the mechanical properties of cement paste, in addition to; it modulates the workability and durability of concrete. In this paper, the glass powder was considered to be used as partial replacement of cement. This study provided the mechanical influence for using the glass powder as partial replacement of cement. In addition, it examines the microstructure of cement mortar using scanning electron microscope and X-ray diffraction. The cement in concrete is replaced by waste glass powder in steps of 5%, 10%, 15%, 20% and 25% by weight of cement and its effects on compressive and flexure strength were determined after 7 and 28 days. It was found that the 5% glass powder replacement increased the 7 days compressive strength by 20.5%, however, there was no increase in compressive strength after 28 days; which means that the glass powder did not react in the cement mortar due to its amorphous nature on the long run, and it can act as fine aggregate better that cement replacement. As well as, the 5% and 10% glass powder replacement increased the 28 days flexural strength by 46.9%. SEM micrographs showed very dense matrix for the optimum specimen compared to control specimen as well; some glass particles were clearly observed. High counts of silica were optimized from XRD while amorphous materials such as calcium silicate cannot be directly detected.

Keywords: supplementary materials, glass powder, concrete, cementitious materials

Procedia PDF Downloads 187
2068 Production and Mechanical Properties of Alkali–Activated Inorganic Binders Made from Wastes Solids

Authors: Sonia Vanessa Campos Moreira

Abstract:

The aim of this research is the production and mechanical properties of Alkali-Activated Inorganic Binders (AAIB) made from The Basic Oxygen Furnace Slag (BOF Slag) and Thin Film Transistor Liquid Crystal Display (TFT-LCD), glass powder (waste and industrial by-products). Many factors have an influence on the production of AAIB like the glass powder finesses, the alkaline equivalent content (AE %), water binder ratios (w/b ratios) and the differences curing process. The findings show different behavior in the AAIB related to the factors mentioned, the best results are given with a glass powder fineness of 4,500 cm²/g, w/b=0.30, a curing temperature of 70 ℃, curing duration of 4 days and an aging duration of 14 days results in the highest compressive strength of 18.51 MPa.

Keywords: alkaline activators, BOF slag, glass powder fineness, TFT-LCD, w/b ratios

Procedia PDF Downloads 132
2067 Spatiotemporal Variability of Snow Cover and Snow Water Equivalent over Eurasia

Authors: Yinsheng Zhang

Abstract:

Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972–2006 and the Global Monthly EASE-Grid SWE data for 1979–2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972–2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as the partial area of Central Asia and northwestern Russia but varied little in other parts of Eurasia. ‘Snow-free breaks’ (SFBs) with intermittent snow cover in the cold season were mainly observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1–14 weeks in the Tibetan Plateau during 1972–2006 and the maximum intermittence could reach 25 weeks in some extreme years. At a seasonal scale, the SWE usually peaked in February or March but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979–2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China.

Keywords: Eurasia, snow cover extent, snow cover persistence period, snow-free breaks, onset and disappearance timings, snow water equivalent

Procedia PDF Downloads 125
2066 Retail Managers’ Perception on Coca-Cola Company’s Success of Glass Package Recovery and Recycling in Nairobi, Kenya

Authors: Brigitte Wabuyabo-Okonga

Abstract:

Little research has been done to establish the level of success of Coca Cola Company in recycling and reusing their glass bottles. This paper attempts to establish retail managers’ perception of the company’s self acclaimed success. Retail managers of supermarkets in the CBD of Nairobi, Kenya were considered for the study. Data were collected through questionnaires and analyzed using descriptive (mean, frequencies and percentages) and inferential statistics (correlation analysis) were used to analyze the data. The study found out that there is relative success although a lot needs to be done. For example, improving in communicating policy issues and in practice enhance the actual collection of broken and/or non-broken Coca Cola Company glass bottles through providing drop-off points in open areas such as on the streets and in parks.

Keywords: Coca Cola Company glass bottles, Kenya, Nairobi, packaging, retail manager

Procedia PDF Downloads 290
2065 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 120
2064 Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint

Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier

Abstract:

Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.

Keywords: biogas, cover crops, catch crops, land use competition, sustainable agriculture

Procedia PDF Downloads 522