Search results for: strain localization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1987

Search results for: strain localization

847 Simplified Ultimate Strength Assessment of Ship Structures Based on Biro Klasifikasi Indonesia Rules for Hull

Authors: Sukron Makmun, Topan Firmandha, Siswanto

Abstract:

Ultimate Strength Assessment on ship cross section in accordance with Biro Klasifikasi Indonesia (BKI) Rules for Hull, follows step by step incremental iterative approach. In this approach, ship cross section is divided into plate-stiffener combinations and hard corners element. The average stress-strain relationship (σ-ε) for all structural elements will be defined, where the subscript k refers to the modes 0, 1, 2, 3 or 4. These results would be verified with a commercial software calculation in similar cases. The numerical calculations of buckling strength are in accordance with the commercial software (GL Rules ND). Then the comparison of failure behaviours of stiffened panels and hard corners are presented. Where failure modes 3 are likely to occur first follows the failure mode 4 and the last one is the failure mode 1.

Keywords: ultimate strength assessment, BKI rules, incremental, plate-stiffener combination and hard corner, commercial software

Procedia PDF Downloads 368
846 Concurrent Hazard Fragility Analysis with Consideration of Structural Uncertainties

Authors: Ling-Han Liu, Qian-Qian Yu, Xiang-Lin Gu

Abstract:

In this paper, the fragility analysis of earthquake-strong wind concurrent hazards considering structural uncertainties was conducted. Eleven sets of structural uncertainty parameters were considered, and random structural models were generated using Latin hypercube sampling. The uncertainties in seismic ground motion and wind load inputs were incorporated, and the conditional failure probability of the structures was calculated. A 12-story concrete building was used as an example, with the IDR (Inter-story Drift Ratio) as the performance indicator. The failure probabilities under individual and multiple hazards were compared, along with a comparison of fragility analysis results with and without considering structural uncertainties. The numerical simulations show that including structural uncertainties increases the structural failure probability by 20%. The peak stress and strain of core-restrained concrete, the structural damping ratio, and the peak stress of unrestrained concrete are found to be decisive factors in the structural response.

Keywords: structural uncertainty, incremental dynamic analysis, multi-hazard fragility, latin hypercube sampling

Procedia PDF Downloads 7
845 Thermoelastic Analysis of a Tube Subjected to Internal Heating with Temperature Dependent Material Properties

Authors: Yasemin Kaya, Ahmet N. Eraslan

Abstract:

In this study, the thermoelastic behavior of a long tube is studied by taking into account the temperature dependency of all mechanical and thermal properties. As the tube is heated slowly, an uncoupled solution procedure is adopted under free and radially constrained boundary conditions. The nonlinear heat conduction equation is solved by a finite element collocation procedure and the corresponding distributions of stress and strain are computed by shooting iterations. The computational model is verified in comparison to the analytical solution by shutting down the temperature dependency of physical properties. In the analysis, experimental data available in the literature is used to describe the coefficient of thermal expansion $\alpha$, the thermal conductivity $k$, the modulus of rigidity $G$, the yield strength $\sigma_{0}$, and the Poisson's ratio $\nu$ of Nickel. Results of the analysis are presented in comparison to those having constant physical properties. As a result of the calculations, the temperature dependency of the material properties should be taken into account at higher temperature ranges.

Keywords: thermoelasticity, long tube, temperature-dependent properties, internal heating

Procedia PDF Downloads 614
844 Insertion Loss Improvement of a Two-Port Saw Resonator Based on AlN via Alloying with Transition Metals

Authors: Kanouni Fares

Abstract:

This paper describes application of X-doped AlN (X=Sc, Cr and Y) to wideband surface acoustic wave (SAW) resonators in 200–300 MHz range. First, it is shown theoretically that Cr doped AlN thin film has the highest piezoelectric strain constant, accompanied by a lowest mechanical softening compared to Sc doped AlScN and Y doped AlN thin films for transition metals concentrations ranging from 0 to 25%. Next, the impact of transition metals (Sc, Cr and Y) concentration have been carried out for the first time, in terms of surface wave velocity, electrode reflectivity, transduction coefficient and distributed finger capacitance. Finely, the insertion loss of two-port SAW resonator based on AlXN (X=Sc, Cr and Y) deposited on sapphire substrate is obtained using P-matrix model, and it is shown that AlCrN-SAW resonator exhibit lower insertion loss compared to those based on AlScN and AlYN for metal concentrations of 25%.This finding may position Cr doped AlN as a prime piezoelectric material for low loss SAW resonators whose performance can be tuned via Cr composition.

Keywords: P-Matrix, SAW-delay line, interdigital transducer, nitride aluminum, metals transition

Procedia PDF Downloads 122
843 Absolute Quantification of the Bexsero Vaccine Component Factor H Binding Protein (fHbp) by Selected Reaction Monitoring: The Contribution of Mass Spectrometry in Vaccinology

Authors: Massimiliano Biagini, Marco Spinsanti, Gabriella De Angelis, Sara Tomei, Ilaria Ferlenghi, Maria Scarselli, Alessia Biolchi, Alessandro Muzzi, Brunella Brunelli, Silvana Savino, Marzia M. Giuliani, Isabel Delany, Paolo Costantino, Rino Rappuoli, Vega Masignani, Nathalie Norais

Abstract:

The gram-negative bacterium Neisseria meningitidis serogroup B (MenB) is an exclusively human pathogen representing the major cause of meningitides and severe sepsis in infants and children but also in young adults. This pathogen is usually present in the 30% of healthy population that act as a reservoir, spreading it through saliva and respiratory fluids during coughing, sneezing, kissing. Among surface-exposed protein components of this diplococcus, factor H binding protein is a lipoprotein proved to be a protective antigen used as a component of the recently licensed Bexsero vaccine. fHbp is a highly variable meningococcal protein: to reflect its remarkable sequence variability, it has been classified in three variants (or two subfamilies), and with poor cross-protection among the different variants. Furthermore, the level of fHbp expression varies significantly among strains, and this has also been considered an important factor for predicting MenB strain susceptibility to anti-fHbp antisera. Different methods have been used to assess fHbp expression on meningococcal strains, however, all these methods use anti-fHbp antibodies, and for this reason, the results are affected by the different affinity that antibodies can have to different antigenic variants. To overcome the limitations of an antibody-based quantification, we developed a quantitative Mass Spectrometry (MS) approach. Selected Reaction Monitoring (SRM) recently emerged as a powerful MS tool for detecting and quantifying proteins in complex mixtures. SRM is based on the targeted detection of ProteoTypicPeptides (PTPs), which are unique signatures of a protein that can be easily detected and quantified by MS. This approach, proven to be highly sensitive, quantitatively accurate and highly reproducible, was used to quantify the absolute amount of fHbp antigen in total extracts derived from 105 clinical isolates, evenly distributed among the three main variant groups and selected to be representative of the fHbp circulating subvariants around the world. We extended the study at the genetic level investigating the correlation between the differential level of expression and polymorphisms present within the genes and their promoter sequences. The implications of fHbp expression on the susceptibility of the strain to killing by anti-fHbp antisera are also presented. To date this is the first comprehensive fHbp expression profiling in a large panel of Neisseria meningitidis clinical isolates driven by an antibody-independent MS-based methodology, opening the door to new applications in vaccine coverage prediction and reinforcing the molecular understanding of released vaccines.

Keywords: quantitative mass spectrometry, Neisseria meningitidis, vaccines, bexsero, molecular epidemiology

Procedia PDF Downloads 314
842 A Comparative Study of Microstructure, Thermal and Mechanical Properties of A359 Composites Reinforced with SiC, Si3N4 and AlN Particles

Authors: Essam Shalaby, Alexander Churyumov, Malak Abou El-Khair, Atef Daoud

Abstract:

A comparative study of the thermal and mechanical behavior of squeezed A359 composites containing 5, 10 and 15 wt.% SiC, (SiC+ Si3N4) and AlN particulates was investigated. Stir followed by squeeze casting techniques are used to produce A359 composites. It was noticed that, A359/AlN composites have high thermal conductivity as compared to A359 alloy and even to A359/SiC or A359/(SiC+Si3N4) composites. Microstructures of the composites have shown homogeneous and even distribution of reinforcements within the matrix. Interfacial reactions between particles and matrix were investigated using X-ray diffraction and energy dispersive X-ray analysis. The presence of particles led not only to increase peak hardness of the composites but also to accelerate the aging kinetics. As compared with A359 matrix alloy, compression test of the composites has exhibited a significant increase in the yield and the ultimate compressive strengths with a relative reduction in the failure strain. Those light weight composites have a high potential to be used for automotive and aerospace applications.

Keywords: metal-matrix composite, squeeze, microstructure, thermal conductivity, compressive properties

Procedia PDF Downloads 382
841 Comparative Study of Mechanical and Corrosion Behaviors on Heat Treated Steel Alloys

Authors: Mario Robinson, Moe Rabea

Abstract:

This research examines the effects of heat treatment processes on the mechanical properties and corrosion resistanceof1045 and 4140 Steel Alloysfor industrial applications. Heat treatment processes of full annealing, normalizing, quenching, and tempering are carried out on the alloy samples. The mechanical and corrosion resistance tests of the heat treated samples are carried out, and the results obtained are related to their SEMmorphologies analysis. The results show that the heat treatment processes have an effect on the tensile strength, impact, and a significant effect on the corrosion resistance of the alloy samples. With respect to the strain characteristics, significant improvement in the ductility of the samples is recorded in the full annealing and alloy tempered samples. Thus, for application requiring strength and ductility, such as in aerospace industries, this tempered heat treated alloy could be used. In addition, the quenched sample shows a significant improvement in hardness.

Keywords: heat treatment, corrosion resistance, steel, industrial appilcations

Procedia PDF Downloads 178
840 Investigation of Martensitic Transformation Zone at the Crack Tip of NiTi under Mode-I Loading Using Microscopic Image Correlation

Authors: Nima Shafaghi, Gunay Anlaş, C. Can Aydiner

Abstract:

A realistic understanding of martensitic phase transition under complex stress states is key for accurately describing the mechanical behavior of shape memory alloys (SMAs). Particularly regarding the sharply changing stress fields at the tip of a crack, the size, nature and shape of transformed zones are of great interest. There is significant variation among various analytical models in their predictions of the size and shape of the transformation zone. As the fully transformed region remains inside a very small boundary at the tip of the crack, experimental validation requires microscopic resolution. Here, the crack tip vicinity of NiTi compact tension specimen has been monitored in situ with microscopic image correlation with 20x magnification. With nominal 15 micrometer grains and 0.2 micrometer per pixel optical resolution, the strains at the crack tip are mapped with intra-grain detail. The transformation regions are then deduced using an equivalent strain formulation.

Keywords: digital image correlation, fracture, martensitic phase transition, mode I, NiTi, transformation zone

Procedia PDF Downloads 354
839 Investigating Role of Novel Molecular Players in Forebrain Roof-Plate Midline Invagination

Authors: Mohd Ali Abbas Zaidi, Meenu Sachdeva, Jonaki Sen

Abstract:

In the vertebrate embryo, the forebrain anlagen develops from the anterior-most region of the neural tube which is the precursor of the central nervous system (CNS). The roof plate located at the dorsal midline region of the forebrain anlagen, acts as a source of several secreted molecules involved in patterning and morphogenesis of the forebrain. One such key morphogenetic event is the invagination of the forebrain roof plate which results in separation of the single forebrain vesicle into two cerebral hemispheres. Retinoic acid (RA) signaling plays a key role in this process. Blocking RA signaling at the dorsal forebrain midline inhibits dorsal invagination and results in the absence of certain key features of this region, such as thinning of the neuroepithelium and a lowering of cell proliferation. At present we are investigating the possibility of other signaling pathways acting in concert with RA signaling to regulate this process. We have focused on BMP signaling, which we found to be active in a mutually exclusive domain to that of RA signaling within the roof plate. We have also observed that there is a change in BMP signaling activity on modulation of RA signaling indicating an antagonistic relationship between the two. Moreover, constitutive activation of BMP signaling seems to completely inhibit thinning and partially affect invagination, leaving the lowering of cell proliferation in the midline unaffected. We are employing in-silico modeling as well as molecular manipulations to investigate the relative contribution if any, of regional differences in rates of cell proliferation and thinning of the neuroepithelium towards the process of invagination. We have found expression of certain cell adhesion molecules in forebrain roof-plate whose mRNA localization across the thickness of neuroepithelium is influenced by Bmp and RA signaling, giving regional rigidity to roof plate and assisting invagination. We also found expression of certain cytoskeleton modifiers in a localized small domains in invaginating forebrain roof plate suggesting that midline invagination is under control of many factors.

Keywords: bone morphogenetic signaling, cytoskeleton, cell adhesion molecules, forebrain roof plate, retinoic acid signaling

Procedia PDF Downloads 156
838 Surgical Treatment Tumors and Cysts of the Pancreas in Children

Authors: Trunov V.O., Ryabov A. B., Poddubny I.V

Abstract:

Introduction: cystic and solid pancreatic tumors have a relevant and disruptive position in many positions. The results of the treatment of children with tumors and pancreatic cysts aged 3 to 17 years for the period from 2008 to 2019 on the basis of the Morozov State Children's Clinical Hospital in Moscow were analyzed. The total number of children with solid tumors was 17, and 31 with cysts. In all children, the diagnosis was made on the basis of ultrasound, followed by CT and MRI. In most patients with solid tumors, they were located in the area of the pancreas tail - 58%, in the body area - 14%, in the area of the pancreatic head - 28%. In patients with pancreatic cysts, the distribution of patients by topography was as follows: head of the pancreas - 10%, body of the pancreas - 16%, tail of the pancreas - 68%, total cystic transformation of the Wirsung duct - 6%. In pancreatic cysts, the method of surgical treatment was based on the results of MRCP, the level of amylase in the contents of the cyst, and the localization of the cyst. Thus, pathogenetically substantiated treatment included: excision of cysts, internal drainage on an isolated loop according to Ru, the formation of pancreatojejunoanastomosis in a child with the total cystic transformation of the Wirsung duct. In patients with solid pancreatic lesions, pancretoduodenalresection, central resection of the pancreas, and distal resection from laparotomy and laparoscopic access were performed. In the postoperative period, in order to prevent pancreatitis, all children underwent antisecretory therapy, parenteral nutrition, and drainage of the omental bursa. Results: hospital stay ranged from 7 to 12 days. The duration of postoperative fermentemia in patients with solid formations lasted from 3 to 6 days. In all cases, according to the histological examination, a pseudopapillary tumor of the pancreas was revealed. In the group of children with pancreatic cysts, fermentemia was observed from 2 to 4 days, recurrence of cysts in the long term was detected in 3 children (10%). Conclusions: the treatment of cystic and solid pancreatic neoplasms is a difficult task in connection with the anatomical and functional features of the organ.

Keywords: pancreas, tumors, cysts, resection, laparoscopy, children

Procedia PDF Downloads 141
837 Toughness of a Silt-Based Construction Material Reinforced with Fibers

Authors: Y. Shamas, S. Imanzadeh, A. Jarno, S. Taibi

Abstract:

Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition.

Keywords: silt-based material, raw earth concrete, stress-strain curve, energy, toughness

Procedia PDF Downloads 224
836 A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material

Authors: Berkay Ergene, Çağın Bolat

Abstract:

In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects.

Keywords: composite, elastic behaviour, footbed, simulation

Procedia PDF Downloads 268
835 Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin-Staphylococcus aureus Infections

Authors: Nichole Haag, Kimberly Velk, Tyler McCune, Chun Wu

Abstract:

Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.

Keywords: Methicillin-resistant Staphylococcus aureus, dihydroxyacetone kinase, essential genes, drug target, phosphoryl group donor

Procedia PDF Downloads 409
834 Moment-Curvature Relation for Nonlinear Analysis of Slender Structural Walls

Authors: E. Dehghan, R. Dehghan

Abstract:

Generally, the slender structural walls have flexural behavior. Since behavior of bending members can be explained by moment–curvature relation, therefore, an analytical model is proposed based on moment–curvature relation for slender structural walls. The moment–curvature relationships of RC sections are constructed through section analysis. Governing equations describing the bond-slip behavior in walls are derived and applied to moment–curvature relations. For the purpose of removing the imprecision in analytical results, the plastic hinge length is included in the finite element modeling. Finally, correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed algorithms. The results show that bond-slip effect is more significant in walls subjected to larger axial compression load. Moreover, preferable results are obtained when ultimate strain of concrete is assumed conservatively.

Keywords: nonlinear analysis, slender structural walls, moment-curvature relation, bond-slip, plastic hinge length

Procedia PDF Downloads 317
833 Effect of the Initial Billet Shape Parameters on the Final Product in a Backward Extrusion Process for Pressure Vessels

Authors: Archana Thangavelu, Han-Ik Park, Young-Chul Park, Joon-Hong Park

Abstract:

In this numerical study, we have proposed a method for evaluation of backward extrusion process of pressure vessel made up of steel. Demand for lighter and stiffer products have been increasing in the last years especially in automobile engineering. Through detailed finite element analysis, effective stress, strain and velocity profile have been obtained with optimal range. The process design of a forward and backward extrusion axe-symmetric part has been studied. Forging is mainly carried out because forged products are highly reliable and possess superior mechanical properties when compared to normal products. Performing computational simulations of 3D hot forging with various dimensions of billet and optimization of weight is carried out using Taguchi Orthogonal Array (OA) Optimization technique. The technique used in this study can be used for newly developed materials to investigate its forgeability for much complicated shapes in closed hot die forging process.

Keywords: backward extrusion, hot forging, optimization, finite element analysis, Taguchi method

Procedia PDF Downloads 309
832 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping

Authors: Jie Xu, Zengshan Tian, Ze Li

Abstract:

Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.

Keywords: frequency hopping, phase error elimination, carrier phase, ranging

Procedia PDF Downloads 124
831 Computational Insight into a Mechanistic Overview of Water Exchange Kinetics and Thermodynamic Stabilities of Bis and Tris-Aquated Complexes of Lanthanides

Authors: Niharika Keot, Manabendra Sarma

Abstract:

A thorough investigation of Ln3+ complexes with more than one inner-sphere water molecule is crucial for designing high relaxivity contrast agents (CAs) used in magnetic resonance imaging (MRI). This study accomplished a comparative stability analysis of two hexadentate (H3cbda and H3dpaa) and two heptadentate (H4peada and H3tpaa) ligands with Ln3+ ions. The higher stability of the hexadentate H3cbda and heptadentate H4peada ligands has been confirmed by the binding affinity and Gibbs free energy analysis in aqueous solution. In addition, energy decomposition analysis (EDA) reveals the higher binding affinity of the peada4− ligand than the cbda3− ligand towards Ln3+ ions due to the higher charge density of the peada4− ligand. Moreover, a mechanistic overview of water exchange kinetics has been carried out based on the strength of the metal–water bond. The strength of the metal–water bond follows the trend Gd–O47 (w) > Gd–O39 (w) > Gd–O36 (w) in the case of the tris-aquated [Gd(cbda)(H2O)3] and Gd–O43 (w) > Gd–O40 (w) for the bis-aquated [Gd(peada)(H2O)2]− complex, which was confirmed by bond length, electron density (ρ), and electron localization function (ELF) at the corresponding bond critical points. Our analysis also predicts that the activation energy barrier decreases with the decrease in bond strength; hence kex increases. The 17O and 1H hyperfine coupling constant values of all the coordinated water molecules were different, calculated by using the second-order Douglas–Kroll–Hess (DKH2) approach. Furthermore, the ionic nature of the bonding in the metal–ligand (M–L) bond was confirmed by the Quantum Theory of Atoms-In-Molecules (QTAIM) and ELF along with energy decomposition analysis (EDA). We hope that the results can be used as a basis for the design of highly efficient Gd(III)-based high relaxivity MRI contrast agents for medical applications.

Keywords: MRI contrast agents, lanthanide chemistry, thermodynamic stability, water exchange kinetics

Procedia PDF Downloads 84
830 Reinforcement of an Electric Vehicle Battery Pack Using Honeycomb Structures

Authors: Brandon To, Yong S. Park

Abstract:

As more battery electric vehicles are being introduced into the automobile industry, continuous advancements are constantly made in the electric vehicle space. Improvements in lithium-ion battery technology allow electric vehicles to be capable of traveling long distances. The batteries are capable of being charged faster, allowing for a sufficient range in shorter amounts of time. With increased reliance on battery technology and the changes in vehicle power trains, new challenges arise from this. Resulting electric vehicle fires caused by collisions are potentially more dangerous than those of the typical internal combustion engine. To further reduce the battery failures involved with side collisions, this project intends to reinforce an existing battery pack of an electric vehicle with honeycomb structures such that intrusion into the batteries can be minimized with weight restrictions in place. Honeycomb structures of hexagonal geometry are implemented into the side extrusions of the battery pack. With the use of explicit dynamics simulations performed in ANSYS, quantitative results such as deformation, strain, and stress are used to compare the performance of the battery pack with and without the implemented honeycomb structures.

Keywords: battery pack, electric vehicle, honeycomb, side impact

Procedia PDF Downloads 123
829 Investigation of Neutral Axis Shifting and Wall Thickness Distribution of Bent Tubes Produced by Rotary Draw Bending

Authors: Bernd Engel, Hassan Raheem Hassan

Abstract:

Rotary draw bending is a method used for tube forming. During the tube bending process, the neutral axis moves towards the inner arc and the wall thickness changes in the cross section of the tube. Wall thinning of the tube takes place at the extrados, whereas wall thickening of the tube occurs at the intrados. This paper investigates the tube bending with rotary draw bending process using thick-walled tubes and different material properties (16Mo3 and 10CrMo9-10). The experimental tests and finite element simulations are used to calculate the variable characteristics (wall thickness distribution, neutral axis shifting and longitudinal strain distribution). These results are compared with results of a plasto-mechanical model. Moreover, the cross section distortion is investigated in this study. This study helped to get bends with smaller wall factor for different material properties.

Keywords: rotary draw bending, thick wall tube, material properties, material influence

Procedia PDF Downloads 615
828 Molecular Characterization of Echinococcus granulosus through Amplification of 12S rRNA Gene and Cox1 Gene Fragments from Cattle in Chittagong, Bangladesh

Authors: M. Omer Faruk, A. M. A. M. Zonaed Siddiki, M. Fazal Karim, Md. Masuduzzaman, S. Chowdhury, Md. Shafiqul Islam, M. Alamgir Hossain

Abstract:

The dog tapeworms Echinococcus granulosus develop hydatid cysts in various organs in human and domestic animals worldwide including Bangladesh. The aim of this study was to identify and characterize the genotype of E. granulosus isolated from cattle using 12S rRNA and Cytochrome oxidase 1 (COX 1) genes. A total of 43 hydatid cyst samples were collected from 390 examined cattle samples derived from slaughterhouses. Among them, three cysts were fertile. Genomic DNA was extracted from germinal membrane and/or protoscoleces followed by PCR amplification of mitochondrial 12S rRNA and Cytochrome oxidase 1 gene fragments. The sequence data revealed existence of G1 (64.28%) and possible G3 (21.43%) genotypes for the first time in Bangladesh. The study indicates that common sheep strain G1 is the dominant subtype of E. granulosus in Chittagong region of Bangladesh. This will increase our understanding of the epidemiology of hydatidosis in the southern part of the country and will be useful to plan suitable control measures in the long run.

Keywords: Echinococcus granulosus, Cox1, 12S rRNA, molecular characterization, Bangladesh

Procedia PDF Downloads 344
827 Simple Finite-Element Procedure for Modeling Crack Propagation in Reinforced Concrete Bridge Deck under Repetitive Moving Truck Wheel Loads

Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom

Abstract:

Modeling cracks in concrete is complicated by its strain-softening behavior which requires the use of sophisticated energy criteria of fracture mechanics to assure stable and convergent solutions in the finite-element (FE) analysis particularly for relatively large structures. However, for small-scale structures such as beams and slabs, a simpler approach relies on retaining some shear stiffness in the cracking plane has been adopted in literature to model the strain-softening behavior of concrete under monotonically increased loading. According to the shear retaining approach, each element is assumed to be an isotropic material prior to cracking of concrete. Once an element is cracked, the isotropic element is replaced with an orthotropic element in which the new orthotropic stiffness matrix is formulated with respect to the crack orientation. The shear transfer factor of 0.5 is used in parallel to the crack plane. The shear retaining approach is adopted in this research to model cracks in RC bridge deck with some modifications to take into account the effect of repetitive moving truck wheel loads as they cause fatigue cracking of concrete. First modification is the introduction of fatigue tests of concrete and reinforcing steel and the Palmgren-Miner linear criterion of cumulative damage in the conventional FE analysis. For a certain loading, the number of cycles to failure of each concrete or RC element can be calculated from the fatigue or S-N curves of concrete and reinforcing steel. The elements with the minimum number of cycles to failure are the failed elements. For the elements that do not fail, the damage is accumulated according to Palmgren-Miner linear criterion of cumulative damage. The stiffness of the failed element is modified and the procedure is repeated until the deck slab fails. The total number of load cycles to failure of the deck slab can then be obtained from which the S-N curve of the deck slab can be simulated. Second modification is the modification in shear transfer factor. Moving loading causes continuous rubbing of crack interfaces which greatly reduces shear transfer mechanism. It is therefore conservatively assumed in this study that the analysis is conducted with shear transfer factor of zero for the case of moving loading. A customized FE program has been developed using the MATLAB software to accomodate such modifications. The developed procedure has been validated with the fatigue test of the 1/6.6-scale AASHTO bridge deck under the applications of both fixed-point repetitive loading and moving loading presented in the literature. Results are in good agreement both experimental vs. simulated S-N curves and observed vs. simulated crack patterns. Significant contribution of the developed procedure is a series of S-N relations which can now be simulated at any desired levels of cracking in addition to the experimentally derived S-N relation at the failure of the deck slab. This permits the systematic investigation of crack propagation or deterioration of RC bridge deck which is appeared to be useful information for highway agencies to prolong the life of their bridge decks.

Keywords: bridge deck, cracking, deterioration, fatigue, finite-element, moving truck, reinforced concrete

Procedia PDF Downloads 258
826 New Isolate of Cucumber Mosaic Virus Infecting Banana

Authors: Abdelsabour G. A. Khaled, Ahmed W. A. Abdalla And Sabry Y. M. Mahmoud

Abstract:

Banana plants showing typical mosaic and yellow stripes on leaves as symptoms were collected from Assiut Governorate in Egypt. The causal agent was identified as Cucumber mosaic virus (CMV) on the basis of symptoms, transmission, serology, transmission electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). Coat protein (CP) gene was amplified using gene specific primers for coat protein (CP), followed by cloning into desired cloning vector for sequencing. In this study the CMV was transmitted into propagation host either by aphid or mechanically. The transmission was confirmed through Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA). Analysis of the 120 deduced amino acid sequence of the coat protein gene revealed that the EG-A strain of CMV shared from 97.50 to 98.33% with those strains belonging to subgroup IA. The cluster analysis grouped the Egyptian isolate with strains Fny and Ri8 belonging sub-group IA. It appears that there occurs a high incidence of CMV infecting banana belonging to IA subgroup in most parts of Egypt.

Keywords: banana, CMV, transmission, CP gene, RT-PCR

Procedia PDF Downloads 343
825 Nutritional Composition of Iranian Desi and Kabuli Chickpea (Cicer arietinum L.) Cultivars in Autumn Sowing

Authors: Khosro Mohammadi

Abstract:

The grain quality of chickpea in Iran is low and instable, which may be attributed to the evolution of cultivars with a narrow genetic base making them vulnerable to biotic stresses. Four chickpea varieties from diverse geographic origins were chosen and arranged in a randomized complete block design. Mesorhizobium Sp. cicer strain SW7 was added to all the chickpea seeds. Chickpea seeds were planted on October 9, 2013. Each genotype was sown 5 m in length, with 35 cm inter-row spacing, in 3 rows. Weeds were removed manually in all plots. Results showed that analysis of variance on the studied traits showed significant differences among genotypes for N, P, K and Fe contents of chickpea, but there is not a significant difference among Ca, Zn and Mg continents of chickpea. The experimental coefficient of variation (CV) varied from 7.3 to 15.8. In general, the CV value lower than 20% is considered to be good, indicating the accuracy of conducted experiments. The highest grain N was observed in Hashem and Jam cultivars. The highest grain P was observed in Jam cultivar. Phosphorus content (mg/100g) ranged from 142.3 to 302.3 with a mean value of 221.3. The negative correlation (-0.126) was observed between the N and P of chickpea cultivars. The highest K and Fe contents were observed in Jam cultivar.

Keywords: cultivar, genotype, nitrogen, nutrient, yield

Procedia PDF Downloads 355
824 Echinococcus in Eastern Cape Province, South Africa

Authors: C. I. Boshoff, S. Steenkamp-Jonker

Abstract:

Cystic echinococcosis (CE), caused by Echinococcus granulosus is an important parasitic infection in livestock worldwide, with severe zoonotic potential. It is important to understand the variability of Echinococcus granulosus, as genotype variations may influence lifecycle patterns, development rate, and transmission. Cystic Echinococcus samples were collected from domestic animals in Eastern Cape Province, South Africa. A molecular study was performed on 14 hydatid cysts obtained from caprine, ovine and bovine livers in order to determine the Echinococcus granulosus strain present in these hosts. The sequencing of the mitochondrial cytochrome C oxidase subunit I (coxI) gene of the hydatid cysts produced sequences of 400 bp for each sample analysed. These sequences were aligned with those present in GenBank and a phylogenetic tree was constructed. Based on coxI genotype the isolates could be grouped into E. granulosus sensu stricto. The findings of the study represent a pilot molecular study on Echinococcus from domestic animals undertaken in South Africa.

Keywords: Echinococcus granulosus, genotypes, livestock, South Africa

Procedia PDF Downloads 430
823 Systematic Identification and Quantification of Substrate Specificity Determinants in Human Protein Kinases

Authors: Manuel A. Alonso-Tarajano, Roberto Mosca, Patrick Aloy

Abstract:

Protein kinases participate in a myriad of cellular processes of major biomedical interest. The in vivo substrate specificity of these enzymes is a process determined by several factors, and despite several years of research on the topic, is still far from being totally understood. In the present work, we have quantified the contributions to the kinase substrate specificity of i) the phosphorylation sites and their surrounding residues in the sequence and of ii) the association of kinases to adaptor or scaffold proteins. We have used position-specific scoring matrices (PSSMs), to represent the stretches of sequences phosphorylated by 93 families of kinases. We have found negative correlations between the number of sequences from which a PSSM is generated and the statistical significance and the performance of that PSSM. Using a subset of 22 statistically significant PSSMs, we have identified specificity determinant residues (SDRs) for 86% of the corresponding kinase families. Our results suggest that different SDRs can function as positive or negative elements of substrate recognition by the different families of kinases. Additionally, we have found that human proteins with known function as adaptors or scaffolds (kAS) tend to interact with a significantly large fraction of the substrates of the kinases to which they associate. Based on this characteristic we have identified a set of 279 potential adaptors/scaffolds (pAS) for human kinases, which is enriched in Pfam domains and functional terms tightly related to the proposed function. Moreover, our results show that for 74.6% of the kinase– pAS association found, the pAS colocalize with the substrates of the kinases they are associated to. Finally, we have found evidence suggesting that the association of kinases to adaptors and scaffolds, may contribute significantly to diminish the in vivo substrate crossed- specificity of protein kinases. In general, our results indicate the relevance of several SDRs for both the positive and negative selection of phosphorylation sites by kinase families and also suggest that the association of kinases to pAS proteins may be an important factor for the localization of the enzymes with their set of substrates.

Keywords: kinase, phosphorylation, substrate specificity, adaptors, scaffolds, cellular colocalization

Procedia PDF Downloads 344
822 Characterization of Genus Candida Yeasts Isolated from Oral Microbiota of Brazilian Schoolchildren with Different Caries Experience

Authors: D. S. V. Barbieri, R. R. Gomes, G. D. Santos, P. F. Herkert, M. Moreira, E. S. Trindade, V. A. Vicente

Abstract:

The importance of yeast infections has increased in recent decades. The monitoring of Candida yeasts has been relevant in the study of groups and populations. This research evaluated 31 Candida spp. isolates from oral microbiota of 12 Brazilian schoolchildren coinfected with Streptococcus mutans. The isolates were evaluated for their ability to form biofilm in vitro and molecularly characterized based on the sequencing of intergenic spacer regions ITS1-5,8S-ITS2 and variable domains of the large subunit (D1/D2) regions of the rDNA, as well as ABC system genotyping. The sequencing confirmed 26 lineages of Candida albicans, three Candida tropicalis, one Candida guillhermondii and one Candida glabrata. Genetic variability and differences on in biofilm formation were observed among Candida yeasts lineages. At least one Candida strain from each caries activity child was C.albicans genotype A or Candida non-albicans. C. tropicalis was associated with highest cavities rates. These results indicate that the presence of C. albicans genotype A or multi-colonization by non albicans species seem to be associates to the potentialization of caries risk.

Keywords: biofilm, Candida albicans, oral microbiota, caries

Procedia PDF Downloads 510
821 Comparative Study of Line Voltage Stability Indices for Voltage Collapse Forecasting in Power Transmission System

Authors: H. H. Goh, Q. S. Chua, S. W. Lee, B. C. Kok, K. C. Goh, K. T. K. Teo

Abstract:

At present, the evaluation of voltage stability assessment experiences sizeable anxiety in the safe operation of power systems. This is due to the complications of a strain power system. With the snowballing of power demand by the consumers and also the restricted amount of power sources, therefore, the system has to perform at its maximum proficiency. Consequently, the noteworthy to discover the maximum ability boundary prior to voltage collapse should be undertaken. A preliminary warning can be perceived to evade the interruption of power system’s capacity. The effectiveness of line voltage stability indices (LVSI) is differentiated in this paper. The main purpose of the indices is used to predict the proximity of voltage instability of the electric power system. On the other hand, the indices are also able to decide the weakest load buses which are close to voltage collapse in the power system. The line stability indices are assessed using the IEEE 14 bus test system to validate its practicability. Results demonstrated that the implemented indices are practically relevant in predicting the manifestation of voltage collapse in the system. Therefore, essential actions can be taken to dodge the incident from arising.

Keywords: critical line, line outage, line voltage stability indices (LVSI), maximum loadability, voltage collapse, voltage instability, voltage stability analysis

Procedia PDF Downloads 361
820 Durability and Early-Age Behavior of Sprayed Concrete with an Expansion Admixture

Authors: Kyong-Ku Yun, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han, Pan-Gil Choi

Abstract:

Sprayed concrete is a way to spray a concrete using a machinery with high air pressure. There are insufficient studies on the durability and early-age behavior of sprayed concrete using high quality expansion agent. A series of an experiment were executed with 5 varying expansion agent replacement rates, while all the other conditions were kept constant, including cement binder content and water-cement ratio. The tests includes early-age shrinkage test, rapid chloride permeability test, and image analysis of air void structure. The early-age expansion test with the variation of expansion agent show that the expansion strain increases as the ratio of expansion agent increases. The rapid chloride permeability test shows that it decrease as the expansion agent increase. Therefore, expansion agent affects into the rapid chloride permeability in a better way. As expansion agent content increased, spacing factor slightly decreased while specific surface kept relatively stable. As a results, the optimum ratio of expansion agent would be selected between 7 % and 11%.

Keywords: sprayed concrete, durability, early-age behavior, expansion admixture

Procedia PDF Downloads 507
819 Thermo-Mechanical Processing of Armor Steel Plates

Authors: Taher El-Bitar, Maha El-Meligy, Eman El-Shenawy, Almosilhy Almosilhy, Nader Dawood

Abstract:

The steel contains 0.3% C and 0.004% B, beside Mn, Cr, Mo, and Ni. The alloy was processed by using 20-ton capacity electric arc furnace (EAF), and then refined by ladle furnace (LF). Liquid steel was cast as rectangular ingots. Dilatation test showed the critical transformation temperatures Ac1, Ac3, Ms and Mf as 716, 835, 356, and 218 °C. The ingots were austenitized and soaked and then rough rolled to thin slabs with 80 mm thickness. The thin slabs were then reheated and soaked for finish rolling to 6.0 mm thickness plates. During the rough rolling, the roll force increases as a result of rolling at temperatures less than recrystallization temperature. However, during finish rolling, the steel reflects initially continuous static recrystallization after which it shows strain hardening due to fall of temperature. It was concluded that, the steel plates were successfully heat treated by quenching-tempering at 250 ºC for 20 min.

Keywords: armor steel, austenitizing, critical transformation temperatures (CTTs), dilatation curve, martensite, quenching, rough and finish rolling processes, soaking, tempering, thermo-mechanical processing

Procedia PDF Downloads 347
818 The Clinical Manifestations of Myocardial Bridging in Patients with Coronary Artery Disease

Authors: Alexey Yu. Martynov, Sulejman Bayramov

Abstract:

Introduction: The myocardial bridging is the most common anomaly of the coronary arteries (CA). Depending on the examination method, the frequency of detected myocardial bridges (MB) varies in a rather wide range. The typical clinical manifestations of MB are angina pectoris, arrhythmias, sudden cardiac death. Objective: To study the incidence of MB in patients hospitalized with coronary artery disease (CAD). To assess clinical manifestations of MB in patients admitted with CAD. Materials and methods: A retrospective analysis of 19159 case histories of patients admitted at clinical city hospital in Moscow from 01.01.2018 to 31.12 2019 with CAD was performed. 9384 patients’ coronary angiographies (CAG) were examined for MB. The localization of MB, the degree of coronary contraction by MB, the number of MB, isolated MB and combined with CAD were assessed. The clinical manifestations of MB were determined. Results: MB was detected in 52 patients all with one myocardial bridge. 20 patients with MB have intact CA, and 32 patients have MB combined with CAD. Among 20 patients with intact CA: I degree of MB contraction (up to 50%) was detected in 9 patients. Clinical manifestations in five cases were angina pectoris, in 3 myocardial infarction (MI) - 1 patients with ST segment elevation MI (STEMI), 2 without ST segment elevation MI (NSTEMI), 1 post-infarction cardiosclerosis (PICS). Stable angina II FC in 3, III FC in 1, vasospastic angina (VSA) in 1 patient. II degree of MB contraction (up to 50-70%) was determined in 9 patients: in seven cases angina pectoris was detected, 1 NSTEMI, 1 PICS. Stable angina II FC in 3, III FC in 1, VSA in 3 patients. III degree of MB contraction (> 70%) detected in 2 patients. II FC stable angina in one case, PICS in another. Among 32 patients having MB combined with CAD I degree of MB contraction was observed in 20 patients. Clinical manifestations in 12 cases were angina pectoris in 8 II FC and in 4 III FC, 7 MI 6 with STEMI and 1 NSTEMI, 1 PICS. II degree of MB contraction was detected in 7 patients, 4 of them had angina pectoris, 3 MI 2 with STEMI and 1 NSTEMI. Stable angina II FC in 3, VSA in 1 patients. III degree of MB contraction was diagnosed in five patients. In two cases, II FC and III FC stable angina were observed, 2 MI with STEMI and NSTEMI, 1 PICS. Conclusions: MB incidence is one in 368 patients with CAD. The most common involvement (68%) is MB combined with CA atherosclerotic lesions. MB with intact CA are detected in one-third (32%) of patients. The first-degree MB contraction is most frequent condition. MI is more often detected in intact CA with first degree MB than in the second degree. The degree of MB contraction was not correlated with the severity of the clinical manifestations.

Keywords: clinical manifestations, coronary angiography, coronary artery disease, myocardial bridging, myocardial infarction, stable angina

Procedia PDF Downloads 126