Search results for: masonry structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4275

Search results for: masonry structures

3135 Symmetry Properties of Linear Algebraic Systems with Non-Canonical Scalar Multiplication

Authors: Krish Jhurani

Abstract:

The research paper presents an in-depth analysis of symmetry properties in linear algebraic systems under the operation of non-canonical scalar multiplication structures, specifically semirings, and near-rings. The objective is to unveil the profound alterations that occur in traditional linear algebraic structures when we replace conventional field multiplication with these non-canonical operations. In the methodology, we first establish the theoretical foundations of non-canonical scalar multiplication, followed by a meticulous investigation into the resulting symmetry properties, focusing on eigenvectors, eigenspaces, and invariant subspaces. The methodology involves a combination of rigorous mathematical proofs and derivations, supplemented by illustrative examples that exhibit these discovered symmetry properties in tangible mathematical scenarios. The core findings uncover unique symmetry attributes. For linear algebraic systems with semiring scalar multiplication, we reveal eigenvectors and eigenvalues. Systems operating under near-ring scalar multiplication disclose unique invariant subspaces. These discoveries drastically broaden the traditional landscape of symmetry properties in linear algebraic systems. With the application of these findings, potential practical implications span across various fields such as physics, coding theory, and cryptography. They could enhance error detection and correction codes, devise more secure cryptographic algorithms, and even influence theoretical physics. This expansion of applicability accentuates the significance of the presented research. The research paper thus contributes to the mathematical community by bringing forth perspectives on linear algebraic systems and their symmetry properties through the lens of non-canonical scalar multiplication, coupled with an exploration of practical applications.

Keywords: eigenspaces, eigenvectors, invariant subspaces, near-rings, non-canonical scalar multiplication, semirings, symmetry properties

Procedia PDF Downloads 128
3134 In Silico Study of Antiviral Drugs Against Three Important Proteins of Sars-Cov-2 Using Molecular Docking Method

Authors: Alireza Jalalvand, Maryam Saleh, Somayeh Behjat Khatouni, Zahra Bahri Najafi, Foroozan Fatahinia, Narges Ismailzadeh, Behrokh Farahmand

Abstract:

Object: In the last two decades, the recent outbreak of Coronavirus (SARS-CoV-2) imposed a global pandemic in the world. Despite the increasing prevalence of the disease, there are no effective drugs to treat it. A suitable and rapid way to afford an effective drug and treat the global pandemic is a computational drug study. This study used molecular docking methods to examine the potential inhibition of over 50 antiviral drugs against three fundamental proteins of SARS-CoV-2. METHODS: Through a literature review, three important proteins (a key protease, RNA-dependent RNA polymerase (RdRp), and spike) were selected as drug targets. Three-dimensional (3D) structures of protease, spike, and RdRP proteins were obtained from the Protein Data Bank. Protein had minimal energy. Over 50 antiviral drugs were considered candidates for protein inhibition and their 3D structures were obtained from drug banks. The Autodock 4.2 software was used to define the molecular docking settings and run the algorithm. RESULTS: Five drugs, including indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, exhibited the highest inhibitory potency against all three proteins based on the binding energies and drug binding positions deduced from docking and hydrogen-bonding analysis. Conclusions: According to the results, among the drugs mentioned, saquinavir and lopinavir showed the highest inhibitory potency against all three proteins compared to other drugs. It may enter laboratory phase studies as a dual-drug treatment to inhibit SARS-CoV-2.

Keywords: covid-19, drug repositioning, molecular docking, lopinavir, saquinavir

Procedia PDF Downloads 92
3133 Enhancing AI for Global Impact: Conversations on Improvement and Societal Benefits

Authors: C. P. Chukwuka, E. V. Chukwuka, F. Ukwadi

Abstract:

This paper focuses on the advancement and societal impact of artificial intelligence (AI) systems. It explores the need for a theoretical framework in corporate governance, specifically in the context of 'hybrid' companies that have a mix of private and government ownership. The paper emphasizes the potential of AI to address challenges faced by these companies and highlights the importance of the less-explored state model in corporate governance. The aim of this research is to enhance AI systems for global impact and positive societal outcomes. It aims to explore the role of AI in refining corporate governance in hybrid companies and uncover nuanced insights into complex ownership structures. The methodology involves leveraging the capabilities of AI to address the challenges faced by hybrid companies in corporate governance. The researchers will analyze existing theoretical frameworks in corporate governance and integrate AI systems to improve problem-solving and understanding of intricate systems. The paper suggests that improved AI systems have the potential to shape a more informed and responsible corporate landscape. AI can uncover nuanced insights and navigate complex ownership structures in hybrid companies, leading to greater efficacy and positive societal outcomes. The theoretical importance of this research lies in the exploration of the role of AI in corporate governance, particularly in the context of hybrid companies. By integrating AI systems, the paper highlights the potential for improved problem-solving and understanding of intricate systems, contributing to a more informed and responsible corporate landscape. The data for this research will be collected from existing literature on corporate governance, specifically focusing on hybrid companies. Additionally, data on AI capabilities and their application in corporate governance will be collected. The collected data will be analyzed through a systematic review of existing theoretical frameworks in corporate governance. The researchers will also analyze the capabilities of AI systems and their potential application in addressing the challenges faced by hybrid companies. The findings will be synthesized and compared to identify patterns and potential improvements. The research concludes that AI systems have the potential to enhance corporate governance in hybrid companies, leading to greater efficacy and positive societal outcomes. By leveraging AI capabilities, nuanced insights can be uncovered, and complex ownership structures can be navigated, shaping a more informed and responsible corporate landscape. The findings highlight the importance of integrating AI in refining problem-solving and understanding intricate systems for global impact.

Keywords: advancement, artificial intelligence, challenges, societal impact

Procedia PDF Downloads 61
3132 Managing Construction and Demolition Wastes - A Case Study of Multi Triagem, Lda

Authors: Cláudia Moço, Maria Santos, Carlos Arsénio, Débora Mendes, Miguel Oliveira. José Paulo Da Silva

Abstract:

Construction industry generates large amounts of waste all over the world. About 450 million tons of construction and demolition wastes (C&DW) are produced annually in the European Union. C&DW are highly heterogeneous materials in size and composition, which imposes strong difficulties on their management. Directive n.º 2008/98/CE, of the European Parliament and of the Council of 6 November establishes that 70 % of the C&DW have to be recycled by 2020. To evaluate possible applications of these materials, a detailed physical, chemical and environmental characterization is necessary. Multi Triagem, Lda. is a company located in Algarve (Portugal) and was supported by the European Regional Development Fund (grant QREN 30307 Multivalor) to quantify and characterize the received C&DW, in order to evaluate their possible applications. This evaluation, performed in collaboration with the University of Algarve, involves a physical, chemical and environmental detailed characterization of the received C&DW. In this work we report on the amounts, trial procedures and properties of the C&DW received over a period of fifteen month. In this period the company received C&DW coming from 393 different origins. The total amount was 32.458 tons, mostly mixtures containing concrete, masonry/mortar and soil/rock. Most of C&DW came from demodulation constructions and diggings. The organic/inert component, namely metal, glass, wood and plastics, were screened first and account for about 3 % of the received materials. The remaining materials were screened and grouped according to their origin and contents, the latter evaluated by visual inspection. Twenty five samples were prepared and submitted to a detailed physical, chemical and environmental analysis. The C&DW aggregates show lower quality properties than natural aggregates for concrete preparation and unbound layers of road pavements. However, chemical analyzes indicated that most samples are environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds is needed in order to perform a proper screening of the C&DW. C&DW aggregates provide a good alternative to natural aggregates.

Keywords: construction and demolition wastes, waste classification, waste composition, waste screening

Procedia PDF Downloads 353
3131 Potential Risks of Using Disconnected Composite Foundation Systems in Active Seismic Zones

Authors: Mohamed ElMasry, Ahmad Ragheb, Tareq AbdelAziz, Mohamed Ghazy

Abstract:

Choosing the suitable infrastructure system is becoming more challenging with the increase in demand for heavier structures contemporarily. This is the case where piled raft foundations have been widely used around the world to support heavy structures without extensive settlement. In the latter system, piles are rigidly connected to the raft, and most of the load goes to the soil layer on which the piles are bearing. In spite of that, when soil profiles contain thicker soft clay layers near the surface, or at relatively shallow depths, it is unfavorable to use the rigid piled raft foundation system. Consequently, the disconnected piled raft system was introduced as an alternative approach for the rigidly connected system. In this system, piles are disconnected from the raft using a cushion of soil, mostly of a granular interlayer. The cushion is used to redistribute the stresses among the piles and the subsoil. Piles are also used to stiffen the subsoil, and by this way reduce the settlement without being rigidly connected to the raft. However, the seismic loading effect on such disconnected foundation systems remains a problem, since the soil profiles may include thick clay layers which raise risks of amplification of the dynamic earthquake loads. In this paper, the effects of seismic behavior on the connected and disconnected piled raft systems are studied through a numerical model using Midas GTS NX Software. The study concerns the soil-structure interaction and the expected behavior of the systems. Advantages and disadvantages of each foundation approach are studied, and a comparison between the results are presented to show the effects of using disconnected piled raft systems in highly seismic zones. This was done by showing the excitation amplification in each of the foundation systems.

Keywords: soil-structure interaction, disconnected piled-raft, risks, seismic zones

Procedia PDF Downloads 270
3130 Service Life Study of Polymers Used in Renovation of Heritage Buildings and Other Structures

Authors: Parastou Kharazmi

Abstract:

Degradation of building materials particularly pipelines causes environmental damage during renovation or replacement and is a time consuming and costly process. Rehabilitation by polymer composites is a solution for renovation of degraded pipeline in heritage buildings and other structures which are less costly, faster and causes less damage to the environment; however, it is still not clear for how long these materials can perform as expected in the field and working condition. To study their service life, two types of composites based on Epoxy and Polyester resins have been evaluated by accelerated exposure and field exposure. The primary degradation agent used in accelerated exposure has been cycling temperature with half of the tests performed in presence of water. Thin films of materials used in accelerated testing were prepared in laboratory by using the same amount of material as well as technique of multi-layers application used in majority of the field installations. Extreme intensity levels of degradation agents have been used only to evaluate materials properties and as also mentioned in ISO 15686, are not directly correlated with degradation mechanisms that would be experienced in service. In the field exposure study, the focus has been to identify possible failure modes, causes, and effects. In field exposure, it has been observed that there are other degradation agents present which can be investigated further such as presence of contaminants and rust before application which prevents formation of a uniform layer of polymer or incompatibility between dissimilar materials. This part of the study also highlighted the importance of application’s quality of the materials in the field for providing the expected performance and service life. Results from extended accelerated exposure and field exposure can help in choosing inspection techniques, establishing the primary degradation agents and can be used for ageing exposure programs with clarifying relationship between different exposure periods and sites.

Keywords: building, renovation, service life, pipelines

Procedia PDF Downloads 192
3129 Management of Cultural Heritage: Bologna Gates

Authors: Alfonso Ippolito, Cristiana Bartolomei

Abstract:

A growing demand is felt today for realistic 3D models enabling the cognition and popularization of historical-artistic heritage. Evaluation and preservation of Cultural Heritage is inextricably connected with the innovative processes of gaining, managing, and using knowledge. The development and perfecting of techniques for acquiring and elaborating photorealistic 3D models, made them pivotal elements for popularizing information of objects on the scale of architectonic structures.

Keywords: cultural heritage, databases, non-contact survey, 2D-3D models

Procedia PDF Downloads 427
3128 Numerical Study of Splay Anchors in CFRP-Strengthened Concrete Beams

Authors: Asal Pournaghshband, Mohammed A. Zaki

Abstract:

This paper presents a detailed numerical investigation into the structural performance of splay anchor configurations for strengthening concrete beams with Carbon Fiber Reinforced Polymer (CFRP) sheets. CFRP is widely used in retrofitting concrete structures to improve flexural strength and extend service life. However, premature debonding limits the tensile capacity of CFRP sheets, reducing the effectiveness of these applications. This study addresses this limitation by exploring the potential of splay anchors as an emerging anchorage technique that mitigates debonding issues through improved load transfer mechanisms. Building on existing experimental studies, the research uses ABAQUS software to validate different splay anchor configurations and simulate real-world performance. The parametric study examines key anchor parameters, including diameter, spacing, and embedment depth, to evaluate their effects on bond strength, load distribution, and the flexural capacity of strengthened beams. Systematic analysis of these parameters allows for identifying configurations that enhance debonding resistance and increase the load-carrying capacity of CFRP-strengthened beams. Improved debonding resistance contributes to greater structural durability, reduced maintenance costs, and extended service life for retrofitted structures, particularly relevant for aging infrastructure like bridges and buildings. This approach not only advances sustainable retrofitting practices but also provides practical solutions tailored to infrastructure demands.

Keywords: CFRP strengthening, splay anchors, concrete beams, structural retrofitting, numerical analysis

Procedia PDF Downloads 20
3127 Dynamics and Advection in a Vortex Parquet on the Plane

Authors: Filimonova Alexanra

Abstract:

Inviscid incompressible fluid flows are considered. The object of the study is a vortex parquet – a structure consisting of distributed vortex spots of different directions, occupying the entire plane. The main attention is paid to the study of advection processes of passive particles in the corresponding velocity field. The dynamics of the vortex structures is considered in a rectangular region under the assumption that periodic boundary conditions are imposed on the stream function. Numerical algorithms are based on the solution of the initial-boundary value problem for nonstationary Euler equations in terms of vorticity and stream function. For this, the spectral-vortex meshless method is used. It is based on the approximation of the stream function by the Fourier series cut and the approximation of the vorticity field by the least-squares method from its values in marker particles. A vortex configuration, consisting of four vortex patches is investigated. Results of a numerical study of the dynamics and interaction of the structure are presented. The influence of the patch radius and the relative position of positively and negatively directed patches on the processes of interaction and mixing is studied. The obtained results correspond to the following possible scenarios: the initial configuration does not change over time; the initial configuration forms a new structure, which is maintained for longer times; the initial configuration returns to its initial state after a certain period of time. The processes of mass transfer of vorticity by liquid particles on a plane were calculated and analyzed. The results of a numerical analysis of the particles dynamics and trajectories on the entire plane and the field of local Lyapunov exponents are presented.

Keywords: ideal fluid, meshless methods, vortex structures in liquids, vortex parquet.

Procedia PDF Downloads 68
3126 Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering

Authors: Pakize Neslihan Taslı, Alev Cumbul, Gul Merve Yalcın, Fikrettin Sahin

Abstract:

A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering.

Keywords: tooth regeneration, tissue engineering, adipose stem cells, hydroxyapatite tooth engineering, porous scaffold

Procedia PDF Downloads 235
3125 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva

Authors: Sevde Altuntas, Fatih Buyukserin

Abstract:

Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.

Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy

Procedia PDF Downloads 295
3124 Molecular Docking Analysis of Flavonoids Reveal Potential of Eriodictyol for Breast Cancer Treatment

Authors: Nicole C. Valdez, Vincent L. Borromeo, Conrad C. Chong, Ahmad F. Mazahery

Abstract:

Breast cancer is the most prevalent cancer worldwide, where the majority of cases are estrogen-receptor positive and involve 2 receptor proteins. The binding of estrogen to estrogen receptor alpha (ERα) promotes breast cancer growth, while it's binding to estrogen-receptor beta (ERβ) inhibits tumor growth. While natural products have been a promising source of chemotherapeutic agents, the challenge remains in finding a bioactive compound that specifically targets cancer cells, minimizing side effects on normal cells. Flavonoids are natural products that act as phytoestrogens and induce the same response as estrogen. They are able to compete with estrogen for binding to ERα; however, it has a higher binding affinity for ERβ. Their abundance in nature and low toxicity make them a potential candidate for breast cancer treatment. This study aimed to determine which particular flavonoids can specifically recognize ERβ and potentially be used for breast cancer treatment through molecular docking. A total of 206 flavonoids comprised of 97 isoflavones and 109 flavanones were collected from ZINC15, while the 3D structures of ERβ and ERα were obtained from Protein Data Bank. These flavonoid subclasses were chosen as they bind more strongly to ERs due to their chemical structure. The structures of the flavonoid ligands were converted using Open Babel, while the estrogen receptor protein structures were prepared using Autodock MGL Tools. The optimal binding site was found using BIOVIA Discovery Studio Visualizer before docking all flavonoids on both ERβ and ERα through Autodock Vina. Genistein is a flavonoid that exhibits anticancer effects by binding to ERβ, so its binding affinity was used as a baseline. Eriodictyol and 4”,6”-Di-O-Galloylprunin both exceeded genistein’s binding affinity for ERβ and was lower than its binding affinity for ERα. Of the two, eriodictyol was pursued due to its antitumor properties on a lung cancer cell line and on glioma cells. It is able to arrest the cell cycle at the G2/M phase by inhibiting the mTOR/PI3k/Akt cascade and is able to induce apoptosis via the PI3K/Akt/NF-kB pathway. Protein pathway and gene analysis were also conducted using ChEMBL and PANTHER and it was shown that eriodictyol might induce anticancer effects through the ROS1, CA7, KMO, and KDM1A genes which are involved in cell proliferation in breast cancer, non-small cell lung cancer, and other diseases. The high binding affinity of eriodictyol to ERβ, as well as its potential affected genes and antitumor effects, therefore, make it a candidate for the development of new breast cancer treatment. Verification through in vitro experiments such as checking the upregulation and downregulation of genes through qPCR and checking cell cycle arrest using a flow cytometry assay is recommended.

Keywords: breast cancer, estrogen receptor, flavonoid, molecular docking

Procedia PDF Downloads 93
3123 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 125
3122 Forging A Distinct Understanding of Implicit Bias

Authors: Benjamin D Reese Jr

Abstract:

Implicit bias is understood as unconscious attitudes, stereotypes, or associations that can influence the cognitions, actions, decisions, and interactions of an individual without intentional control. These unconscious attitudes or stereotypes are often targeted toward specific groups of people based on their gender, race, age, perceived sexual orientation or other social categories. Since the late 1980s, there has been a proliferation of research that hypothesizes that the operation of implicit bias is the result of the brain needing to process millions of bits of information every second. Hence, one’s prior individual learning history provides ‘shortcuts’. As soon as one see someone of a certain race, one have immediate associations based on their past learning, and one might make assumptions about their competence, skill, or danger. These assumptions are outside of conscious awareness. In recent years, an alternative conceptualization has been proposed. The ‘bias of crowds’ theory hypothesizes that a given context or situation influences the degree of accessibility of particular biases. For example, in certain geographic communities in the United States, there is a long-standing and deeply ingrained history of structures, policies, and practices that contribute to racial inequities and bias toward African Americans. Hence, negative biases among groups of people towards African Americans are more accessible in such contexts or communities. This theory does not focus on individual brain functioning or cognitive ‘shortcuts.’ Therefore, attempts to modify individual perceptions or learning might have negligible impact on those embedded environmental systems or policies that are within certain contexts or communities. From the ‘bias of crowds’ perspective, high levels of racial bias in a community can be reduced by making fundamental changes in structures, policies, and practices to create a more equitable context or community rather than focusing on training or education aimed at reducing an individual’s biases. The current paper acknowledges and supports the foundational role of long-standing structures, policies, and practices that maintain racial inequities, as well as inequities related to other social categories, and highlights the critical need to continue organizational, community, and national efforts to eliminate those inequities. It also makes a case for providing individual leaders with a deep understanding of the dynamics of how implicit biases impact cognitions, actions, decisions, and interactions so that those leaders might more effectively develop structural changes in the processes and systems under their purview. This approach incorporates both the importance of an individual’s learning history as well as the important variables within the ‘bias of crowds’ theory. The paper also offers a model for leadership education, as well as examples of structural changes leaders might consider.

Keywords: implicit bias, unconscious bias, bias, inequities

Procedia PDF Downloads 18
3121 Examining Postcolonial Corporate Power Structures through the Lens of Development Induced Projects in Africa

Authors: Omogboyega Abe

Abstract:

This paper examines the relationships between socio-economic inequalities of power, race, wealth engendered by corporate structure, and domination in postcolonial Africa. The paper further considers how land as an epitome of property and power for the locals paved the way for capitalist accumulation and control in the hands of transnational corporations. European colonization of Africa was contingent on settler colonialism, where properties, including land, were re-modified as extractive resources for primitive accumulation. In developing Africa's extractive resources, transnational corporations (TNCs) usurped states' structures and domination over native land. The usurpation/corporate capture that exists to date has led to remonstrations and arguably a counter-productive approach to development projects. In some communities, the mention of extractive companies triggers resentment. The paradigm of state capture and state autonomy is simply inadequate to either describe or resolve the play of forces or actors responsible for severe corporate-induced human rights violations in emerging markets. Moreover, even if the deadly working conditions are conceived as some regulatory failure, it is tough to tell whose failure. The analysis in this paper is that the complexity and ambiguity evidenced by the multiple regimes and political and economic forces shaping production, consumption, and distribution of socio-economic variables are not exceptional in emerging markets. Instead, the varied experience in developing countries provides a window for seeing what we face in understanding and theorizing the structure and operation of the global economic and regulatory order in general.

Keywords: colonial, emerging markets, business, human rights, corporation

Procedia PDF Downloads 71
3120 Computation of Residual Stresses in Human Face Due to Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of the living tissues to the mechanical loads is necessary for a wide range of developing fields such as, designing of prosthetics and optimized surgery operations. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically growth and remodeling is one of the main sources. Extracting body organs from medical imaging, does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is the gravity since an organ grows under its influence from its birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. In this paper, we have implemented a computational framework based on fixed-point iteration to determine the residual stresses due to growth. Using nonlinear continuum mechanics and the concept of fictitious configuration we find the unknown stress-free reference configuration which is necessary for mechanical analysis. To illustrate the method, we apply it to a finite element model of healthy human face whose geometry has been extracted from medical images. We have computed the distribution of residual stress in facial tissues, which can overcome the effect of gravity and cause that tissues remain firm. Tissue wrinkles caused by aging could be a consequence of decreasing residual stress and not counteracting the gravity. Considering these stresses has important application in maxillofacial surgery. It helps the surgeons to predict the changes after surgical operations and their consequences.

Keywords: growth, soft tissue, residual stress, finite element method

Procedia PDF Downloads 358
3119 A Hybrid LES-RANS Approach to Analyse Coupled Heat Transfer and Vortex Structures in Separated and Reattached Turbulent Flows

Authors: C. D. Ellis, H. Xia, X. Chen

Abstract:

Experimental and computational studies investigating heat transfer in separated flows have been of increasing importance over the last 60 years, as efforts are being made to understand and improve the efficiency of components such as combustors, turbines, heat exchangers, nuclear reactors and cooling channels. Understanding of not only the time-mean heat transfer properties but also the unsteady properties is vital for design of these components. As computational power increases, more sophisticated methods of modelling these flows become available for use. The hybrid LES-RANS approach has been applied to a blunt leading edge flat plate, utilising a structured grid at a moderate Reynolds number of 20300 based on the plate thickness. In the region close to the wall, the RANS method is implemented for two turbulence models; the one equation Spalart-Allmaras model and Menter’s two equation SST k-ω model. The LES region occupies the flow away from the wall and is formulated without any explicit subgrid scale LES modelling. Hybridisation is achieved between the two methods by the blending of the nearest wall distance. Validation of the flow was obtained by assessing the mean velocity profiles in comparison to similar studies. Identifying the vortex structures of the flow was obtained by utilising the λ2 criterion to identify vortex cores. The qualitative structure of the flow compared with experiments of similar Reynolds number. This identified the 2D roll up of the shear layer, breaking down via the Kelvin-Helmholtz instability. Through this instability the flow progressed into hairpin like structures, elongating as they advanced downstream. Proper Orthogonal Decomposition (POD) analysis has been performed on the full flow field and upon the surface temperature of the plate. As expected, the breakdown of POD modes for the full field revealed a relatively slow decay compared to the surface temperature field. Both POD fields identified the most energetic fluctuations occurred in the separated and recirculation region of the flow. Latter modes of the surface temperature identified these levels of fluctuations to dominate the time-mean region of maximum heat transfer and flow reattachment. In addition to the current research, work will be conducted in tracking the movement of the vortex cores and the location and magnitude of temperature hot spots upon the plate. This information will support the POD and statistical analysis performed to further identify qualitative relationships between the vortex dynamics and the response of the surface heat transfer.

Keywords: heat transfer, hybrid LES-RANS, separated and reattached flow, vortex dynamics

Procedia PDF Downloads 232
3118 Material Chemistry Level Deformation and Failure in Cementitious Materials

Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo

Abstract:

Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.

Keywords: cementitious materials, deformation, failure, material chemistry modeling

Procedia PDF Downloads 291
3117 Laboratory Simulation of Subway Dynamic Stray Current Interference with Cathodically Protected Structures

Authors: Mohammad Derakhshani, Saeed Reza Allahkaram, Michael Isakani-Zakaria, Masoud Samadian, Hojat Sharifi Rasaey

Abstract:

Dynamic stray currents tend to change their magnitude and polarity with time at their source which will create anodic and cathodic spots on a nearby interfered structure. To date, one of the biggest known dynamic stray current sources are DC traction systems. Laboratory simulation is a suitable method to apply theoretical principles in order to identify effective parameters in dynamic stray current influenced corrosion. Simulation techniques can be utilized for various mitigation methods applied in a small scales for selection of the most efficient method with regards to field applications. In this research, laboratory simulation of potential fluctuations caused by dynamic stray current on a cathodically protected structure was investigated. A lab model capable of generating DC static and dynamic stray currents and simulating its effects on cathodically protected samples were developed based on stray current induced (contact-less) polarization technique. Stray current pick-up and discharge spots on an influenced structure were simulated by inducing fluctuations in the sample’s stationary potential. Two mitigation methods for dynamic stray current interference on buried structures namely application of sacrificial anodes as preferred discharge point for the stray current and potentially controlled cathodic protection was investigated. Results showed that the application of sacrificial anodes can be effective in reducing interference only in discharge spot. But cathodic protection through potential controlling is more suitable for mitigating dynamic stray current effects.

Keywords: simulation, dynamic stray current, fluctuating potentials, sacrificial anode

Procedia PDF Downloads 304
3116 A Tomb Structure in Pursuit of Tradition in 2oth Century Turkey and Its Story; the Tomb of Haci Hâkim Kemal Onsun and His Wife

Authors: Yavuz Arat, Ugur Tuztasi, Mehmet Uysal

Abstract:

Anatolia has been the host of many civilizations and a site where architectural structures of many cultural layers were interpreted. Most significantly the Turks who settled in Central Asia brought their architectural dynamics and cultural accumulation to Anatolia after the 12th century. The tomb structures first observed in Central Asia under the influence of Islamic faith and Turkish cultural heritage has blossomed under Great Seljuk Empire and with the Anatolian Seljuk Empire these tombs changed both in size and form with rich and beautiful samples from Ahlat to Sivas to Kayseri and Konya. This tomb tradition which started during 13th century has continued during the Ottoman Empire period with some alterations of form and evolved into the rarely observed mausoleum type tombs. The Ottoman tradition of building tombs inside mosque gardens and their forms present the clues of an important burial tradition. However this understanding was abandoned in 20th century Turkey. This tradition was abandoned with regard to legal regulations and health conditions. This study investigates the vestiges of this tradition and its spatial reflections over a sample. The present sample is representative of a tradition that started in 1970s and the case of building tombs inside mosque gardens will be illustrated over the tomb of Hacı Kemal Onsun and his wife which is located in Konya, the capital of the Anatolian Seljuks. The building process of this tomb will be evaluated with regard to burial traditions and architectural stylization.

Keywords: tomb, language of architectural form, Anatolian Seljuk tombs, Ottoman tombs

Procedia PDF Downloads 409
3115 Geosynthetic Containment Systems for Coastal Protection: An Indian Perspective

Authors: Tom Elias, Kiran G. Shirlal

Abstract:

Coastal erosion is one of the major issue faced by maritime countries, globally. More than 1200 km stretch of Indian coastline is marked eroding. There have been numerous attempts to impede the erosion rate and to attain equilibrium beach profiles. High cost and unavailability of natural rocks forced coastal engineers to find alternatives for conventional hard options like seawalls and groynes. Geosynthetic containment systems, emerged in the mid 20th century proved promising in catering coastal protection in countries like Australia, Germany and United States. The present study aims at reviewing Indian timeline of protection works that uses geosynthetic containment systems. Indian exploration regarding geosynthetic containment system dates back to early 2000s. Generally, protection structures use geosynthetics in the form of Geotubes, Geocontainers, and Geobags with Geotubes being most widely used in the form of submerged reefs, seawalls, groynes and breakwaters. Sand and dredged waste are used to fill these containment systems with calculated sand fill ratio. Reviewing the prominent protection works constructed in the east and west coast of India provides an insight into benefits and the difficulties faced by the practical installation. Initially, geosynthetic structures were considered as a temporary protection method prior to the construction of some other hard structure. Later Dahanu, Hamala and Pentha experiences helped in establishing geotubes as an alternative to conventional structures. Nearshore geotubes reefs aimed to attain equilibrium beach served its purpose in Hamala and Dahanu, Maharashtra, while reef constructed at Candolim, Goa underwent serious damage due to Toe Scour. In situ filling by pumping of sand slurry as in case of Shankarpur Seawall, West Bengal remains as a major concern. Geosynthetic systems supplemented by gabions and rock armours improves the wave dissipation, stability and reflection characteristics as implied in Pentha Coast, Odisha, Hazira, Gujarat and Uppada, Andhra Pradesh. Keeping improper design and deliberate destruction by vandals apart, geosynthetic containment systems offer a cost-effective alternative to conventional coastal protection methods in India. Additionally, geosynthetics supports marine growth in its surface which enhances its demand as an eco-friendly material and encourages usage.

Keywords: coastal protection, geotubes, geobags, geocontainers

Procedia PDF Downloads 154
3114 Corporate Governance Development in Mongolia: The Role of Professional Accountants

Authors: Ernest Nweke

Abstract:

The work of Professional Accountants and Corporate governance are synonymous and cannot be divorced from each other. Organizations, profit and non-profit alike cannot implement sound corporate practices without inputs from Professional Accountants. In today’s dynamic corporate world, good corporate governance practice is a sine qua non. More so, following the corporate failures of the past decades like Enron and WorldCom, governments around the world, including Mongolia are becoming more proactive in ensuring sound corporate governance mechanisms. In the past fifteen years, the Mongolian government has taken several measures to establish and strengthen internal corporate governance structures in firms. This paper highlights the role of professional accountants and auditors play in ensuring that good corporate governance mechanisms are entrenched in listed companies in Mongolia. Both primary and secondary data are utilized in this research. In collection of primary data, Delphi method was used, securing responses from only knowledgeable senior employees, top managers, and some CEOs. Using this method, a total of 107 top-level company employees and executives randomly selected from 22 companies were surveyed; maximum of 5 and minimum of 4 from each company. These companies cut across several sectors. It was concluded that Professional Accountants play key roles in setting and maintaining firm governance. They do this by ensuring full compliance with all the requirements of good and sound corporate governance, establishing reporting, monitoring and evaluating standards, assisting in the setting up of proper controls, efficient and effective audit systems, sound fraud risk management and putting in place an overall vision for the enterprise. Companies with effective corporate governance mechanisms are usually strong and fraud-resilient. It was also discovered that companies with big 4 audit firms tend to have better governance structures in Mongolia.

Keywords: accountants, corporate disclosure, corporate failure, corporate governance

Procedia PDF Downloads 282
3113 Cyclic Response of Reinforced Concrete Beam-Column Joint Strengthening by FRP

Authors: N. Attari, S. Amziane, M. Chemrouk

Abstract:

A large number of old buildings have been identified as having potentially critical detailing to resist earthquakes. The main reinforcement of lap-spliced columns just above the joint region, discontinuous bottom beam reinforcement, and little or no joint transverse reinforcement are the most critical details of interior beam column joints in such buildings. This structural type constitutes a large share of the building stock, both in developed and developing countries, and hence it represents a substantial exposure. Direct observation of damaged structures, following the Algiers 2003 earthquake, has shown that damage occurs usually at the beam-column joints, with failure in bending or shear, depending on geometry and reinforcement distribution and type. While substantial literature exists for the design of concrete frame joints to withstand this type of failure, after the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore; there exists a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 420
3112 Vulnerability of Steel Moment-Frame Buildings with Pinned and, Alternatively, with Semi-Rigid Connections

Authors: Daniel Llanes, Alfredo Reyes, Sonia E. Ruiz, Federico Valenzuela Beltran

Abstract:

Steel frames have been used in building construction for more than one hundred years. Beam-column may be connected to columns using either stiffened or unstiffened angles at the top and bottom beam flanges. Designers often assume that these assemblies acted as “pinned” connections for gravity loads and that the stiffened connections would act as “fixed” connections for lateral loads. Observation of damages sustained by buildings during the 1994 Northridge earthquake indicated that, contrary to the intended behavior, in many cases, brittle fractures initiated within the connections at very low levels of plastic demand, and in some cases, while the structures remained essentially elastic. Due to the damage presented in these buildings other type of alternative connections have been proposed. According to a research funded by the Federal Emergency Management Agency (FEMA), the screwed connections have better performance when they are subjected to cyclic loads, but at the same time, these connections have some degree of flexibility. Due to this situation, some researchers ventured into the study of semi-rigid connections. In the present study three steel buildings, constituted by regular frames are analyzed. Two types of connections are considered: pinned and semi-rigid connections. With the aim to estimate their structural capacity, a number of incremental dynamic analyzes are performed. 3D structural models are used for the analyses. The seismic ground motions were recorded on sites near Los Angeles, California, where the structures are supposed to be located. The vulnerability curves of the building are obtained in terms of maximum inter-story drifts. The vulnerability curves (which correspond to the models with two different types of connections) are compared, and its implications on its structural design and performance is discussed.

Keywords: steel frame Buildings, vulnerability curves, semi-rigid connections, pinned connections

Procedia PDF Downloads 227
3111 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model

Authors: Fu Jia

Abstract:

The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.

Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping

Procedia PDF Downloads 273
3110 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 176
3109 Governance Factors of Sustainable Stormwater Management: A Comparative Study of Case Cities in China and Sweden

Authors: Xiujuan Qiao

Abstract:

Cities worldwide are increasingly adopting sustainable stormwater solutions such as using green infrastructure to mitigate challenges related to stormwater, e.g., pluvial flooding, and stormwater pollution. Barriers caused by governance factors have been identified as the main reason for the slow pace of sustainable stormwater management implementation. In this study, we examined governance factors influencing local implementation in four case cities: Lund and Malmö, Sweden, and Xi’xian New Area and Zhenjiang, China. Based on systems thinking of interrelations between previously identified influencing governance factors in sustainable stormwater management (SSM), we developed a causal loop diagram (SSM-CLD) and used it to analyze 23 semi-structured interviews with local government officers in the four case cities. Based on the results, we created one SSM-CLD for each country and analyzed the main differences between these four SSM-CLDs. The results revealed that differences in governance structures can lead to differences in the influencing governance factors. In top-down political systems, e.g., China, the role of national policy in setting local leaders’ priorities is significant for SSM implementation. In political systems with more power devolved to local governments, e.g., Sweden, public awareness and local government politicians’ priorities are important for SSM implementation. Acquiring funding for long-term maintenance was identified as a challenge in all four cities studied. These results are relevant for policymakers, local government departments, consultancy companies, and researchers seeking a better understanding of how governance factors influence sustainable stormwater management.

Keywords: sustainable stormwater management, causal loop diagram, governance structures, local government priorities, public awareness, maintenance

Procedia PDF Downloads 259
3108 Variations in the 7th Lumbar (L7) Vertebra Length Associated with Sacrocaudal Fusion in Greyhounds

Authors: Sa`ad M. Ismail, Hung-Hsun Yen, Christina M. Murray, Helen M. S. Davies

Abstract:

The lumbosacral junction (where the 7th lumbar vertebra (L7) articulates with the sacrum) is a clinically important area in the dog. The 7th lumbar vertebra (L7) is normally shorter than other lumbar vertebrae, and it has been reported that variations in the L7 length may be associated with other abnormal anatomical findings. These variations included the reduction or absence of the portion of the median sacral crest. In this study, 53 greyhound cadavers were placed in right lateral recumbency, and two lateral radiographs were taken of the lumbosacral region for each greyhound. The length of the 6th lumbar (L6) vertebra and L7 were measured using radiographic measurement software and was defined to be the mean of three lines drawn from the caudal to the cranial edge of the L6 and L7 vertebrae (a dorsal, middle, and ventral line) between specific landmarks. Sacrocaudal fusion was found in 41.5% of the greyhounds. The mean values of the length of L6, L7, and the ratio of the L6/L7 length of the greyhounds with sacrocaudal fusion were all greater than those with standard sacrums (three sacral vertebrae). There was a significant difference (P < 0.05) in the mean values of the length of L7 between the greyhounds without sacrocaudal fusion (mean = 29.64, SD ± 2.07) and those with sacrocaudal fusion (mean = 30.86, SD ± 1.80), but, there was no significant difference in the mean value of the length of the L6 measurement. Among different types of sacrocaudal fusion, the longest L7 was found in greyhounds with sacrum type D, intermediate length in those with sacrum type B, and the shortest was found in those with sacrums type C, and the mean values of the ratio of the L6/L7 were 1.11 (SD ± 0.043), 1.15, (SD ± 0.025), and 1.15 (SD ± 0.011) for the types B, C, and D respectively. No significant differences in the mean values of the length of L6 or L7 were found among the different types of sacrocaudal fusion. The occurrence of sacrocaudal fusion might affect direct anatomically connected structures such as the L7. The variation in the length of L7 between greyhounds with sacrocaudal fusion and those without may reflect the possible sequences of the process of fusion. Variations in the length of the L7 vertebra in greyhounds may be associated with the occurrence of sacrocaudal fusion. The variation in the vertebral length may affect the alignment and biomechanical properties of the sacrum and may alter the loading. We concluded that any variations in the sacrum anatomical features might change the function of the sacrum or the surrounding anatomical structures.

Keywords: biomechanics, Greyhound, sacrocaudal fusion, locomotion, 6th Lumbar (L6) Vertebra, 7th Lumbar (L7) Vertebra, ratio of the L6/L7 length

Procedia PDF Downloads 376
3107 Influence of Organic Modifier Loading on Particle Dispersion of Biodegradable Polycaprolactone/Montmorillonite Nanocomposites

Authors: O. I. H. Dimitry, N. A. Mansour, A. L. G. Saad

Abstract:

Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+<Cloisite 20A<Cloisite 15A, and was then decreased to some extent with a further increase to 10 wt%. The activation energy Eσ obtained from the dependency of σ on temperature using Arrhenius equation was found to be lowest for the nanocomposite containing 5 wt% of Cloisite 15A. The dispersed behavior of clay in PCL matrix was evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses which revealed partial intercalated structures in PCL/NaMMT composites and semi-intercalated/semi-exfoliated structures in PCL/OMMT nanocomposites containing 5 wt% of Cloisite 20A or Cloisite 15A.

Keywords: electrical conductivity, montmorillonite, nanocomposite, organoclay, polycaprolactone

Procedia PDF Downloads 379
3106 Application of the Critical Decision Method for Monitoring and Improving Safety in the Construction Industry

Authors: Juan Carlos Rubio Romero, Francico Salguero Caparros, Virginia Herrera-Pérez

Abstract:

No one is in the slightest doubt about the high levels of risk involved in work in the construction industry. They are even higher in structural construction work. The Critical Decision Method (CDM) is a semi-structured interview technique that uses cognitive tests to identify the different disturbances that workers have to deal with in their work activity. At present, the vision of safety focused on daily performance and things that go well for safety and health management is facing the new paradigm known as Resilience Engineering. The aim of this study has been to describe the variability in formwork labour on concrete structures in the construction industry and, from there, to find out the resilient attitude of workers to unexpected events that they have experienced during their working lives. For this purpose, a series of semi-structured interviews were carried out with construction employees with extensive experience in formwork labour in Spain by applying the Critical Decision Method. This work has been the first application of the Critical Decision Method in the field of construction and, more specifically, in the execution of structures. The results obtained show that situations categorised as unthought-of are identified to a greater extent than potentially unexpected situations. The identification during these interviews of both expected and unexpected events provides insight into the critical decisions made and actions taken to improve resilience in daily practice in this construction work. From this study, it is clear that it is essential to gain more knowledge about the nature of the human cognitive process in work situations within complex socio-technical systems such as construction sites. This could lead to a more effective design of workplaces in the search for improved human performance.

Keywords: resilience engineering, construction industry, unthought-of situations, critical decision method

Procedia PDF Downloads 151