Search results for: energy efficiency in Kazakhstan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12872

Search results for: energy efficiency in Kazakhstan

1232 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide

Procedia PDF Downloads 226
1231 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater

Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu

Abstract:

The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.

Keywords: algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, Nutrients removal, saline wastewater, sequencing batch reactor

Procedia PDF Downloads 133
1230 Appraisal of Oxidative Stress in Pregnant and Non-Pregnant Non Descript Goat from Arid Tracts in India

Authors: Sudha Summarwar, Sudesh Agarwal, Deepali Lall, Nalini Kataria, Jyotsana Pandey

Abstract:

Assessment of antioxidant status is an effective tool to appraise the presence of oxidative stress. A combination of assays can be used to evaluate the antioxidant status like serum catalase (CAT), superoxide dismutase (SOD) and monoamine oxidase (MAO). In human medicine pregnancy is known to be associated with oxidative stress. Oxidative stress produces harmful effects to the developing foetus. Several metabolic changes occur in the maternal body to meet the demand of energy of developing foetus. Due to these changes susceptibility of maternal body increases to oxidative stress. There is paucity of research work on this aspect in nondescript goats. Therefore, the present study was intended to appraise the oxidative stress in pregnant and non-pregnant non-descript goat. Blood samples were collected for serum separation in otherwise healthy pregnant and non-pregnant nondescript goats. Mean values of serum CAT, SOD and MAO were found on a higher side (p≤0.05) with serum SOD values showing a rise of 2.5 times higher than the control healthy value. Correlations among all the three parameters were found to be highly significant (p≤0.01) especially greatest in youngest group of pregnant animals. Illustration of result enlightened the veracity of bumped up production of free radicals in pregnant animals. Technical savoir-faire of oxidative stress supervision is essential for upholding of health status of foetus. The upshot of present study undoubtedly implied the development of oxidative stress in pregnant goats on the basis of altered antioxidant status. These findings conclude that initially the oxidative stress due to pregnancy is critically combated by the intricate defensive mechanism of natural antioxidant system of the body. It appears that this imbalance between oxidant and antioxidant must be checked in time to prevent cellular damage by regularly appraising the antioxidant status through laboratory methods.

Keywords: antioxidant, oxidative stress, pregnancy, serum catalase

Procedia PDF Downloads 314
1229 Effects of Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Composition of Bacteria in Feces of Finishing Steers

Authors: Yan Li, Qingxiang Meng, Bo Zhou, Zhenming Zhou

Abstract:

The objective of this study was to compare the effects of ensiled mulberry leaves (EML), and sun-dried mulberry fruit pomace (SMFP) on fecal bacterial communities in Simmental crossbred finishing steers fed the following 3 diets: a standard TMR diet, standard diet containing EML and standard diet containing SMFP, and the diets had similar protein and energy levels. Bacterial communities in the fecal content were analyzed using Illumina Miseq sequencing of the V4 region of the 16S rRNA gene amplification. Quantitative real-time PCR was used to detect the selected bacterial species in the feces. Most of the sequences were assigned to phyla Firmicutes (56.67%) and Bacteroidetes(35.90%), followed by Proteobacteria(1.86%), Verrucomicrobia(1.80%) and Tenericutes(1.37%). And the predominant genera included the 5-7N15 (5.91%), CF231 (2.49%), Oscillospira (2.33%), Paludibacter (1.23%) and Akkermansia(1.11%). As for the treatments, no significant differences were observed in Firmicutes (p = 0.28), Bacteroidetes (p = 0.63), Proteobacteria (p = 0.46), Verrucomicrobia (p = 0.17) and Tenericutes (p = 0.75). On the genus level, classified genera with high abundance (more than 0.1%) mainly came from two phyla: Bacteroidetes and Firmicutes. Also no differences were observed in most genera level, 5-7N15 (p = 0.21), CF231 (p = 0.62), Oscillospira (p = 0.9), Paludibacter (p = 0.33) and Akkermansia (p = 0.37), except that rc4-4 were lower in the CON and SMFP groups compared to the EML animals (p = 0.02). Additionally, there were no differences in richness estimate and diversity indices (p > 0.16), and treatments had no significant effect on most selected bacterial species in the fecal (p > 0.06), except that Ruminococcus albus were higher in the EML group (p < 0.01) and Streptococcus bovis were lower in the CON group (p < 0.01). In conclusion, diets supplemented with EML and SMFP have little influence on fecal bacterial community composition in finishing steers.

Keywords: fecal bacteria community composition, sequencing, ensiled mulberry leaves (EML), sun-dried mulberry fruit pomace (SMFP)

Procedia PDF Downloads 297
1228 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 54
1227 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model

Authors: A. Shakoor, M. Arshad

Abstract:

The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.

Keywords: groundwater quality, groundwater management, PMWIN, MT3D model

Procedia PDF Downloads 361
1226 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.

Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark

Procedia PDF Downloads 56
1225 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel

Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam

Abstract:

The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.

Keywords: residues, date palm stalks, chopper, briquetting, quality properties

Procedia PDF Downloads 521
1224 Legal Personality and Responsibility of Robots

Authors: Mehrnoosh Abouzari, Shahrokh Sahraei

Abstract:

Arrival of artificial intelligence or smart robots in the modern world put them in charge on pericise and at risk. So acting human activities with robots makes criminal or civil responsibilities for their acts or behavior. The practical usage of smart robots has entered them in to a unique situation when naturalization happens and smart robots are identifies as members of society. There would be some legal situation by adopting these new smart citizens. The first situation is about legal responsibility of robots. Recognizing the naturalization of robot involves some basic right , so humans have the rights of employment, property, housing, using energy and other human rights may be employed for robots. So how would be the practice of these rights in the society and if some problems happens with these rights, how would the civil responsibility and punishment? May we consider them as population and count on the social programs? The second episode is about the criminal responsibility of robots in important activity instead of human that is the aim of inventing robots with handling works in AI technology , but the problem arises when some accidents are happened by robots who are in charge of important activities like army, surgery, transporting, judgement and so on. Moreover, recognizing independent identification for robots in the legal world by register ID cards, naturalization and civilian rights makes and prepare the same rights and obligations of human. So, the civil responsibility is not avoidable and if the robot commit a crime it would have criminal responsibility and have to be punished. The basic component of criminal responsibility may changes in so situation. For example, if designation for criminal responsibility bounds to human by sane, maturity, voluntariness, it would be for robots by being intelligent, good programming, not being hacked and so on. So it is irrational to punish robots by prisoning , execution and other human punishments for body. We may determine to make digital punishments like changing or repairing programs, exchanging some parts of its body or wreck it down completely. Finally the responsibility of the smart robot creators, programmers, the boss in chief, the organization who employed robot, the government which permitted to use robot in important bases and activities , will be analyzing and investigating in their article.

Keywords: robot, artificial intelligence, personality, responsibility

Procedia PDF Downloads 123
1223 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application

Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro

Abstract:

In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.

Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype

Procedia PDF Downloads 143
1222 The Sea Striker: The Relevance of Small Assets Using an Integrated Conception with Operational Performance Computations

Authors: Gaëtan Calvar, Christophe Bouvier, Alexis Blasselle

Abstract:

This paper presents the Sea Striker, a compact hydrofoil designed with the goal to address some of the issues raised by the recent evolutions of naval missions, threats and operation theatres in modern warfare. Able to perform a wide range of operations, the Sea Striker is a 40-meter stealth surface combatant equipped with a gas turbine and aft and forward foils to reach high speeds. The Sea Striker's stealthiness is enabled by the combination of composite structure, exterior design, and the advanced integration of sensors. The ship is fitted with a powerful and adaptable combat system, ensuring a versatile and efficient response to modern threats. Lightly Manned with a core crew of 10, this hydrofoil is highly automated and can be remoted pilote for special force operation or transit. Such a kind of ship is not new: it has been used in the past by different navies, for example, by the US Navy with the USS Pegasus. Nevertheless, the recent evolutions in science and technologies on the one hand, and the emergence of new missions, threats and operation theatres, on the other hand, put forward its concept as an answer to nowadays operational challenges. Indeed, even if multiples opinions and analyses can be given regarding the modern warfare and naval surface operations, general observations and tendencies can be drawn such as the major increase in the sensors and weapons types and ranges and, more generally, capacities; the emergence of new versatile and evolving threats and enemies, such as asymmetric groups, swarm drones or hypersonic missile; or the growing number of operation theatres located in more coastal and shallow waters. These researches were performed with a complete study of the ship after several operational performance computations in order to justify the relevance of using ships like the Sea Striker in naval surface operations. For the selected scenarios, the conception process enabled to measure the performance, namely a “Measure of Efficiency” in the NATO framework for 2 different kinds of models: A centralized, classic model, using large and powerful ships; and A distributed model relying on several Sea Strikers. After this stage, a was performed. Lethal, agile, stealth, compact and fitted with a complete set of sensors, the Sea Striker is a new major player in modern warfare and constitutes a very attractive response between the naval unit and the combat helicopter, enabling to reach high operational performances at a reduced cost.

Keywords: surface combatant, compact, hydrofoil, stealth, velocity, lethal

Procedia PDF Downloads 99
1221 Preliminary Evaluation of Maximum Intensity Projection SPECT Imaging for Whole Body Tc-99m Hydroxymethylene Diphosphonate Bone Scanning

Authors: Yasuyuki Takahashi, Hirotaka Shimada, Kyoko Saito

Abstract:

Bone scintigraphy is widely used as a screening tool for bone metastases. However, the 180 to 240 minutes (min) waiting time after the intravenous (i.v.) injection of the tracer is both long and tiresome. To solve this shortcoming, a bone scan with a shorter waiting time is needed. In this study, we applied the Maximum Intensity Projection (MIP) and triple energy window (TEW) scatter correction to a whole body bone SPECT (Merged SPECT) and investigated shortening the waiting time. Methods: In a preliminary phantom study, hot gels of 99mTc-HMDP were inserted into sets of rods with diameters ranging from 4 to 19 mm. Each rod set covered a sector of a cylindrical phantom. The activity concentration of all rods was 2.5 times that of the background in the cylindrical body of the phantom. In the human study, SPECT images were obtained from chest to abdomen at 30 to 180 min after 99mTc- hydroxymethylene diphosphonate (HMDP) injection of healthy volunteers. For both studies, MIP images were reconstructed. Planar whole body images of the patients were also obtained. These were acquired at 200 min. The image quality of the SPECT and the planar images was compared. Additionally, 36 patients with breast cancer were scanned in the same way. The delectability of uptake regions (metastases) was compared visually. Results: In the phantom study, a 4 mm size hot gel was difficult to depict on the conventional SPECT, but MIP images could recognize it clearly. For both the healthy volunteers and the clinical patients, the accumulation of 99mTc-HMDP in the SPECT was good as early as 90 min. All findings of both image sets were in agreement. Conclusion: In phantoms, images from MIP with TEW scatter correction could detect all rods down to those with a diameter of 4 mm. In patients, MIP reconstruction with TEW scatter correction could improve the detectability of hot lesions. In addition, the time between injection and imaging could be shortened from that conventionally used for whole body scans.

Keywords: merged SPECT, MIP, TEW scatter correction, 99mTc-HMDP

Procedia PDF Downloads 399
1220 Need for Cognition: An Important, Neglected Personality Variable in the Development of Spirituality Within the Context of Twelve Step Recovery from Addictive Disorders

Authors: Paul E. Priester

Abstract:

The Twelve Step approach to recovery from substance use and addictive disorders is considered an evidence-based model that assists many who recover from a chronic, progressive, fatal disease. Two key processes that contribute to the success of obtaining recovery from substance use disorders (SUD) are meeting engagement and the development of spiritual beliefs. Beyond establishing that there is a positive relationship between the development of spiritual beliefs in recovery from SUD’s, there has been a paucity of research exploring individual differences among individuals in this development of spiritual beliefs. One such personality variable that deserves exploration is that of the need for cognition. The need for cognition is a personality variable that explains the cognitive style of individuals. Individuals with a high need for cognition enjoy examining the complexities of a situation before coming to a conclusion. While individuals with a low need for cognition do not value or spend time cognitively dissecting a situation or decision. It is important to point out that a high need for cognition does not necessarily imply a high level of cognitive ability. Indeed, one could make the argument that a low need for cognition individual is not “wasting” cognitive energy in perseverating the multitude of aspects of a particular decision. This paper will present two case studies demonstrating the development of spiritual beliefs that enabled long-term recovery from SUD. The first case study presents an agnostic individual with a low need for cognition cognitive style in his development of spirituality in support of his recovery from alcoholism within the context of Alcoholics Anonymous. The second case study represents an adamant atheist with a high need for cognition cognitive style. This second individual is an intravenous cocaine addict and alcoholic who recovers through the development of spirituality within the contexts of Alcoholics Anonymous and Narcotics Anonymous. The two case studies will be contrasted with each other, noting how the individuals’ cognitive style mediated the development of spirituality that supported their long-term recovery from alcoholism and addiction.

Keywords: spirituality, twelve step recovery, need for cognition, individual differences in recovery from addictions

Procedia PDF Downloads 62
1219 Effect of Reminiscence Therapy on the Sleep Quality of the Elderly Living in Nursing Homes

Authors: Güler Duru Aşiret

Abstract:

Introduction: Poor sleep quality is a common problem among the older people living in nursing homes. Our study aimed at assessing the effect of individual reminiscence therapy on the sleep quality of the elderly living in nursing homes. Methods: The study had 22 people in the intervention group and 24 people in the control group. The intervention group had reminiscence therapy once a week for 12 weeks in the form of individual sessions of 25-30 minutes. In our study, we first determined the dates suitable for the intervention group and researcher and planned the date and time of individual reminiscence therapies, which would take 12 weeks. While preparing this schedule, we considered subjects’ time schedules for their regular visits to health facilities and the arrival of their visitors. At this stage, the researcher informed the participants that their regular attendance in sessions would affect the intervention outcome. One topic was discussed every week. Weekly topics included: introduction in the first week; childhood and family life, school days, starting work and work life (a day at home for housewives), a fun day out of home, marriage (friendship for the singles), plants and animals they loved, babies and children, food and cooking, holidays and travelling, special days and celebrations, assessment and closure, in the following weeks respectively. The control group had no intervention. Study data was collected by using an introductory information form and the Pittsburgh Sleep Quality Index (PSQI). Results: In our study, participants’ average age was 76.02 ± 7.31. 58.7% of them were male and 84.8% were single. All of them had at least one chronic disease. 76.1% did not need help for performing their daily life activities. The length of stay in the institution was 6.32 ± 3.85 years. According to the participants’ descriptive characteristics, there was no difference between groups. While there was no statistically significant difference between the pretest PSQI median scores (p > 0.05) of both groups, PSQI median score had a statistically significant decrease after 12 weeks of reminiscence therapy (p < 0.05). There was no statistically significant change in the median scores of the subcomponents of sleep latency, sleep duration, sleep efficiency, sleep disturbance and use of sleep medication before and after reminiscence therapy. After the 12-weeks reminiscence therapy, there was a statistically significant change in the median scores for the PSQI subcomponents of subjective sleep quality (p<0.05). Conclusion: Our study found that reminiscence therapy increased the sleep quality of the elderly living in nursing homes. Acknowledgment: This study (project no 2017-037) was supported by the Scientific Research Projects Coordination Unit of Aksaray University. We thank the elderly subjects for their kind participation.

Keywords: nursing, older people, reminiscence therapy, sleep

Procedia PDF Downloads 111
1218 A Hydrometallurgical Route for the Recovery of Molybdenum from Mo-Co Spent Catalyst

Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra

Abstract:

Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum have increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. Present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3 mol/L HCl and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe-Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by counter current simulation studies. According to McCabe-Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two stage counter current at A/O= 1:1 with negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO3 in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO3 was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO3correspond to molybdite Syn-MoO3 structure. FE-SEM depicts the rod like morphology of synthesized MoO3. EDX analysis of MoO3 shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO3 can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as catalyst.

Keywords: cyphos IL 102, extraction, Mo-Co spent catalyst, recovery

Procedia PDF Downloads 252
1217 Performance Analysis of Double Gate FinFET at Sub-10NM Node

Authors: Suruchi Saini, Hitender Kumar Tyagi

Abstract:

With the rapid progress of the nanotechnology industry, it is becoming increasingly important to have compact semiconductor devices to function and offer the best results at various technology nodes. While performing the scaling of the device, several short-channel effects occur. To minimize these scaling limitations, some device architectures have been developed in the semiconductor industry. FinFET is one of the most promising structures. Also, the double-gate 2D Fin field effect transistor has the benefit of suppressing short channel effects (SCE) and functioning well for less than 14 nm technology nodes. In the present research, the MuGFET simulation tool is used to analyze and explain the electrical behaviour of a double-gate 2D Fin field effect transistor. The drift-diffusion and Poisson equations are solved self-consistently. Various models, such as Fermi-Dirac distribution, bandgap narrowing, carrier scattering, and concentration-dependent mobility models, are used for device simulation. The transfer and output characteristics of the double-gate 2D Fin field effect transistor are determined at 10 nm technology node. The performance parameters are extracted in terms of threshold voltage, trans-conductance, leakage current and current on-off ratio. In this paper, the device performance is analyzed at different structure parameters. The utilization of the Id-Vg curve is a robust technique that holds significant importance in the modeling of transistors, circuit design, optimization of performance, and quality control in electronic devices and integrated circuits for comprehending field-effect transistors. The FinFET structure is optimized to increase the current on-off ratio and transconductance. Through this analysis, the impact of different channel widths, source and drain lengths on the Id-Vg and transconductance is examined. Device performance was affected by the difficulty of maintaining effective gate control over the channel at decreasing feature sizes. For every set of simulations, the device's features are simulated at two different drain voltages, 50 mV and 0.7 V. In low-power and precision applications, the off-state current is a significant factor to consider. Therefore, it is crucial to minimize the off-state current to maximize circuit performance and efficiency. The findings demonstrate that the performance of the current on-off ratio is maximum with the channel width of 3 nm for a gate length of 10 nm, but there is no significant effect of source and drain length on the current on-off ratio. The transconductance value plays a pivotal role in various electronic applications and should be considered carefully. In this research, it is also concluded that the transconductance value of 340 S/m is achieved with the fin width of 3 nm at a gate length of 10 nm and 2380 S/m for the source and drain extension length of 5 nm, respectively.

Keywords: current on-off ratio, FinFET, short-channel effects, transconductance

Procedia PDF Downloads 49
1216 KTiPO4F: The Negative Electrode Material for Potassium Batteries

Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov

Abstract:

Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.

Keywords: anode material, potassium battery, chemical characterization, electrochemical properties

Procedia PDF Downloads 186
1215 Disclosure on Adherence of the King Code's Audit Committee Guidance: Cluster Analyses to Determine Strengths and Weaknesses

Authors: Philna Coetzee, Clara Msiza

Abstract:

In modern society, audit committees are seen as the custodians of accountability and the conscience of management and the board. But who holds the audit committee accountable for their actions or non-actions and how do we know what they are supposed to be doing and what they are doing? The purpose of this article is to provide greater insight into the latter part of this problem, namely, determine what best practises for audit committees and the disclosure of what is the realities are. In countries where governance is well established, the roles and responsibilities of the audit committee are mostly clearly guided by legislation and/or guidance documents, with countries increasingly providing guidance on this topic. With high cost involved to adhere to governance guidelines, the public (for public organisations) and shareholders (for private organisations) expect to see the value of their ‘investment’. For audit committees, the dividends on the investment should reflect in less fraudulent activities, less corruption, higher efficiency and effectiveness, improved social and environmental impact, and increased profits, to name a few. If this is not the case (which is reflected in the number of fraudulent activities in both the private and the public sector), stakeholders have the right to ask: where was the audit committee? Therefore, the objective of this article is to contribute to the body of knowledge by comparing the adherence of audit committee to best practices guidelines as stipulated in the King Report across public listed companies, national and provincial government departments, state-owned enterprises and local municipalities. After constructs were formed, based on the literature, factor analyses were conducted to reduce the number of variables in each construct. Thereafter, cluster analyses, which is an explorative analysis technique that classifies a set of objects in such a way that objects that are more similar are grouped into the same group, were conducted. The SPSS TwoStep Clustering Component was used, being capable of handling both continuous and categorical variables. In the first step, a pre-clustering procedure clusters the objects into small sub-clusters, after which it clusters these sub-clusters into the desired number of clusters. The cluster analyses were conducted for each construct and the measure, namely the audit opinion as listed in the external audit report, were included. Analysing 228 organisations' information, the results indicate that there is a clear distinction between the four spheres of business that has been included in the analyses, indicating certain strengths and certain weaknesses within each sphere. The results may provide the overseers of audit committees’ insight into where a specific sector’s strengths and weaknesses lie. Audit committee chairs will be able to improve the areas where their audit committee is lacking behind. The strengthening of audit committees should result in an improvement of the accountability of boards, leading to less fraud and corruption.

Keywords: audit committee disclosure, cluster analyses, governance best practices, strengths and weaknesses

Procedia PDF Downloads 146
1214 The Impact of Legislation on Waste and Losses in the Food Processing Sector in the UK/EU

Authors: David Lloyd, David Owen, Martin Jardine

Abstract:

Introduction: European weight regulations with respect to food products require a full understanding of regulation guidelines to assure regulatory compliance. It is suggested that the complexity of regulation leads to practices which result to over filling of food packages by food processors. Purpose: To establish current practices by food processors and the financial, sustainable and societal impacts on the food supply chain of ineffective food production practices. Methods: An analysis of food packing controls with 10 companies of varying food categories and quantitative based research of a further 15 food processes on the confidence in weight control analysis of finished food packs within their organisation. Results: A process floor analysis of manufacturing operations focussing on 10 products found over fill of packages ranging from 4.8% to 20.2%. Standard deviation figures for all products showed a potential for reducing average weight of the pack whilst still retain the legal status of the product. In 20% of cases, an automatic weight analysis machine was in situ however weight packs were still significantly overweight. Collateral impacts noted included the effect of overfill on raw material purchase and added food miles often on a global basis with one raw material alone creating 10,000 extra food miles due to the poor weight control of the processing unit. A case study of a meat and bakery product will be discussed with the impact of poor controls resulting from complex legislation. The case studies will highlight extra energy costs in production and the impact of the extra weight on fuel usage. If successful a risk assessment model used primarily on food safety but adapted to identify waste /sustainability risks will be discussed within the presentation.

Keywords: legislation, overfill, profile, waste

Procedia PDF Downloads 384
1213 Inertial Particle Focusing Dynamics in Trapezoid Straight Microchannels: Application to Continuous Particle Filtration

Authors: Reza Moloudi, Steve Oh, Charles Chun Yang, Majid Ebrahimi Warkiani, May Win Naing

Abstract:

Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of the channel and its impacts not only on the shear field but also the wall-effect lift force near the wall region. Despite comprehensive experiments and numerical analysis of the lift forces for rectangular and non-rectangular microchannels (half-circular and triangular cross-section), which all possess planes of symmetry, less effort has been made on the 'flow field structure' of trapezoidal straight microchannels and its effects on inertial focusing. On the other hand, a rectilinear channel with trapezoidal cross-sections breaks down all planes of symmetry. In this study, particle focusing dynamics inside trapezoid straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-laterally movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the main lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio (K=a/Hmin, a is particle size), channel aspect ratio (AR=W/Hmin, W is channel width, and Hmin is smaller channel height), and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Increasing the channel aspect ratio (AR) from 2 to 4 and the slope of slanted wall up to Tan(α)≈0.4 (Tan(α)=(Hlonger-sidewall-Hshorter-sidewall)/W) enhanced the off-center lateral focusing position from the middle of channel cross-section, up to ~20 percent of the channel width. It was found that the focusing point was spoiled near the slanted wall due to the dissymmetry; it mainly focused near the bottom wall or fluctuated between the channel center and the bottom wall, depending on the slanted wall and Re (Re < 100, channel aspect ratio 4:1). Eventually, as a proof of principle, a trapezoidal straight microchannel along with a bifurcation was designed and utilized for continuous filtration of a broader range of particle clogging ratio (0.3 < K < 1) exiting through the longer wall outlet with ~99% efficiency (Re < 100) in comparison to the rectangular straight microchannels (W > H, 0.3 ≤ K < 0.5).

Keywords: cell/particle sorting, filtration, inertial microfluidics, straight microchannel, trapezoid

Procedia PDF Downloads 198
1212 Extraction of Phycocyanin from Spirulina platensis by Isoelectric Point Precipitation and Salting Out for Scale Up Processes

Authors: Velasco-Rendón María Del Carmen, Cuéllar-Bermúdez Sara Paulina, Parra-Saldívar Roberto

Abstract:

Phycocyanin is a blue pigment protein with fluorescent activity produced by cyanobacteria. It has been recently studied to determine its anticancer, antioxidant and antiinflamatory potential. Since 2014 it was approved as a Generally Recognized As Safe (GRAS) proteic pigment for the food industry. Therefore, phycocyanin shows potential for the food, nutraceutical, pharmaceutical and diagnostics industry. Conventional phycocyanin extraction includes buffer solutions and ammonium sulphate followed by chromatography or ATPS for protein separation. Therefore, further purification steps are time-requiring, energy intensive and not suitable for scale-up processing. This work presents an alternative to conventional methods that also allows large scale application with commercially available equipment. The extraction was performed by exposing the dry biomass to mechanical cavitation and salting out with NaCl to use an edible reagent. Also, isoelectric point precipitation was used by addition of HCl and neutralization with NaOH. The results were measured and compared in phycocyanin concentration, purity and extraction yield. Results showed that the best extraction condition was the extraction by salting out with 0.20 M NaCl after 30 minutes cavitation, with a concentration in the supernatant of 2.22 mg/ml, a purity of 3.28 and recovery from crude extract of 81.27%. Mechanical cavitation presumably increased the solvent-biomass contact, making the crude extract visibly dark blue after centrifugation. Compared to other systems, our process has less purification steps, similar concentrations in the phycocyanin-rich fraction and higher purity. The contaminants present in our process edible NaCl or low pHs that can be neutralized. It also can be adapted to a semi-continuous process with commercially available equipment. This characteristics make this process an appealing alternative for phycocyanin extraction as a pigment for the food industry.

Keywords: extraction, phycocyanin, precipitation, scale-up

Procedia PDF Downloads 417
1211 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 208
1210 Capacity Oversizing for Infrastructure Sharing Synergies: A Game Theoretic Analysis

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) rely on two basic modes of cooperation between organizations that are infrastructure/service sharing and resource substitution (the use of waste materials, fatal energy and recirculated utilities for production). The former consists in the intensification of use of an asset and thus requires to compare the incremental investment cost to be incurred and the stand-alone cost faced by each potential participant to satisfy its own requirements. In order to investigate the way such a cooperation mode can be implemented we formulate a game theoretic model integrating the grassroot investment decision and the ex-post access pricing problem. In the first period two actors set cooperatively (resp. non-cooperatively) a level of common (resp. individual) infrastructure capacity oversizing to attract ex-post a potential entrant with a plug-and-play offer (available capacity, tariff). The entrant’s requirement is randomly distributed and known only after investments took place. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period under some conditions that we derive. The entrant willingness-to-pay for the access to the infrastructure is driven by both her standalone cost and the complement cost to be incurred in case she chooses to access an infrastructure whose the available capacity is lower than her requirement level. The expected complement cost function is thus derived, and we show that it is decreasing, convex and shaped by the entrant’s requirements distribution function. For both uniform and triangular distributions optimal capacity level is obtained in the cooperative setting and equilibrium levels are determined in the non-cooperative case. Regarding the latter, we show that competition is deterred by the first period investor with the highest requirement level. Using the non-cooperative game outcomes which gives lower bounds for the profit sharing problem in the cooperative one we solve the whole game and describe situations supporting sharing agreements.

Keywords: capacity, cooperation, industrial symbiosis, pricing

Procedia PDF Downloads 426
1209 A Strategy for Reducing Dynamic Disorder in Small Molecule Organic Semiconductors by Suppressing Large Amplitude Thermal Motions

Authors: Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Stephen G. Yeates, John E. Anthony, Henning Sirringhaus

Abstract:

Large-amplitude intermolecular vibrations in combination with complex shaped transfer integrals generate a thermally fluctuating energetic landscape. The resulting dynamic disorder and its intrinsic presence in organic semiconductors is one of the most fundamental differences to their inorganic counterparts. Dynamic disorder is believed to govern many of the unique electrical and optical properties of organic systems. However, the low energy nature of these vibrations makes it difficult to access them experimentally and because of this we still lack clear molecular design rules to control and reduce dynamic disorder. Applying a novel technique based on electron diffraction we encountered strong intermolecular, thermal vibrations in every single organic material we studied (14 up to date), indicating that a large degree of dynamic disorder is a universal phenomenon in organic crystals. In this paper a new molecular design strategy will be presented to avoid dynamic disorder. We found that small molecules that have their side chains attached to the long axis of their conjugated core have been found to be less likely to suffer from dynamic disorder effects. In particular, we demonstrate that 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene (C8-BTBT) and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene (C10DNTT) exhibit strongly reduced thermal vibrations in comparison to other molecules and relate their outstanding performance to their lower dynamic disorder. We rationalize the low degree of dynamic disorder in C8-BTBT and C10-DNTT with a better encapsulation of the conjugated cores in the crystal structure which helps reduce large amplitude thermal motions. The work presented in this paper provides a general strategy for the design of new classes of very high mobility organic semiconductors with low dynamic disorder.

Keywords: charge transport, C8-BTBT, C10-DNTT, dynamic disorder, organic semiconductors, thermal vibrations

Procedia PDF Downloads 385
1208 The Effect of Aerobic Exercises on the Amount of Urea, Uric Acid and Creatine in Blood of Iranian Soccer Players

Authors: Abdolrasoul Daneshjoo

Abstract:

The purpose of this research was to study the effect of aerobic exercises with 75% heart beats on the amount of urea, uric acid and creatine in blood of Iranian soccer national U-23 players. 27 players were selected according to the following demographic specifications: age: 21.4±1.60 years old; weight: 68±9.4 kg; height: 174.2±8.6 cm. Urea, uric acid and creatine in blood are considered as dependent variations where as 40 minutes running on a track with maximum 75% heart beats are independent variations. Heart beat and blood pressure in rest time, age, height, and weight are considered as the controlled variations. Maximum heart beats are recorded under maximum exercises (8 minutes and 150-250 watt energy) on ergo meter. Then, in order to determine independent variations, 75% maximum heart beats are considered for each player. Blood is taken twice (before and after determining independence variation). Moreover, the players are given a few instructions to be fulfilled 24 hours before the main exercises. Laboratory analysis method for blood urea sample is deacetyl ammoniom, for uric acid Karvy test and for creatine pyric acid. 'T' formula is applied for analyzing statistical data in dependent groups with degree of freedom 7 (d.f=7) urea and uric acid contain P>0.01 and P>0.05 for creatine. 1. Aerobic exercise can effect on the concentration of urea of blood as well as uric acid and creatine in blood serum and increase the amount of them. 2. Urea of blood serum increases from 26.75±2.59 to 28.9±2.67 (25%) with 40 minutes running and 75% heart beat. 3. Aerobic exercise causes uric acid increase 12.5% from 5.7±0.52 (before exercise) to 6.1±0.71 (after exercise). Creatine of blood serum increases from 1.36±0.27 (before exercise) to 1.85±0.49 (after exercise). We came to this result that during aerobic exercise catabolism of protein substrate increases. Moreover, augmentation of urea, uric acid and creatine in blood serum as metabolic poisons causes disorder in kidney. Also, tendons and joints are affected by these poisons. Appropriate diet and exercise can prevent production of these poisons resulted from heavy exercise.

Keywords: aerobic exercise, urea, uric acid, creatine, blood, soccer national players

Procedia PDF Downloads 516
1207 Preparation and Chemical Characterization of Eco-Friendly Activated Carbon Produced from Apricot Stones

Authors: Sabolč Pap, Srđana Kolaković, Jelena Radonić, Ivana Mihajlović, Dragan Adamović, Mirjana Vojinović Miloradov, Maja Turk Sekulić

Abstract:

Activated carbon is one of the most used and tested adsorbents in the removal of industrial organic compounds, heavy metals, pharmaceuticals and dyes. Different types of lignocellulosic materials were used as potential precursors in the production of low cost activated carbon. There are, two different processes for the preparation and production of activated carbon: physical and chemical. Chemical activation includes impregnating the lignocellulosic raw materials with chemical agents (H3PO4, HNO3, H2SO4 and NaOH). After impregnation, the materials are carbonized and washed to eliminate the residues. The chemical activation, which was used in this study, has two important advantages when compared to the physical activation. The first advantage is the lower temperature at which the process is conducted, and the second is that the yield (mass efficiency of activation) of the chemical activation tends to be greater. Preparation of activated carbon included the following steps: apricot stones were crushed in a mill and washed with distilled water. Later, the fruit stones were impregnated with a solution of 50% H3PO4. After impregnation, the solution was filtered to remove the residual acid. Subsequently impregnated samples were air dried at room temperature. The samples were placed in a furnace and heated (10 °C/min) to the final carbonization temperature of 500 °C for 2 h without the use of nitrogen. After cooling, the adsorbent was washed with distilled water to achieve acid free conditions and its pH was monitored until the filtrate pH value exceeded 4. Chemical characterizations of the prepared activated carbon were analyzed by FTIR spectroscopy. FTIR spectra were recorded with a (Thermo Nicolet Nexus 670 FTIR) spectrometer, from 400 to 4000 cm-1 wavenumbers, identifying the functional groups on the surface of the activated carbon. The FTIR spectra of adsorbent showed a broad band at 3405.91 cm-1 due to O–H stretching vibration and a peak at 489.00 cm-1 due to O–H bending vibration. Peaks between the range of 3700 and 3200 cm−1 represent the overlapping peaks of stretching vibrations of O–H and N–H groups. The distinct absorption peaks at 2919.86 cm−1 and 2848.24 cm−1 could be assigned to -CH stretching vibrations of –CH2 and –CH3 functional groups. The adsorption peak at 1566.38 cm−1 could be characterized by primary and secondary amide bands. The sharp bond within 1164.76 – 987.86 cm−1 is attributed to the C–O groups, which confirms the lignin structure of the activated carbon. The present study has shown that the activated carbons prepared from apricot stone have a functional group on their surface, which can positively affect the adsorption characteristics with this material.

Keywords: activated carbon, FTIR, H3PO4, lignocellulosic raw materials

Procedia PDF Downloads 233
1206 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann

Abstract:

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact

Procedia PDF Downloads 259
1205 Synthesis and Characterization of Iron and Aluminum-Containing AFm Phases

Authors: Aurore Lechevallier, Mohend Chaouche, Jerome Soudier, Guillaume Renaudin

Abstract:

The cement industry accounts for 8% of the global CO₂ emissions, and approximately 60% of these emissions are associated with the Portland cement clinker production from the decarbonization of limestone (CaCO3). Their impact on the greenhouse effect results in growing social awareness. Therefore, CO2 footprint becomes a product selection choice, and substituting Portland cement with a lower CO2-footprint alternative binder is sought. In this context, new hydraulic binders have been studied as a potential Ordinary Portland Cement substitute. Many of them are composed of iron oxides and aluminum oxides, present in the Ca₄Al₂-xFe₂+ₓO₁₀-like phase and forming Ca-LDH (i.e. AFM) as a hydration product. It has become essential to study the possible existence of Fe/Al AFM solid solutions to characterize the hydration process properly. Ca₂Al₂-xFex(OH)₆.X.nH₂O layered AFM samples intercalated with either nitrate or chloride X anions were synthesized based on the co-precipitation method under a nitrogen atmosphere to avoid the carbonation effect.AFM samples intercalated with carbonate anions were synthesized based on the anionic exchange process, using AFM-NO₃ as the source material. These three AFM samples were synthesized with varying Fe/Al molar ratios. The experimental conditions were optimized to make possible the formation of Al-AFM and Fe-AFM using the same parameters (namely pH value and salt concentration). Rietveld refinements were performed to demonstrate the existence of a solid solution between the two trivalent metallic end members. Spectroscopic analyses were used to confirm the intercalation of the targeted anion; secondary electron images were taken to analyze the AFM samples’ morphology, and energy dispersive X-ray spectroscopy (EDX) was carried out to determine the elemental composition of the AFM samples. Results of this study make it possible to quantify the Al/Fe ratio of the AFM phases precipitated in our hydraulic binder, thanks to the determined Vegard's law characteristic to the corresponding solid solutions

Keywords: AFm phase, iron-rich binder, low-carbon cement, solid solution

Procedia PDF Downloads 112
1204 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil

Authors: Juliana A. Galhardi, Daniel M. Bonotto

Abstract:

Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.

Keywords: radon, radium, acid mine drainage, coal

Procedia PDF Downloads 412
1203 Ultrasound Assisted Alkaline Potassium Permanganate Pre-Treatment of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Lignocellulose is the largest reservoir of inexpensive, renewable source of carbon. It is composed of lignin, cellulose and hemicellulose. Cellulose and hemicellulose is composed of reducing sugars glucose, xylose and several other monosaccharides which can be metabolised by microorganisms to produce several value added products such as biofuels, enzymes, aminoacids etc. Enzymatic treatment of lignocellulose leads to the release of monosaccharides such as glucose and xylose. However, factors such as the presence of lignin, crystalline cellulose, acetyl groups, pectin etc. contributes to recalcitrance restricting the effective enzymatic hydrolysis of cellulose and hemicellulose. In order to overcome these problems, pre-treatment of lignocellulose is generally carried out which essentially facilitate better degradation of lignocellulose. A range of pre-treatment strategy is commonly employed based on its mode of action viz. physical, chemical, biological and physico-chemical. However, existing pretreatment strategies result in lower sugar yield and formation of inhibitory compounds. In order to overcome these problems, we proposes a novel pre-treatment, which utilises the superior oxidising capacity of alkaline potassium permanganate assisted by ultra-sonication to break the covalent bonds in spent coffee waste to remove recalcitrant compounds such as lignin. The pre-treatment was conducted for 30 minutes using 2% (w/v) potassium permanganate at room temperature with solid to liquid ratio of 1:10. The pre-treated spent coffee waste (SCW) was subjected to enzymatic hydrolysis using enzymes cellulase and hemicellulase. Shake flask experiments were conducted with a working volume of 50mL buffer containing 1% substrate. The results showed that the novel pre-treatment strategy yielded 7 g/L of reducing sugar as compared to 3.71 g/L obtained from biomass that had undergone dilute acid hydrolysis after 24 hours. From the results obtained it is fairly certain that ultrasonication assists the oxidation of recalcitrant components in lignocellulose by potassium permanganate. Enzyme hydrolysis studies suggest that ultrasound assisted alkaline potassium permanganate pre-treatment is far superior over treatment by dilute acid. Furthermore, SEM, XRD and FTIR were carried out to analyse the effect of the new pre-treatment strategy on structure and crystallinity of pre-treated spent coffee wastes. This novel one-step pre-treatment strategy was implemented under mild conditions and exhibited high efficiency in the enzymatic hydrolysis of spent coffee waste. Further study and scale up is in progress in order to realise future industrial applications.

Keywords: spent coffee waste, alkaline potassium permanganate, ultra-sonication, physical characterisation

Procedia PDF Downloads 328