Search results for: employee productivity and work well-being
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15575

Search results for: employee productivity and work well-being

3935 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm

Authors: Muhammad Umar Kiani, Muhammad Shahbaz

Abstract:

Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.

Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process

Procedia PDF Downloads 405
3934 Thermal Performance of an Air-Water Heat Exchanger (AWHE) Operating in Groundwater and Hot-Humid Climate

Authors: César Ramírez-Dolores, Jorge Wong-Loya, Jorge Andaverde, Caleb Becerra

Abstract:

Low-depth geothermal energy can take advantage of the use of the subsoil as an air conditioning technique, being used as a passive system or coupled to an active cooling and/or heating system. This source of air conditioning is possible because at a depth less than 10 meters, the subsoil temperature is practically homogeneous and tends to be constant regardless of the climatic conditions on the surface. The effect of temperature fluctuations on the soil surface decreases as depth increases due to the thermal inertia of the soil, causing temperature stability; this effect presents several advantages in the context of sustainable energy use. In the present work, the thermal behavior of a horizontal Air-Water Heat Exchanger (AWHE) is evaluated, and the thermal effectiveness and temperature of the air at the outlet of the prototype immersed in groundwater is experimentally determined. The thermohydraulic aspects of the heat exchanger were evaluated using the Number of Transfer Units-Efficiency (NTU-ε) method under conditions of groundwater flow in a coastal region of sandy soil (southeastern Mexico) and air flow induced by a blower, the system was constructed of polyvinyl chloride (PVC) and sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger operates in groundwater, it shows high thermal gains allowing better heat transfer, therefore, it significantly reduces the air temperature at the outlet of the system, which increases the thermal effectiveness of the system in values > 80%, this passive technique is relevant for building cooling applications and could represent a significant development in terms of thermal comfort for hot locations in emerging economy countries.

Keywords: convection, earth, geothermal energy, thermal comfort

Procedia PDF Downloads 73
3933 Temperature and Substrate Orientation Effects on the Thermal Stability of Graphene Sheet Attached on the Si Surface

Authors: Wen-Jay Lee, Kuo-Ning Chiang

Abstract:

The graphene binding with silicon substrate has apparently Schottky barriers property, which can be used in the application of solar cell and light source. Because graphene has only one atom layer, the atomistic structure of graphene binding with the silicon surface plays an important role to affect the properties of graphene. In this work, temperature effect on the morphology of graphene sheet attached on different crystal planes of silicon substrates are investigated by Molecular dynamics (MD) (LAMMPS, developed by Sandia National Laboratories). The results show that the covered graphene sheet would cause the structural deformation of the surface Si atoms of stubtrate. To achieve a stable state in the binding process, the surface Si atoms would adjust their position and fit the honeycomb structure of graphene after the graphene attaches to the Si surface. The height contour of graphene on different plane of silicon surfaces presents different pattern, leading the local residual stress at the interface. Due to the high density of dangling bond on the Si (111)7x7 surface, the surface of Si(111)7x7 is not matching with the graphene so well in contrast with Si(100)2x1and Si(111)2x1. Si(111)7x7 is found that only partial silicon adatoms are rearranged on surface after the attachment when the temperature is lower than 200K, As the temperature gradually increases, the deformation of surface structure becomes significant, as well as the residue stress. With increasing temperature till the 815K, the graphene sheet begins to destroy and mixes with the silicon atoms. For the Si(100)2x1 and Si(111)2x1, the silicon surface structure keep its structural arrangement with a higher temperature. With increasing temperature, the residual stress gradually decrease till a critical temperatures. When the temperature is higher than the critical temperature, the residual stress gradually increases and the structural deformation is found on the surface of the Si substrates.

Keywords: molecular dynamics, graphene, silicon, Schottky barriers, interface

Procedia PDF Downloads 320
3932 A Critical Discourse Analysis of the Construction of Artists' Reputation by Online Art Magazines

Authors: Thomas Soro, Tim Stott, Brendan O'Rourke

Abstract:

The construction of artistic reputation has been examined within sociology, philosophy, and economics but, baring a few noteworthy exceptions its discursive aspect has been largely ignored. This is particularly surprising given that contemporary artworks primarily rely on discourse to construct their ontological status. This paper contributes a discourse analytical perspective to the broad body of literature on artistic reputation by providing an understanding of how it is discursively constructed within the institutional context of online contemporary art magazines. This paper uses corpora compiled from the websites of e-flux and ARTnews, two leading online contemporary art magazines, to examine how these organisations discursively construct the reputation of artists. By constructing word-sketches of the term 'Artist', the paper identified the most significant modifiers attributed to artists and the most significant verbs which have 'artist' as an object or subject. The most significant results were analysed through concordances and demonstrated a somewhat surprising lack of evaluative representation. To examine this feature more closely, the paper then analysed three announcement texts from e-flux’s site and three review texts from ARTnews' site, comparing the use of modifiers and verbs in the representation of artists, artworks, and institutions. The results of this analysis support the corpus findings, suggesting that artists are rarely represented in evaluative terms. Based on the relatively high frequency of evaluation in the representation of artworks and institutions, these results suggest that there may be discursive norms at work in the field of online contemporary art magazines which regulate the use of verbs and modifiers in the evaluation of artists.

Keywords: contemporary art, corpus linguistics, critical discourse analysis, symbolic capital

Procedia PDF Downloads 165
3931 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 90
3930 Non-Destructive Technique for Detection of Voids in the IC Package Using Terahertz-Time Domain Spectrometer

Authors: Sung-Hyeon Park, Jin-Wook Jang, Hak-Sung Kim

Abstract:

In recent years, Terahertz (THz) time-domain spectroscopy (TDS) imaging method has been received considerable interest as a promising non-destructive technique for detection of internal defects. In comparison to other non-destructive techniques such as x-ray inspection method, scanning acoustic tomograph (SAT) and microwave inspection method, THz-TDS imaging method has many advantages: First, it can measure the exact thickness and location of defects. Second, it doesn’t require the liquid couplant while it is very crucial to deliver that power of ultrasonic wave in SAT method. Third, it didn’t damage to materials and be harmful to human bodies while x-ray inspection method does. Finally, it exhibits better spatial resolution than microwave inspection method. However, this technology couldn’t be applied to IC package because THz radiation can penetrate through a wide variety of materials including polymers and ceramics except of metals. Therefore, it is difficult to detect the defects in IC package which are composed of not only epoxy and semiconductor materials but also various metals such as copper, aluminum and gold. In this work, we proposed a special method for detecting the void in the IC package using THz-TDS imaging system. The IC package specimens for this study are prepared by Packaging Engineering Team in Samsung Electronics. Our THz-TDS imaging system has a special reflection mode called pitch-catch mode which can change the incidence angle in the reflection mode from 10 o to 70 o while the others have transmission and the normal reflection mode or the reflection mode fixed at certain angle. Therefore, to find the voids in the IC package, we investigated the appropriate angle as changing the incidence angle of THz wave emitter and detector. As the results, the voids in the IC packages were successfully detected using our THz-TDS imaging system.

Keywords: terahertz, non-destructive technique, void, IC package

Procedia PDF Downloads 473
3929 The Soft and Hard Palate Cleft’s Impact on the Auditory Tube Function

Authors: Fedor Semenov

Abstract:

One of the most widespread facial bones’ malformations – the congenital palatoschisis – significant impact on drainage and ventilation of the middle ear through the incorrect work of soft palate muscles, which results in recurrent middle ear inflammation and subsequently leads to the hearing dysfunction. The purpose of this research is to evaluate the auditory tube function and hearing condition before the operative treatment (uranoplasty) and after 3 and 12 months. 42 patients aged from 6 months to 17 years who had soft and hard palate cleft and B and C type tympanogram were included in that study. The examination includes otoscopy, pure tone audiometry (for patients older than 8 years – 11 patients), tympanometry. According to the otoscopy results all the patients were divided into two groups: those who had a retracted eardrum and those who had a normal one. The results of pure tone audiometry showed that there were six patients with an air-bone gap of more than 10 dB and the five with normal audiograms. According to the results of this research, uranoplasty demonstrated strongly positive effects on the auditory tube function: normalization of eardrum view upon otoscopy was observed in 64% of children with a retracted eardrum three month after surgery and 85 % twelve months. The quantity of patients with A-type of tympanogram improved in 25 children out of 41 in 3 month and in 35 out of 41 in twelve months after operation. While before the operative treatment, six patients older than 8 years had had an air-bone gap of more than 10 dB; only two of them still had it in 12 months, and the others’ audiograms were normal. To sum it up, the uranoplasty showed a significant contribution in the restoration of auditory tube functioning. Some patients had signs of auditory dysfunction even after the operative treatment. That group of children needs further treatment by an otorhinolaryngologist.

Keywords: auditory tube dysfunction, palatoschisis, uranoplasy, otitis

Procedia PDF Downloads 6
3928 Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines

Authors: Stephen Daniel Iduh, Evans Chidi Egwin, Oluwatosin Kudirat Shittu

Abstract:

The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy.

Keywords: biosynthesis, gold nanoparticles, characterization, calotropis procera, cytotoxicity

Procedia PDF Downloads 490
3927 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
3926 Synthesis and Physiochemical Properties of 3-Propanenitrile Imidazolium - Based Dual Functionalized Ionic Liquids Incorporating Dioctyl Sulfosuccinate Anion

Authors: Abobakr Khidir Ziyada, Cecilia Devi Wilfred

Abstract:

In the present work, a new series of 3-propanenitrile imidazolium-based Room Temperature Ionic Liquids (RTILs), incorporating dioctyl sulfosuccinate (DOSS) were prepared by reacting imidazole with acrylonitrile and then reacting the product with allyl chloride, 2-chloroethanol, and benzyl chloride. After the reaction had been completed, metathesis reaction was carried out using sodium dioctyl sulfosuccinate. The densities and viscosities of the present RTILs were measured at atmospheric pressure at T=293.15 to 353.15 K, the refractive index was measured at T=293.15 to 333.15 K, whereas, the start and decomposition temperatures were determined at heating rate 10°C. min^-1. The thermal expansion coefficient, densities at a range of temperatures and pressures, molecular volume, molar refraction, standard entropy and the lattice energy of these RTILs were also estimated. The present RTILs showed higher densities, similar refractive indices, and higher viscosities compared to the other 1-alkyl-3-propanenitrile imidazolium-based RTILs. The densities of the present synthesized RTILs are lower compared to the other nitrile-functionalized ILs. These present RTILs showed a weak temperature dependence on the thermal expansion coefficients, αp=5.0 × 10^−4 to 7.50 × 10−4 K^-1. Empirical correlations were proposed to represent the present data on the physical properties. The lattice energy for the present RTILs was similar to other nitrile–based imidazolium RTILs. The present RTILs showed very high molar refraction when compared similar RTILs incorporating other anions.

Keywords: dioctyl sulfosuccinate, nitrile ILs, 3-propanenitrile, anion, room temperature ionic liquids, RTIL

Procedia PDF Downloads 337
3925 Analysis of Intra-Varietal Diversity for Some Lebanese Grapevine Cultivars

Authors: Stephanie Khater, Ali Chehade, Lamis Chalak

Abstract:

The progressive replacement of the Lebanese autochthonous grapevine cultivars during the last decade by the imported foreign varieties almost resulted in the genetic erosion of the local germplasm and the confusion with cultivars' names. Hence there is a need to characterize these local cultivars and to assess the possible existing variability at the cultivar level. This work was conducted in an attempt to evaluate the intra-varietal diversity within Lebanese traditional cultivars 'Aswad', 'Maghdoushe', 'Maryame', 'Merweh', 'Meksese' and 'Obeide'. A total of 50 accessions distributed over five main geographical areas in Lebanon were collected and submitted to both ampelographic description and ISSR DNA analysis. A set of 35 ampelographic descriptors previously established by the International Office of Vine and Wine and related to leaf, bunch, berry, and phenological stages, were examined. Variability was observed between accessions within cultivars for blade shape, density of prostrate and erect hairs, teeth shape, berry shape, size and color, cluster shape and size, and flesh juiciness. At the molecular level, nine ISSR (inter-simple sequence repeat) primers, previously developed for grapevine, were used in this study. These primers generated a total of 35 bands, of which 30 (85.7%) were polymorphic. Totally, 29 genetic profiles were differentiated, of which 9 revealed within 'Obeide', 6 for 'Maghdoushe', 5 for 'Merweh', 4 within 'Maryame', 3 for 'Aswad' and 2 within 'Meksese'. Findings of this study indicate the existence of several genotypes that form the basis of the main indigenous cultivars grown in Lebanon and which should be further considered in the establishment of new vineyards and selection programs.

Keywords: ampelography, autochthonous cultivars, ISSR markers, Lebanon, Vitis vinifera L.

Procedia PDF Downloads 141
3924 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii

Authors: Dake Xiong, Ben Hankamer, Ian Ross

Abstract:

The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.

Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase

Procedia PDF Downloads 262
3923 Body Farming in India and Asia

Authors: Yogesh Kumar, Adarsh Kumar

Abstract:

A body farm is a research facility where research is done on forensic investigation and medico-legal disciplines like forensic entomology, forensic pathology, forensic anthropology, forensic archaeology, and related areas of forensic veterinary. All the research is done to collect data on the rate of decomposition (animal and human) and forensically important insects to assist in crime detection. The data collected is used by forensic pathologists, forensic experts, and other experts for the investigation of crime cases and further research. The research work includes different conditions of a dead body like fresh, bloating, decay, dry, and skeleton, and data on local insects which depends on the climatic conditions of the local areas of that country. Therefore, it is the need of time to collect appropriate data in managed conditions with a proper set-up in every country. Hence, it is the duty of the scientific community of every country to establish/propose such facilities for justice and social management. The body farms are also used for training of police, military, investigative dogs, and other agencies. At present, only four countries viz. U.S., Australia, Canada, and Netherlands have body farms and related facilities in organised manner. There is no body farm in Asia also. In India, we have been trying to establish a body farm in A&N Islands that is near Singapore, Malaysia, and some other Asian countries. In view of the above, it becomes imperative to discuss the matter with Asian countries to collect the data on decomposition in a proper manner by establishing a body farm. We can also share the data, knowledge, and expertise to collaborate with one another to make such facilities better and have good scientific relations to promote science and explore ways of investigation at the world level.

Keywords: body farm, rate of decomposition, forensically important flies, time since death

Procedia PDF Downloads 87
3922 Computational Fluid Dynamics Simulation on Heat Transfer of Hot Air Bubble Injection into Water Column

Authors: Jae-Yeong Choi, Gyu-Mok Jeon, Jong-Chun Park, Yong-Jin Cho, Seok-Tae Yoon

Abstract:

When air flow is injected into water, bubbles are formed in various types inside the water pool along with the air flow rate. The bubbles are floated in equilibrium with forces such as buoyancy, surface tension and shear force. Single bubble generated at low flow rate maintains shape, but bubbles with high flow rate break up to make mixing and turbulence. In addition to this phenomenon, as the hot air bubbles are injected into the water, heat affects the interface of phases. Therefore, the main scope of the present work reveals how to proceed heat transfer between water and hot air bubbles injected into water. In the present study, a series of CFD simulation for the heat transfer of hot bubbles injected through a nozzle near the bottom in a cylindrical water column are performed using a commercial CFD software, STAR-CCM+. The governing equations for incompressible and viscous flow are the continuous and the RaNS (Reynolds- averaged Navier-Stokes) equations and discretized by the FVM (Finite Volume Method) manner. For solving multi-phase flow, the Eulerian multiphase model is employed and the interface is defined by VOF (Volume-of-Fluid) technique. As a turbulence model, the SST k-w model considering the buoyancy effects is introduced. For spatial differencing the 3th-order MUSCL scheme is adopted and the 2nd-order implicit scheme for time integration. As the results, the dynamic behavior of the rising hot bubbles with the flow rate injected and regarding heat transfer mechanism are discussed based on the simulation results.

Keywords: heat transfer, hot bubble injection, eulerian multiphase model, flow rate, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 153
3921 Computer Simulation of Hydrogen Superfluidity through Binary Mixing

Authors: Sea Hoon Lim

Abstract:

A superfluid is a fluid of bosons that flows without resistance. In order to be a superfluid, a substance’s particles must behave like bosons, yet remain mobile enough to be considered a superfluid. Bosons are low-temperature particles that can be in all energy states at the same time. If bosons were to be cooled down, then the particles will all try to be on the lowest energy state, which is called the Bose Einstein condensation. The temperature when bosons start to matter is when the temperature has reached its critical temperature. For example, when Helium reaches its critical temperature of 2.17K, the liquid density drops and becomes a superfluid with zero viscosity. However, most materials will solidify -and thus not remain fluids- at temperatures well above the temperature at which they would otherwise become a superfluid. Only a few substances currently known to man are capable of at once remaining a fluid and manifesting boson statistics. The most well-known of these is helium and its isotopes. Because hydrogen is lighter than helium, and thus expected to manifest Bose statistics at higher temperatures than helium, one might expect hydrogen to also be a superfluid. As of today, however, no one has yet been able to produce a bulk, hydrogen superfluid. The reason why hydrogen did not form a superfluid in the past is its intermolecular interactions. As a result, hydrogen molecules are much more likely to crystallize than their helium counterparts. The key to creating a hydrogen superfluid is therefore finding a way to reduce the effect of the interactions among hydrogen molecules, postponing the solidification to lower temperature. In this work, we attempt via computer simulation to produce bulk superfluid hydrogen through binary mixing. Binary mixture is a technique of mixing two pure substances in order to avoid crystallization and enhance super fluidity. Our mixture here is KALJ H2. We then sample the partition function using this Path Integral Monte Carlo (PIMC), which is well-suited for the equilibrium properties of low-temperature bosons and captures not only the statistics but also the dynamics of Hydrogen. Via this sampling, we will then produce a time evolution of the substance and see if it exhibits superfluid properties.

Keywords: superfluidity, hydrogen, binary mixture, physics

Procedia PDF Downloads 316
3920 Significance of Occupational Safety for Healthcare Professionals

Authors: Nilgün Katrancı, Pınar Göv

Abstract:

The privatization of public services has intensified and extended the delivery of healthcare services at hospitals, which leads to an increase in health and safety risks for healthcare professionals. More efficient and effective delivery of healthcare services can be realized through the provision of occupational safety of healthcare professionals. However, healthcare professionals are exposed to more dangers, accidents, and diseases because of such reasons as present working conditions, hospital infections, lack of ergonomic design, medication, wastes, excessive work load, negligent attitudes of workers, violence, psychological risks, etc. Unsafe working conditions cause fear, injury and wearing impacts in healthcare professionals in many countries. Thus, it is emphasized that the protection of the health of healthcare professionals is important to have educated, healthy workers and adequate workforce. Occupational health and safety measures applied in health facilities are aimed at protecting workers and providing the safety of services and facilities. All activities to be undertaken at hospitals with regard to occupational safety in accordance with these goals will help to reduce costs and provide continuous services. At the same time, a safe working environment will increase worker satisfaction and motivation, sense of institutional belonging and indirectly patient safety and satisfaction. In addition, the control and correction of occupational safety activities are also as important as the implementation. Occupational health and safety practices in the facilities will also lead to positive developments for national economy and society. This study emphasizes that approaching occupational safety practices for healthcare professionals in a sensitive manner is important for enabling healthcare professionals to do more productive works in terms of physical, social and psychological aspects, maintaining the continuity of healthcare services and social and economic contributions.

Keywords: health facilities, healthcare professional, occupational health, occupational safety

Procedia PDF Downloads 385
3919 Making Permanent Supportive Housing Work for Vulnerable Populations

Authors: Olayinka Ariba, Abe Oudshoorn, Steve Rolfe, Carrie Anne Marshall, Deanna Befus, Jason Gilliland, Miranda Crockett, Susana Caxaj, Sarah McLean, Amy Van Berkum, Natasha Thuemler

Abstract:

Background: Secure housing is a platform for health and well-being. Those who struggle with housing stability have complex life and health histories and often require some support services such as the provision of permanent supportive housing. Poor access to supportive resources creates an exacerbation of chronic homelessness, particularly affecting individuals who need immediate access to mental health and addiction supports. This paper presents the first phase of a three-part study examining how on-site support impacts housing stability for recently-re-housed persons. Method: This study utilized a community-based participatory research methodology. Twenty in-depth interviews were conducted with permanent supportive housing residents from a single-site dwelling. Interpretative description analysis was used to draw common themes and understand the experiences and challenges of housing support. Results: Three interconnected themes were identified: 1) Available and timely supports; 2) Affordability; and 3) Community, but with independence as desired. These interconnected components are helping residents transition from homelessness or long-term mental health inpatient care to live in the community. Despite some participant concerns about resident conflicts, staff availability, and affordability, this has been a welcome and successful move for most. Conclusion: Supportive housing is essential for successful tenancies as a platform for health and well-being among Canada’s most vulnerable and, from the perspective of persons recently re-housed, permanent supportive housing is a worthwhile investment.

Keywords: homelessness, supportive housing, rehoused, housing stability

Procedia PDF Downloads 106
3918 Study of Parking Demand for Offices – Case Study: Kolkata

Authors: Sanghamitra Roy

Abstract:

In recent times, India has experienced the phenomenal rise in the number of registered vehicles and vehicular trips, particularly intra-city trips in most of its urban areas. The increase in vehicle ownership and use have increased parking demand immensely and accommodating the same is now a matter of big concern. Most cities do not have adequate off-street parking facilities thus forcing people to park on the streets. This has resulted in decreased carrying capacity, decreased traffic speed, increased congestion, and increased environmental problems. While integrated multi-modal transportation system is the answer to such problems, parking issues will continue to exist. In Kolkata, only 6.4% land is devoted for roads. The consequences of this huge crunch in road spaces coupled with increased parking demand are severe particularly in the CBD and major commercial areas, making the role of off-street parking facilities in Kolkata even more critical. To meaningfully address parking issues, it is important to identify the factors that influence parking demand so that it can be assessed and comprehensive parking policies and plans for the city can be formulated. This paper aims at identifying the factors that contribute towards parking demand for offices in Kolkata and their degree of correlation with parking demand. The study is limited to home-to-work trips located within Kolkata Municipal Corporation (KMC) where parking related issues are most pronounced. The data for the study is collected through personal interviews, questionnaires and direct observations from offices across the wards of KMC. SPSS is used for classification of the data and analyses of the same. The findings of this study will help in re-assessment of the parking requirements specified in The Kolkata Municipal Corporation Building Rules as a step towards alleviating parking related issues in the city.

Keywords: building rules, office spaces, parking demand, urbanization

Procedia PDF Downloads 317
3917 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System

Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan

Abstract:

Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.

Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle

Procedia PDF Downloads 294
3916 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 148
3915 Adsorption of Dyes and Iodine: Reaching Outstanding Kinetics with CuII-Based Metal–Organic Nanoballs

Authors: Eder Amayuelas, Begoña Bazán, M. Karmele Urtiaga, Gotzone Barandika, María I. Arriortua

Abstract:

Metal Organic Frameworks (MOFs) have attracted great interest in recent years, taking a lead role in the field of catalysis, drug delivery, sensors and absorption. In the past decade, promising results have been reported specifically in the field of adsorption, based on the topology and chemical features of this type of porous material. Thus, its application in industry and environment for the adsorption of pollutants is presented as a response to an increasingly important need. In this area, organic dyes are nowadays widely used in many industries including medicine, textile, leather, printing and plastics. The consequence of this fact is that dyes are present as emerging pollutants in soils and water where they remain for long periods of time due to their high stability, with a potential risk of toxicity in wildlife and in humans. On the other hand, the presence of iodine in soils, water and gas as a nuclear activity pollutant product or its extended use as a germicide is still a problem in many countries, which indicates the imperative need for its removal. In this context, this work presents the characterization as an adsorbent of the activated compound αMOP@Ei2-1 obtained from the already reported [Cu₂₄(m-BDC)₂₄(DMF)₂₀(H₂O)₄]•24DMF•40H₂O (MOP@Ei2-1), where m-BDC is the 1,3-benzenedicarboxylic ligand and DMF is N,N′-dimethylformamide. The structure of MOP@Ei2-1 consists of Cu24 clusters arranged in such a way that 12 paddle-wheels are connected through m-BDC ligands. The clusters exhibit an internal cavity where crystallization molecules of DMF and water are located. Adsorption of dyes and iodine as pollutant examples has been carried out, focusing attention on the kinetics of the rapid process.

Keywords: adsorption, organic dyes, iodine, metal organic frameworks

Procedia PDF Downloads 276
3914 Structural Evolution of Electrodeposited Ni Coating on Ti-6Al-4V Alloy during Heat Treatment

Authors: M. Abdoos, A. Amadeh, M. Adabi

Abstract:

In recent decades, the use of titanium and its alloys due to their high mechanical properties, light weight and their corrosion resistance has increased in military and industry applications. However, the poor surface properties can limit their widely usage. Many researches were carried out to improve their surface properties. The most effective technique is based on solid-state diffusion of elements that can form intermetallic compounds with the substrate. In the present work, inter-diffusion of nickel and titanium and formation of Ni-Ti intermetallic compounds in nickel-coated Ti-6Al-4V alloy have been studied. Initially, nickel was electrodeposited on the alloy using Watts bath at a current density of 20 mA/cm2 for 1 hour. The coated specimens were then heat treated in a tubular furnace under argon atmosphere at different temperatures near Ti β-transus to maximize the diffusion rate for various durations in order to improve the surface properties of the Ti-6Al-4V alloy. The effect of temperature and time on the thickness of diffusion layer and characteristics of intermetallic phases was studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and microhardness test. The results showed that a multilayer structure was formed after heat treatment: an outer layer of remaining nickel, an area of intermetallic layers with different compositions and solid solution of Ni-Ti. Three intermetallic layers was detected by EDS analysis, namely an outer layer with about 75 at.% Ni (Ni3Ti), an intermediate layer with 50 at.% Ni (NiTi) and finally an inner layer with 36 at.% Ni (NiTi2). It was also observed that the increase in time or temperature led to the formation of thicker intermetallic layers. Meanwhile, the microhardness of heat treated samples increased with formation of Ni-Ti intermetallics; however, its value depended on heat treatment parameters.

Keywords: heat treatment, microhardness, Ni coating, Ti-6Al-4V

Procedia PDF Downloads 434
3913 Clay Hydrogel Nanocomposite for Controlled Small Molecule Release

Authors: Xiaolin Li, Terence Turney, John Forsythe, Bryce Feltis, Paul Wright, Vinh Truong, Will Gates

Abstract:

Clay-hydrogel nanocomposites have attracted great attention recently, mainly because of their enhanced mechanical properties and ease of fabrication. Moreover, the unique platelet structure of clay nanoparticles enables the incorporation of bioactive molecules, such as proteins or drugs, through ion exchange, adsorption or intercalation. This study seeks to improve the mechanical and rheological properties of a novel hydrogel system, copolymerized from a tetrapodal polyethylene glycol (PEG) thiol and a linear, triblock PEG-PPG-PEG (PPG: polypropylene glycol) α,ω-bispropynoate polymer, with the simultaneous incorporation of various amounts of Na-saturated, montmorillonite clay (MMT) platelets (av. lateral dimension = 200 nm), to form a bioactive three-dimensional network. Although the parent hydrogel has controlled swelling ability and its PEG groups have good affinity for the clay platelets, it suffers from poor mechanical stability and is currently unsuitable for potential applications. Nanocomposite hydrogels containing 4wt% MMT showed a twelve-fold enhancement in compressive strength, reaching 0.75MPa, and also a three-fold acceleration in gelation time, when compared with the parent hydrogel. Interestingly, clay nanoplatelet incorporation into the hydrogel slowed down the rate of its dehydration in air. Preliminary results showed that protein binding by the MMT varied with the nature of the protein, as horseradish peroxidase (HRP) was more strongly bound than bovine serum albumin. The HRP was no longer active when bound, presumably as a result of extensive structural refolding. Further work is being undertaken to assess protein binding behaviour within the nanocomposite hydrogel for potential diabetic wound healing applications.

Keywords: hydrogel, nanocomposite, small molecule, wound healing

Procedia PDF Downloads 269
3912 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface

Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi

Abstract:

By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. 

Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test

Procedia PDF Downloads 260
3911 Psychoanalytic Understanding of the Autistic Self

Authors: Aastha Chaudhry

Abstract:

This continuous structuring of the ego through the developmental ages, starting with the body, has been understood through various perspectives from the object-relations world. Klein, Ogden, Winnicott to name a few, have been masters at helping mark a trajectory for the self to come to fruition. However, what constitutes those states, those relational structures, the dynamics of transference and the concept of inner objects has been more or less left unexplored in the psychoanalytic developmental theory. In this paper, through the help of a case study, Ogden’s ideas of an autistic contagious position and Kleinian theory of object relations is proposed to visualize a lens that helps to understand the relationship of the autistic self and body and allows us to take a look at object relations through countertransference. With the help of case vignettes, an understanding of experience is seen as dominated in the autistic contagious position with the help of defensive structuring that is not only self-fulfilling and sensorial oriented, but is also a pre symbolic mode of relating to the other. The aim of this clinical, experiential study is to better understand the self-body and the self-other relationships, or the absence thereof, in the autistic world and states. The goal of the study was to find such a relationship between play, body, structuring of experience and an autistic self in these individuals through that. Aim being that psychotherapy is brought to fore in the world of autism. The method was case study with one on one intervention, that was psychodynamically informed and play therapy based. Some of the findings after a year of work with these individuals were that: in the absence of a shared vocabulary, communication in two contrasting individuals happens primarily through the assistance of the body. Somatic countertransference, for instance, is how one can be with someone in a therapeutic relationship – and with autistic adolescents it is a further complicated relationship. With a mind somewhere in infanthood, and body experiencing adulthood, it becomes a challenge for the therapist to meet the client where they are. With pre-verbal states, play becomes such a potential space where two individuals could meet – a safe ground for forces to be contained. Play, then, becomes a mode of communication with such a population.

Keywords: autism, psychoanalytic, play, self

Procedia PDF Downloads 132
3910 Synthesis, Characterization and Biological Evaluation of Some Pyrazole Derivatives

Authors: Afifa Hafidh, Hedia Chaabane

Abstract:

This work mainly focused on the synthetic strategies and biological activities associated with pyrazoles. Pyrazole derivatives have been successfully synthesized by simple and facile method and studied for their antibacterial activity. These compounds were prepared from pyrazolic difunctional compounds as starting materials, by reaction with salicylic acid, paracetamol and thiosemicarbazide respectively. Structure of all the prepared compounds confirmation were proved using (FT-IR), (1H-NMR) and (13C-NMR) spectra in addition to melting points. The screening of the antimicrobial activity of the pyrazolic derivatives was examined against different microorganisms in the present study. They were screened for their antimicrobial activities against gram positive bacteria, gram negative bacteria and Candida albicans. The synthesized compounds were found to exhibit high antibacterial and antifungal efficiency against several tested bacterial strains, using agar diffusion method and filter paper disc-diffusion method. Ampicillin was used as positive control for all strains except Candida albicans for which Nystatin was used. The obtained results reveal that the antibacterial activity of some pyrazolic derivatives is comparable to that observed for the control samples (Ampicilin and Nystatin), suggesting a strong antibacterial activity. The analysis of these results shows that synthesized products react on the surfaces cell walls that are disrupted. When these products are in contact with the bacteria, they damage the membrane, leading to the perturbation of different cellular processes and then leakage of cytoplasm, resulting in the death of the cells. The results will be presented in details. The obtained products constitute effective antibacterial agents and important compounds for biological systems.

Keywords: salicylic acid, antimicrobial activities, antioxidant activity, paracetamol, pyrazole, thiosemicarbazide

Procedia PDF Downloads 173
3909 Greywater Treatment Using Activated Biochar Produced from Agricultural Waste

Authors: Pascal Mwenge, Tumisang Seodigeng

Abstract:

The increase in urbanisation in South Africa has led to an increase in water demand and a decline in freshwater supply. Despite this, poor water usage is still a major challenge in South Africa, for instance, freshwater is still used for non-drinking applications. The freshwater shortage can be alleviated by using other sources of water for non-portable purposes such as greywater treated with activated biochar produced from agricultural waste. The success of activated biochar produced from agricultural waste to treat greywater can be both economically and environmentally beneficial. Greywater treated with activated biochar produced from agricultural waste is considered a cost-effective wastewater treatment.  This work was aimed at determining the ability of activated biochar to remove Total Suspended Solids (TSS), Ammonium (NH4-N), Nitrate (NO3-N), and Chemical Oxygen Demand (COD) from greywater. The experiments were carried out in 800 ml laboratory plastic cylinders used as filter columns. 2.5 cm layer of gravel was used at the bottom and top of the column to sandwich the activated biochar material. Activated biochar (200 g and 400 g) was loaded in a column and used as a filter medium for greywater. Samples were collected after a week and sent for analysis. Four types of greywater were treated: Kitchen, floor cleaning water, shower and laundry water. The findings showed: 95% removal of TSS, 76% of NO3-N and 63% of COD on kitchen greywater and 85% removal of NH4-N on bathroom greywater, as highest removal of efficiency of the studied pollutants. The results showed that activated biochar produced from agricultural waste reduces a certain amount of pollutants from greywater. The results also indicated the ability of activated biochar to treat greywater for onsite non-potable reuse purposes.

Keywords: activated biochar produced from agriculture waste, ammonium, NH₄-N, chemical oxygen demand, COD, greywater, nitrate, NO₃-N, total suspended solids, TSS

Procedia PDF Downloads 204
3908 Relation between Electrical Properties and Application of Chitosan Nanocomposites

Authors: Evgen Prokhorov, Gabriel Luna-Barcenas

Abstract:

The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.

Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites

Procedia PDF Downloads 212
3907 The Sustainability of Human Resource Planning for Construction Projects

Authors: Adegbenga Ashiru, Adebimpe L. Ashiru

Abstract:

The construction industry is considered to work by diversifying personnel. Hence managing human resource is an issue considered to be a highly challenging task. Nonetheless, HR planning for the construction project is a very critical aspect of managing human resource within an expanding nature of construction industry, and there are rising concerns over the failure of construction planning to achieve its goals in spite of the substantial resources allocated to it and as a result of different planning strategies. To justify the above statement, this research was carried out to examine the sustainability of HR planning for construction project. Based on the researcher’s experience, a quantitative approach was adopted that provided a broader understanding of the research and was analysed using descriptive statistics and inferential statistics. The Statistical Package for the Social Sciences (SPSS) was used to obtain the descriptive and inferential statistical analysis. However, research findings showed that literature sources agreed with varying challenges of HR planning on construction projects which were justified by empirical findings. Also, the paper identified four major factors and the key consideration for Project HR Planning (Organisation’s structure with right individuals at right positions and evaluation current resources) will lead to the efficient utilisation implementation of new HR Planning technique and tools for a construction project. Essentially the main reoccurring theme identified was that management of the construction organisations needs to look into the essential factors needed to be considered at the strategic level. Furthermore, leaders leading a construction project team should consider those essential factors needed at the operational level to clarify the numerous functions of HRM in the construction organisations and avoid inconsistencies among several practices on construction projects. The Sustainability of HR planning for construction project policy was indicated and recommendations were made for further future research.

Keywords: construction industry, HRM planning in construction, SHRM in construction, HR planning in construction

Procedia PDF Downloads 352
3906 Unpacking the Summarising Event in Trauma Emergencies: The Case of Pre-briefings

Authors: Professor Jo Angouri, Polina Mesinioti, Chris Turner

Abstract:

In order for a group of ad-hoc professional to perform as a team, a shared understanding of the problem at hand and an agreed action plan are necessary components. This is particularly significant in complex, time sensitive professional settings such as in trauma emergencies. In this context, team briefings prior to the patient arrival (pre-briefings) constitute a critical event for the performance of the team; they provide the necessary space for co-constructing a shared understanding of the situation through summarising information available to the team: yet the act of summarising is widely assumed in medical practice but not systematically researched. In the vast teamwork literature, terms such as ‘shared mental model’, ‘mental space’ and ‘cognate labelling’ are used extensively, and loosely, to denote the outcome of the summarising process, but how exactly this is done interactionally remains under researched. This paper reports on the forms and functions of pre-briefings in a major trauma centre in the UK. Taking an interactional approach, we draw on 30 simulated and real-life trauma emergencies (15 from each dataset) and zoom in on the use of pre-briefings, which we consider focal points in the management of trauma emergencies. We show how ad hoc teams negotiate sharedness of future orientation through summarising, synthesising information, and establishing common understanding of the situation. We illustrate the role, characteristics, and structure of pre-briefing sequences that have been evaluated as ‘efficient’ in our data and the impact (in)effective pre-briefings have on teamwork. Our work shows that the key roles in the event own the act of summarising and we problematise the implications for leadership in trauma emergencies. We close the paper with a model for pre-briefing and provide recommendations for clinical practice, arguing that effective pre-briefing practice is teachable.

Keywords: summarising, medical emergencies, interaction analysis, shared/mental models

Procedia PDF Downloads 94