Search results for: machine resistance training
8392 Surface Engineering and Characterization of S-Phase Formed in AISI 304 By Low-Temperature Nitrocarburizing
Authors: Jeet Vijay Sah, Alphonsa Joseph, Pravin Kumari Dwivedi, Ghanshyam Jhala, Subroto Mukherjee
Abstract:
AISI 304 is known for its corrosion resistance which comes from Cr that forms passive Cr₂O₃ on the surface. But its poor hardness makes it unsuitable for applications where the steel also requires high wear resistance. This can be improved by surface hardening using nitrocarburizing processes, which form ε-Fe2-3N, γ’-Fe4N, nitrides, and carbides of Cr and Fe on the surface and subsurface. These formed phases give the surface greater hardness, but the corrosion resistance drops because of the lack of Cr2O3 passivation as a result. To overcome this problem, plasma nitrocarburizing processes are being developed where the process temperatures are kept below 723 K to avoid Cr-N precipitation. In the presented work, low-temperature pulsed-DC plasma nitrocarburizing utilizing a discharge of N₂-H₂-C₂H₂ at 500 Pa with varying N₂:H₂ ratios was conducted on AISI 304 samples at 673 K. The process durations were also varied, and the samples were characterized by microindentation using Vicker’s hardness tester, corrosion resistances were established from electrochemical impedance studies, and corrosion potentials and corrosion currents were obtained by potentiodynamic polarization testing. XRD revealed S-phase, which is a supersaturated solid solution of N and C in the γ phase. The S-phase was observed to be composed of the expanded phases of γ; γN, γC, and γ’N and ε’N phases. Significant improvement in surface hardness was achieved after every process, which is attributed to the S-phase. Corrosion resistance was also found to improve after the processes. The samples were also characterized by XPS, SEM, and GDOES.Keywords: AISI 304, surface engineering, nitrocarburizing, S-phase
Procedia PDF Downloads 1058391 Permanent Magnet Machine Can Be a Vibration Sensor for Itself
Authors: M. Barański
Abstract:
The article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article, the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results will be discussed. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application No P.405669, and it is the main thesis of author’s doctoral dissertation.Keywords: vibrations, generator, permanent magnet, traction drive, electrical vehicle
Procedia PDF Downloads 3658390 Effect of Post Treatment Temperature on Ni-20Cr Wire Arc Spray Coating to Thermal Resistance
Authors: Ken Ninez Nurpramesti Prinindya, Yuli Setiyorini
Abstract:
Crown enclosure high temperature flares damaged and reduced dimensions crown. Generally crown on EHTF could have a life time up to twenty years. Therefore, this study aims to increase the value of thermal resistance with the effect post treatment on NiCr coated arc spray method. The variation of post treatment temperature, was at 650°C, 750°C, and 850°C. Morphology on the surface and the adhesion strength was analyzed by SEM-EDX, Surface Roughness and Pull - off test. XRD testing was conducted to determine the contained in NiCr coated. Thermal stability of NiCr coated was tested by DSC-TGA. The most optimal results was owned by NiCr coating with post treated at 850°C. It has good thermal stability until 1000°C because of Cr2O3 formation in coated specimen. The higher temperature of post treatment coating was showed better result on porosity and roughness surface value.Keywords: Arc spray process, NiCr wire, post-treatment coating, high temperature-corrosion resistance
Procedia PDF Downloads 4748389 Enhancing Organizational Performance through Employee Empowerment: A Study of Koosar Insurance Company in Tehran
Authors: Masoud Jabar Zadeh Mamaghani
Abstract:
Employee empowerment is an effective technique for increasing employee productivity and utilizing their individual and group capacities toward organizational goals. Empowerment is a process that helps improve and enhance performance through the development and expansion of individuals' and teams' influence and capabilities. In other words, empowerment is a strategy for organizational development and flourishing. In this study, the relationship between training and employee empowerment was examined in addition to measuring the level of empowerment among the employees of Kowsar Tehran Insurance Agency. The research method used was a descriptive correlation, and the statistical population of the study included all official employees with a degree higher than a diploma in Kowsar Tehran Insurance Agency. Data related to training hours while serving employees were extracted from their educational certificates, and data related to employees' empowerment levels were obtained through interviews and questionnaires. The research results showed that the level of empowerment among the employees in this agency is higher than the average in all dimensions. However, no correlation was observed between their empowerment level and the training hours they completed while serving.Keywords: employee empowerment, organizational development, training, insurance industry
Procedia PDF Downloads 788388 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3888387 Antibiotic Resistance of Enterococci Isolated from Raw Cow Milk
Authors: Margita Čanigová, Jana Račková, Miroslav Kročko, Viera Ducková, Vladimíra Kňazovická
Abstract:
The aim of the study was to test the milk samples in terms of enterococci presence and their counts. Tested samples were as follows: raw cow milk, raw cow milk stored at 10°C for 16 hours and milk pasteurised at 72°C for 15 seconds. The typical colonies were isolated randomly and identified by classical biochemical test - EN-COCCUS test (Lachema, CR) and by PCR. Isolated strains were tested in terms of antibiotic resistance by well diffusion method. Examined antibiotics were: vancomycin (30 μg/disc), gentamicin (120 μg/disc), erythromycin (15 μg/disc), teicoplanine (30 μg/disc), ampicillin (10 μg/disc) and tetracycline (30 μg/disc). Average value of enterococci counts in raw milk cistern samples (n=30) was 8.25 ± 1.37 ×103 CFU/cm3. Storage tank milk samples (n=30) showed an increase (P > 0.05) and average value was 9.16 ± 1.49 × 103 CFU/cm3. Occurrence of enterococci in pasteurized milk (n=30) was sporadic and their counts were mostly below 10 CFU/cm3. Overall, 96 enterococci strains were isolated. In samples of raw cow milk and stored raw cow milk, Enterococcus faecalis was a dominant species (58.1% and 71.7%, respectively), followed by E. faecium (16.3% and 0%, respectively). Enterococcus mundtii, E. casseliflavus, E. durans and E. gallinarum were isolated, too. Resistances to ampicillin, erythromycin, gentamicin, tetracycline and vancomycin were found in 7.29%, 3.13%, 4.00%, 13.54% and 10.42% of isolated enterococci strains, respectively. Resistance to teicoplanine was not found in any isolated strain. All Vancomycin-Resistant Enterococci (VRE) belonged to E. faecalis. Obtained results confirmed that raw milk is a potential risk of enterococci resistant to antibiotics transmission into the food chain.Keywords: antibiotic resistance, enterococci, milk, biosystems engineering
Procedia PDF Downloads 3808386 Role of Religion in Educational System of Iran
Authors: Peyman Soltani, Mohammad Sadegh Amin Din
Abstract:
The relation between religion and education has been considered for a long time. Approaching education through religion and sovereignty has been a kind of idealism in past centuries` educational systems and no opposition between religion and education has been felt. The doctrine of human education and training is mentioned in the Qur’an, as the most important reason of Prophet Mohammad ` first revelation, Verse 129 of Chapter Baqara, Verse 164 of Chapter Aali-ʻimraan and verse 2 of Chapter Jumʻah have addressed this issue. During Middle age, temples and mosques were engaged in children education. Religious materials have played an important role in the content of educational courses. In this era, the main goal of education was to study the religious books and behaving in society accordingly. Also in this training period, the European countries were considerably influenced by religion. Children in these countries were trained in churches and monasteries. Training and religion are closely connected with each other. It should be noted that experience and religious knowledge is a heart and emotional issue with no-imposition, therefore, the educational space should be designed in such a way that students, themselves, shift to experiencing some religious feelings. The important factors in Islamic Educational system are as follow: - Religious-based - Strengthening national identity - Authenticity of learner role 4- Importance of teacher` authority role. These factors are explained in Conceptual and intertwined network and in practical process, training each of them, proportional to student needs and conditions, can be the beginning of a course of religious education for students, and can strengthen other elements.Keywords: education and training, Islamic educational system, the Qur'an, religious knowledge
Procedia PDF Downloads 3928385 Caregiver Training Results in Accurate Reporting of Stool Frequency
Authors: Matthew Heidman, Susan Dallabrida, Analice Costa
Abstract:
Background:Accuracy of caregiver reported outcomes is essential for infant growth and tolerability study success. Crying/fussiness, stool consistencies, and other gastrointestinal characteristics are important parameters regarding tolerability, and inter-caregiver reporting can see a significant amount of subjectivity and vary greatly within a study, compromising data. This study sought to elucidate how caregiver reported questions related to stool frequency are answered before and after a short amount of training and how training impacts caregivers’ understanding, and how they would answer the question. Methods:A digital survey was issued for 90 daysin the US (n=121) and 30 days in Mexico (n=88), targeting respondents with children ≤4 years of age. Respondents were asked a question in two formats, first without a line of training text and second with a line of training text. The question set was as follows, “If your baby had stool in his/her diaper and you changed the diaper and 10 min later there was more stool in the diaper, how many stools would you report this as?” followed by the same question beginning with “If you were given the instruction that IF there are at least 5 minutes in between stools, then it counts as two (2) stools…”.Four response items were provided for both questions, 1) 2 stools, 2) 1stool, 3) it depends on how much stool was in the first versus the second diaper, 4) There is not enough information to be able to answer the question. Response frequencies between questions were compared. Results: Responses to the question without training saw some variability in the US, with 69% selecting “2 stools”,11% selecting “1 stool”, 14% selecting “it depends on how much stool was in the first versus the second diaper”, and 7% selecting “There is not enough information to be able to answer the question” and in Mexico respondents selected 9%, 78%, 13%, and 0% respectively. However, responses to the question after training saw more consolidation in the US, with 85% of respondents selecting“2 stools,” representing an increase in those selecting the correct answer. Additionally in Mexico, with 84% of respondents selecting “1 episode” representing an increase in the those selecting the correct response. Conclusions: Caregiver reported outcomes are critical for infant growth and tolerability studies, however, they can be highly subjective and see a high variability of responses without guidance. Training is critical to standardize all caregivers’ perspective regarding how to answer questions accurately in order to provide an accurate dataset.Keywords: infant nutrition, clinical trial optimization, stool reporting, decentralized clinical trials
Procedia PDF Downloads 958384 Enhancing Emotional Intelligence through Non-Verbal Communication Training in Higher Education Exchange Programs: A Longitudinal Study
Authors: Maciej Buczowski
Abstract:
This study investigates the impact of non-verbal communication training on enhancing the emotional intelligence (EI) of participants in higher education exchange programs. Recognizing the vital role EI plays in academic and professional success, particularly in multicultural environments, this research aims to explore the interplay between non-verbal cues and EI. Utilizing a longitudinal mixed-methods approach, the study will assess EI development over time among international students and faculty members. Participants will undergo a comprehensive non-verbal communication training program, covering modules on recognizing and interpreting emotional expressions, understanding cultural variations, and using non-verbal cues to manage interpersonal dynamics. EI levels will be measured using established instruments such as the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) and the Emotional Quotient Inventory (EQ-i), supplemented by qualitative data from interviews and focus groups. A control group will be included to validate the intervention's effectiveness. Data collection at multiple time points (pre-training, mid-training, post-training, and follow-up) will enable tracking of EI changes. The study hypothesizes significant improvements in participants' EI, particularly in emotional awareness, empathy, and relationship management, leading to better academic performance and increased satisfaction with the exchange experience. This research aims to provide insights into the relationship between non-verbal communication and EI, potentially influencing the design of exchange programs to include EI development components and enhancing the effectiveness of international education initiatives.Keywords: emotional intelligence, higher education exchange program, non-verbal communication, intercultural communication, cognitive linguistics
Procedia PDF Downloads 238383 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 1058382 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 938381 Bulk Transport in Strongly Correlated Topological Insulator Samarium Hexaboride Using Hall Effect and Inverted Resistance Methods
Authors: Alexa Rakoski, Yun Suk Eo, Cagliyan Kurdak, Priscila F. S. Rosa, Zachary Fisk, Monica Ciomaga Hatnean, Geetha Balakrishnan, Boyoun Kang, Myungsuk Song, Byungki Cho
Abstract:
Samarium hexaboride (SmB6) is a strongly correlated mixed valence material and Kondo insulator. In the resistance-temperature curve, SmB6 exhibits activated behavior from 4-40 K after the Kondo gap forms. However, below 4 K, the resistivity is temperature independent or weakly temperature dependent due to the appearance of a topologically protected surface state. Current research suggests that the surface of SmB6 is conductive while the bulk is truly insulating, different from conventional 3D TIs (Topological Insulators) like Bi₂Se₃ which are plagued by bulk conduction due to impurities. To better understand why the bulk of SmB6 is so different from conventional TIs, this study employed a new method, called inverted resistance, to explore the lowest temperatures, as well as standard Hall measurements for the rest of the temperature range. In the inverted resistance method, current flows from an inner contact to an outer ring, and voltage is measured outside of this outer ring. This geometry confines the surface current and allows for measurement of the bulk resistivity even when the conductive surface dominates transport (below 4 K). The results confirm that the bulk of SmB6 is truly insulating down to 2 K. Hall measurements on a number of samples show consistent bulk behavior from 4-40 K, but widely varying behavior among samples above 40 K. This is attributed to a combination of the growth process and purity of the starting material, and the relationship between the high and low temperature behaviors is still being explored.Keywords: bulk transport, Hall effect, inverted resistance, Kondo insulator, samarium hexaboride, topological insulator
Procedia PDF Downloads 1598380 The Effect of Doing Sports Actively on the Brand Awareness and the Brand Loyalty of Young Consumer
Authors: Murat Erdoğdu, Mehmet Öçalan
Abstract:
The main aim of this study is to find out the effects of the concepts of the brand awareness and the brand loyalty of teenagers (13-18) on their criteria to buy the products that attract high interest in the groups that do sports actively and vice versa. The training shoes that are thought to have high interests of teenagers were chosen in the study (because every student uses training shoes at least in physical education lessons) and searching the criteria to choose these products is one of the aims of this study. The sample of the research consisted of 775 teenagers doing sports (218 females, 557 males) and 752 teenagers not doing sports (399 females, 353 males) from the primary and secondary schools in the center of Ankara. 1527 students in total voluntarily participated in the study. When the effects of the brand functions perceived about the sample on the brand awareness was analyzed, it was found out that all of three function types have a positive and significant effect on the brand awareness. It was found out that there was a positive and average relationship between the dependence on a brand and the brand loyalty. It was understood that there was a positive and weak relationship between the brand loyalty and the general brand awareness in training shoes among teenagers. The groups of the teenagers doing sports and of the teenagers not doing sports showed significant differences in their preferences about training shoes. The effects of the criteria to buy training shoes on the brand loyalty showed significant differences in the groups. In addition, it was determined that according to their variables of doing sports actively, the teenagers doing sports actively have significantly higher brand awareness and brand loyalty than the teenagers not doing sports.Keywords: brand awareness, brand loyalty sports marketing, teenagers, the level of doing sports
Procedia PDF Downloads 4508379 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning
Authors: Gaurav D. Sonawane, Vikas G. Sargade
Abstract:
The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity
Procedia PDF Downloads 1318378 Value Addition of Quinoa (Chenopodium Quinoa Willd.) Using an Indigenously Developed Saponin Removal Machine
Authors: M.A. Ali, M. Matloob, A. Sahar, M. Yamin, M. Imran, Y.A. Yusof
Abstract:
Quinoa (Chenopodium quinoa Willd.) is known as pseudocereal was originated in South America's Andes. Quinoa is a good source of protein, amino acids, micronutrients and bioactive components. The lack of gluten makes it suitable for celiac patients. Saponins, the leading ant-nutrient, are found in the pericarp, which adheres to the seed and transmits the bitter flavor to the quinoa grain. It is found in varying amounts in quinoa from 0.1% to 5%. This study was planned to design an indigenous machine to remove saponin from quinoa grains at the farm level to promote entrepreneurship. The machine consisted of a feeding hopper, rotating shaft, grooved stone, perforated steel cylinder, V-belts, pulleys, electric motor and mild steel angle iron and sheets. The motor transmitted power to the shaft with a belt drive. The shaft on which the grooved stone was attached rotated inside the perforated cylinder having a clearance of 2 mm and was removed saponin by an abrasion mechanism. The saponin-removed quinoa was then dipped in water to determine the presence of saponin as it produced foam in water and data were statistically analyzed. The results showed that the raw seed feeding rate of 25 g/s and milling time of 135 s completely removed saponin from seeds with minimum grain losses of 2.85% as compared to the economic analysis of the machine showed that its break-even point was achieved after one and half months with 18,000 s and a production capacity of 33 g/s.Keywords: quinoa seeds, saponin, abrasion mechanism, stone polishing, indigenous machine
Procedia PDF Downloads 718377 Microswitches with Sputtered Au, Aupd, Au-on-Aupt, and Auptcu Alloy - Electric Contacts
Authors: Nikolay Konukhov
Abstract:
This paper to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1–2Keywords: alloys, electric contacts, microelectromechanical systems (MEMS), microswitch
Procedia PDF Downloads 1708376 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 1468375 The Effectiveness of Men Who Have Sex with Men (MSM) Sensitivity Training for Nigerian Health Care Providers (HCPs)
Authors: Chiedu C. Ifekandu, Olusegun Sangowawa, Jean E. Njab
Abstract:
Background: Health care providers (HCPs) in Nigeria receive little or no training of the healthcare needs of men who have sex with men (MSM) limiting the quality and effectiveness of comprehensive HIV prevention and treatment services. Consequently, most MSM disguise themselves to access services which limit the quality of care provided partly due to challenges related to stigma and discrimination, and breach of confidentiality. Objective: To assess the knowledge of healthcare providers on effective intervention for MSM. Methods: We trained 122 HIV focal persons drawn from 60 health facilities from twelve Nigerian states. , the participants were requested to complete a pre-training questionnaire to assess their level of working experience with key populations as a baseline. Participants included male and female doctors, nurses and counselors/testers. A test was administered to measure their knowledge on MSM sexual risk practices, HIV prevention and healthcare needs and also to assess their attitudes (including homophobia) and beliefs and how it affects service uptake by key populations particularly MSM prior and immediately after the training to ascertain the impact of the training. Results: The mean age of the HCP was 38 years +/- SD Of the 122 HCPs (45 % female, 55 % male; 85 % counsellor/testers; 15 % doctors and nurses; 92 % working in government facilities) from 42 health facilities were trained, of which 105 attempted the test questions. At the baseline, few HCPs reported any prior sensitivity training on MSM. Most of the HCPs had limited knowledge of MSM sexual health needs. Over 90% of the HCPs believed that homosexuality is a mental illness. 8 % do not consider MSM, FSW and PWID as key populations for HIV infection. 45 % lacked knowledge on MSM anal sexual practices. The post-test showed that homophobic attitudes had decreased significantly by the end of the training; the health care providers have acquired basic knowledge compared to the pre-test. Conclusions: Scaling up MSM sensitivity training for Nigerian HCPs is likely to be a timely and effective means to improve their understanding of MSM-related health issues, reduce homophobic sentiments and enhance their capacity to provide responsive HIV prevention, treatment and care services in a supportive and non-stigmatizing environment.Keywords: healthcare providers, key population, men who have sex with men, HCT
Procedia PDF Downloads 3548374 Antifungal Susceptibility of Yeasts Isolated from Clinical Samples from a Tertiary Hospital from State of Puebla
Authors: Ricardo Munguia-Perez, Nayeli Remigio-Alvarado, M.Miriam Hernandez-Arroyo, Elsa Castañeda-Roldan
Abstract:
Fungi have emerged as important pathogens causing morbidity and mortality mainly in immunosuppressed, malnourished and elderly patients. It has detected an increase in resistance to azoles primarily to fluconazol. The fungal infections have become a problem of public health for the resistance to antifungal agents, they have developed new antifungals with broad-spectrum. The aim of this study was determine the antifungal susceptibility of yeasts isolated from clinical samples (respiratory secretions, exudates, wounds, blood cultures, urine cultures) obtained from inpatients and outpatients of a tertiary hospital from State of Puebla. The antifungal susceptibility of the yeast from several clinical samples were determined by the CLS M44-A disk diffusion methods. 149 samples of yeast were analyzed. All species were 100% susceptible to nystatin and amphotericin B. Candida albicans showed resistance of 95.5 % to fluconazole, 50.7 % to 5-flurocytosine and 55.2 % intermediate susceptibility to ketoconazole. Candida glabrata 81.3 % was susceptibility to ketoconazole and 75 % to fluconazole, for the case of 5-flurocytosine the 56.3 % was susceptible. Candida krusei 100 % was susceptible to ketoconazole, 50 % to fluconazole and 37.5 % to 5-flurocytosine. The internal medicine have greater diversity of yeast, the samples have susceptibility of 64.7% to ketoconazole, 47.1 % to fluconazole and 27.5 % to 5-flurocytosine. Hospitalized patients are more resistant to fluconazole and nystatin, but in the case of outpatients presents resistance to ketoconazole.Keywords: antifungal, susceptibility, yeast, clinical samples
Procedia PDF Downloads 3368373 Evaluation of Genetic Resistance to Haemonchus Contortus in Teddy and Beetal Goat Breeds of Punjab, Pakistan
Authors: Muhammad S. Sajid, Asim Shamim, Muhammad Nisar Khan, Ashfaq A. Chatta, Muhammad Saqib
Abstract:
Goats (Capra hircus) are a valued asset for resource poor farmers globally. But the parasitic infection especially Haemonchus contortus (Trichostrongylid), impact the health and production of goats globally. The present study intended to evaluate resilient and resistance to Haemonchus contortus in indigenous goat breeds (Teddy and Beetal) of Punjab, Pakistan. Out of 60, 30 goats of each breed were divided into 6 groups and each group contain five goats. Two group of each breed received challenged infection with 12000 and 18000 L3 (third stage) larvae of Haemonchus contortus under two infection protocol that is early and trickle and remaining two group of each breed was kept as control. Resilient and resistance of each breed was then measured on the basis of their phenotypic markers like: faecal egg counts, packed cell volume, FAMACHA score system, body weight, total protein, albumin and worm count on 2nd, 4th, 6th, and 8th week of post infection. Variation in response of each goat breeds to Haemonchus contortus was observed. Teddy breed showed significant (P < 0.05)resistance as compared to Beetal. It is probably first attempt to report an evaluation of goat breed response towards Haemonchus contortus in Pakistan. It was concluded that Teddy goats have a greater genetic tendency to resist against to the Haemonchus contortus infection and this breed could be kept and bred from the economic point of view. Evaluation of genetic markers are like: gene, protein expression, Immunoglobulin, Histamines and interleukins determination are recommended for future studies which can be helpful to be fined resistant breed of goats.Keywords: goat, beetal, teddy, haemonchus contortus, resistance, resilience, phenotypic markers
Procedia PDF Downloads 3598372 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: false negative rate, intrusion detection system, machine learning methods, performance
Procedia PDF Downloads 1168371 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3688370 Challenges for Interface Designers in Designing Sensor Dashboards in the Context of Industry 4.0
Authors: Naveen Kumar, Shyambihari Prajapati
Abstract:
Industry 4.0 is the fourth industrial revolution that focuses on interconnectivity of machine to machine, human to machine and human to human via Internet of Things (IoT). Technologies of industry 4.0 facilitate communication between human and machine through IoT and forms Cyber-Physical Production System (CPPS). In CPPS, multiple shop floors sensor data are connected through IoT and displayed through sensor dashboard to the operator. These sensor dashboards have enormous amount of information to be presented which becomes complex for operators to perform monitoring, controlling and interpretation tasks. Designing handheld sensor dashboards for supervision task will become a challenge for the interface designers. This paper reports emerging technologies of industry 4.0, changing context of increasing information complexity in consecutive industrial revolutions and upcoming design challenges for interface designers in context of Industry 4.0. Authors conclude that information complexity of sensor dashboards design has increased with consecutive industrial revolutions and designs of sensor dashboard causes cognitive load on users. Designing such complex dashboards interfaces in Industry 4.0 context will become main challenges for the interface designers.Keywords: Industry4.0, sensor dashboard design, cyber-physical production system, Interface designer
Procedia PDF Downloads 1268369 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID
Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis
Abstract:
Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.Keywords: artificial intelligence, COVID, neural network, machine learning
Procedia PDF Downloads 928368 An Approximation Technique to Automate Tron
Authors: P. Jayashree, S. Rajkumar
Abstract:
With the trend of virtual and augmented reality environments booming to provide a life like experience, gaming is a major tool in supporting such learning environments. In this work, a variant of Voronoi heuristics, employing supervised learning for the TRON game is proposed. The paper discusses the features that would be really useful when a machine learning bot is to be used as an opponent against a human player. Various game scenarios, nature of the bot and the experimental results are provided for the proposed variant to prove that the approach is better than those that are currently followed.Keywords: artificial Intelligence, automation, machine learning, TRON game, Voronoi heuristics
Procedia PDF Downloads 4668367 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer
Authors: Philippa Saunders, Claire Fletcher
Abstract:
INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft
Procedia PDF Downloads 1418366 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 1108365 Sex Education Training Program Effect on Junior Secondary School Students Knowledge and Practice of Sexual Risk Behavior
Authors: Diyaolu Babajide Olufemi, Oyerinde Oyewole Olusesan
Abstract:
This study examined the effect of sex education training programs on the knowledge and practice of sexual risk behavior among secondary school adolescents in Ibadan North Local Government area of Oyo State. A total of 105 students were sampled from two schools in the Local Government area. Seventy students (70) constituted the experimental group while thirty-five (35) constituted the control group. Pretest-Posttest control group quasi-experimental design was adopted. A self-developed questionnaire was used to test participants’ knowledge and practice of sexual risk behavior before and after the training (α=.62, .82 and .74). Analysis indicated a significant effect of sex education training on participants’ knowledge and practice of sexual risk behavior, a significant gender difference in knowledge of sexual risk behavior but no significant age and gender difference in the practice of sexual risk behavior. It was thus concluded that sex education should be taught in schools and emphasized at homes with no age or gender restrictions.Keywords: early adolescent, health risk, sexual risk behavior, sex education
Procedia PDF Downloads 1418364 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 4428363 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 92