Search results for: instability waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1244

Search results for: instability waves

134 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 128
133 Exploring the Challenges of Post-conflict Peacebuilding in the Border Districts of Eastern Zone of Tigray Region

Authors: Gebreselassie Sebhatleab

Abstract:

According to the Global Peace Index report (GPI, 2023), global peacefulness has deteriorated by more than 0.42%. Old and new conflicts, COVID-19, and political and cultural polarization are the main drivers of conflicts in the world. The 2022 was the deadliest year for armed conflict in the history of the GPI. In Ethiopia, over half a million people died in the Tigray war, which was the largest conflict death event since the 1994 Rwandan genocide. In total, 84 countries recorded an improvement, while 79 countries recorded a deterioration in peacefulness across the globe. The Russia-Ukraine war and its consequences were the main drivers of the deterioration in peacefulness globally. Both Russia and Ukraine are now ranked amongst the ten least peaceful countries, and Ukraine had the largest deterioration of any country in the 2023 GPI. In the same year, the global impact of violence on the economy was 17 percent, which was equivalent to 10.9% of global GDP. Besides, the brutal conflict in Tigray started in November. 2020 claimed more than half a million lives lost and displaced nearly 3 million people, along with widespread human rights violations and sexual violence has left deep damage on the population. The displaced people are still unable to return home because the western, southern and Eastern parts of Tigray are occupied by Eritrean and Amhara forces, despite the Pretoria Agreement. Currently, armed conflicts in Amhara in the Oromya regions are intensified, and human rights violations are being reported in both regions. Meanwhile, protests have been held by war-injured TDF members, IDPs and teachers in the Tigray region. Hence, the general objective of this project is to explore the challenges of peace-building processes in the border woredas of the Eastern Zone of the Tigray Region. Methodologically, the project will employ exploratory qualitative research designs to gather and analyze qualitative data. A purposive sampling technique will be applied to gather pertinent information from the key stakeholders. Open-ended interview questions will be prepared to gather relevant information about the challenges and perceptions of peacebuilding in the study area. Data will be analyzed using qualitative methods such as content analysis, narrative analysis and phenomenological analysis to deeply investigate the challenges of peace-building in the study woredas. Findings of this research project will be employed for program intervention to promote sustainable peace in the study area.

Keywords: peace building, conflcit and violence, political instability, insecurity

Procedia PDF Downloads 18
132 Cell Adhesion, Morphology and Cytokine Expression of Synoviocytes Can Be Altered on Different Nano-Topographic Oxidized Silicon Nanosponges

Authors: Hung-Chih Hsu, Pey-Jium Chang, Ching-Hsein Chen, Jer-Liang Andrew Yeh

Abstract:

Osteoarthritis (OA) is a common disorder in rehabilitation clinic. The main characteristics include joint pain, localized tenderness and enlargement, joint effusion, cartilage destruction, loss of adhesion of perichondrium, synovium hyperplasia. Synoviocytes inflammation might be a cause of local tenderness and effusion. Inflammation cytokines might also play an important role in joint pain, cartilage destruction, decrease adhesion of perichondrium to the bone. Treatments of osteoarthritis include non-steroid anti-inflammation drugs (NSAID), glucosamine supplementation, hyaluronic acid, arthroscopic debridement, and total joint replacement. Total joint replacement is commonly used in patients with severe OA who failed respond to pharmacological treatment. However, some patients received surgery had serious adverse events, including instability of the implants due to insufficient adhesion to the adjacent bony tissue or synovial inflammation. We tried to develop ideal nano-topographic oxidized silicon nanosponges by using with various chemicals to produce thickness difference in nanometers in order to study more about the cell-environment interactions in vitro like the alterations of cell adhesion, morphology, extracellular matrix secretions in the pathogenesis of osteoarthritis. Cytokines studies like growth factor, reactive oxygen species, reactive inflammatory materials (Like nitrous oxide and prostaglandin E2), extracellular matrix (ECM) degradation enzymes, and synthesis of collagen will also be observed and discussed. Extracellular and intracellular expression transforming growth factor beta (TGF-β) will be studied by reverse transcription-polymerase chain reaction (RT-PCR). The degradation of ECM will be observed by the bioactivity ratio of matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase by ELISA (Enzyme-linked immunosorbent assay). When rabbit synoviocytes were cultured on these nano-topographic structures, they demonstrate better cell adhesion rate, decreased expression of MMP-2,9 and PGE2, and increased expression of TGF-β when cultured in nano-topographic oxidized silicon nanosponges than in the planar oxidized silicon ones. These results show cell behavior, cytokine production can be influenced by physical characteristics from different nano-topographic structures. Our study demonstrates the possibility of manipulating cell behavior in these nano-topographic biomaterials.

Keywords: osteoarthritis, synoviocyte, oxidized silicon surfaces, reactive oxygen species

Procedia PDF Downloads 365
131 Characterization of Himalayan Phyllite with Reference to Foliation Planes

Authors: Divyanshoo Singh, Hemant Kumar Singh, Kumar Nilankar

Abstract:

Major engineering constructions and foundations (e.g., dams, tunnels, bridges, underground caverns, etc.) in and around the Himalayan region of Uttarakhand are not only confined within hard and crystalline rocks but also stretched within weak and anisotropic rocks. While constructing within such anisotropic rocks, engineers more often encounter geotechnical complications such as structural instability, slope failure, and excessive deformation. These severities/complexities arise mainly due to inherent anisotropy such as layering/foliations, preferred mineral orientations, and geo-mechanical anisotropy present within rocks and vary when measured in different directions. Of all the inherent anisotropy present within the rocks, major geotechnical complexities mainly arise due to the inappropriate orientation of weak planes (bedding/foliation). Thus, Orientations of such weak planes highly affect the fracture patterns, failure mechanism, and strength of rocks. This has led to an improved understanding of the physico-mechanical behavior of anisotropic rocks with different orientations of weak planes. Therefore, in this study, block samples of phyllite belonging to the Chandpur Group of Lesser Himalaya were collected from the Srinagar area of Uttarakhand, India, to investigate the effect of foliation angles on physico-mechanical properties of the rock. Further, collected block samples were core drilled of diameter 50 mm at different foliation angles, β (angle between foliation plane and drilling direction), i.e., 0⁰, 30⁰, 60⁰, and 90⁰, respectively. Before the test, drilled core samples were oven-dried at 110⁰C to achieve uniformity. Physical and mechanical properties such as Seismic wave velocity, density, uniaxial compressive strength (UCS), point load strength (PLS), and Brazilian tensile strength (BTS) test were carried out on prepared core specimens. The results indicate that seismic wave velocities (P-wave and S-wave) decrease with increasing β angle. As the β angle increases, the number of foliation planes that the wave needs to pass through increases and thus causes the dissipation of wave energy with increasing β. Maximum strength for UCS, PLS, and BTS was found to be at β angle of 90⁰. However, minimum strength for UCS and BTS was found to be at β angle of 30⁰, which differs from PLS, where minimum strength was found at 0⁰ β angle. Furthermore, failure modes also correspond to the strength of the rock, showing along foliation and non-central failure as characteristics of low strength values, while multiple fractures and central failure as characteristics of high strength values. Thus, this study will provide a better understanding of the anisotropic features of phyllite for the purpose of major engineering construction and foundations within the Himalayan Region.

Keywords: anisotropic rocks, foliation angle, Physico-mechanical properties, phyllite, Himalayan region

Procedia PDF Downloads 38
130 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust

Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin

Abstract:

The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.

Keywords: acoustic impedance, engine exhaust system, FEM model, test stand

Procedia PDF Downloads 35
129 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 143
128 Frequency Interpretation of a Wave Function, and a Vertical Waveform Treated as A 'Quantum Leap'

Authors: Anthony Coogan

Abstract:

Born’s probability interpretation of wave functions would have led to nearly identical results had he chosen a frequency interpretation instead. Logically, Born may have assumed that only one electron was under consideration, making it nonsensical to propose a frequency wave. Author’s suggestion: the actual experimental results were not of a single electron; rather, they were groups of reflected x-ray photons. The vertical waveform used by Scrhödinger in his Particle in the Box Theory makes sense if it was intended to represent a quantum leap. The author extended the single vertical panel to form a bar chart: separate panels would represent different energy levels. The proposed bar chart would be populated by reflected photons. Expansion of basic ideas: Part of Scrhödinger’s ‘Particle in the Box’ theory may be valid despite negative criticism. The waveform used in the diagram is vertical, which may seem absurd because real waves decay at a measurable rate, rather than instantaneously. However, there may be one notable exception. Supposedly, following from the theory, the Uncertainty Principle was derived – may a Quantum Leap not be represented as an instantaneous waveform? The great Scrhödinger must have had some reason to suggest a vertical waveform if the prevalent belief was that they did not exist. Complex wave forms representing a particle are usually assumed to be continuous. The actual observations made were x-ray photons, some of which had struck an electron, been reflected, and then moved toward a detector. From Born’s perspective, doing similar work the years in question 1926-7, he would also have considered a single electron – leading him to choose a probability distribution. Probability Distributions appear very similar to Frequency Distributions, but the former are considered to represent the likelihood of future events. Born’s interpretation of the results of quantum experiments led (or perhaps misled) many researchers into claiming that humans can influence events just by looking at them, e.g. collapsing complex wave functions by 'looking at the electron to see which slit it emerged from', while in reality light reflected from the electron moved in the observer’s direction after the electron had moved away. Astronomers may say that they 'look out into the universe' but are actually using logic opposed to the views of Newton and Hooke and many observers such as Romer, in that light carries information from a source or reflector to an observer, rather the reverse. Conclusion: Due to the controversial nature of these ideas, especially its implications about the nature of complex numbers used in applications in science and engineering, some time may pass before any consensus is reached.

Keywords: complex wave functions not necessary, frequency distributions instead of wave functions, information carried by light, sketch graph of uncertainty principle

Procedia PDF Downloads 183
127 Psychophysiological Adaptive Automation Based on Fuzzy Controller

Authors: Liliana Villavicencio, Yohn Garcia, Pallavi Singh, Luis Fernando Cruz, Wilfrido Moreno

Abstract:

Psychophysiological adaptive automation is a concept that combines human physiological data and computer algorithms to create personalized interfaces and experiences for users. This approach aims to enhance human learning by adapting to individual needs and preferences and optimizing the interaction between humans and machines. According to neurosciences, the working memory demand during the student learning process is modified when the student is learning a new subject or topic, managing and/or fulfilling a specific task goal. A sudden increase in working memory demand modifies the level of students’ attention, engagement, and cognitive load. The proposed psychophysiological adaptive automation system will adapt the task requirements to optimize cognitive load, the process output variable, by monitoring the student's brain activity. Cognitive load changes according to the student’s previous knowledge, the type of task, the difficulty level of the task, and the overall psychophysiological state of the student. Scaling the measured cognitive load as low, medium, or high; the system will assign a task difficulty level to the next task according to the ratio between the previous-task difficulty level and student stress. For instance, if a student becomes stressed or overwhelmed during a particular task, the system detects this through signal measurements such as brain waves, heart rate variability, or any other psychophysiological variables analyzed to adjust the task difficulty level. The control of engagement and stress are considered internal variables for the hypermedia system which selects between three different types of instructional material. This work assesses the feasibility of a fuzzy controller to track a student's physiological responses and adjust the learning content and pace accordingly. Using an industrial automation approach, the proposed fuzzy logic controller is based on linguistic rules that complement the instrumentation of the system to monitor and control the delivery of instructional material to the students. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the delivery of academic content based on the working memory demand without compromising students’ health. This work has a potential application in the instructional design of virtual reality environments for training and education.

Keywords: fuzzy logic controller, hypermedia control system, personalized education, psychophysiological adaptive automation

Procedia PDF Downloads 59
126 Comparisons of Depressive Symptoms and Cognitive Appraisals in Different Age Groups under Abusive Leadership

Authors: Shao-Ying Wang, Shin-I Shih, Chi-Cheng Wu

Abstract:

Background: By following to the maturity theory about age, the manifestation of depression in different age groups under occupational stressors still remains unclear. Therefore, the aim of this study was to examine the depression within four main symptoms clusters: cognition, affect, physical complaints and interpersonal difficulty among the different age groups. Additionally, this study also used the stress appraisal theory, through the examination of challenge and hindrance appraisals, the effects of cognitive factors were expected to give therapeutic indication for the future treatment of depression under abusive leadership. Methods (Participants and Procedure): The data were collected in two waves from employees of local companies in Taiwan. The participants (58 males and 167 females) were native Chinese speakers, ranging in age from 20 to 59 years (M= 36.51). Up to 80% educational level of participants were above senior high. The married population was approximately at 43%. Measures; 1. Abusive Leadership: To measure abusive leadership, we used 15-item scale of abusive supervision which anchored on a 7-point Likert-type scale. (α= .96) 2. Depression: We used Taiwanese Depression Scale to measure the 4 clusters (cognition, affect, physical complaints and interpersonal difficulty) of symptoms. Participants responded for depression anchored on a 7-point Likert-type scale (α= .96). 3. Stress Appraisal Scale: To measure challenge and hindrance types of appraisal, participants responded to 33-item measure anchored on a 7-point Likert-type scale. (Challenge appraisal; α= .90; hindrance appraisal α= .87). Results: The results of correlation showed that there was a significant and negative correlation between abusive leadership and age (r = - .21, p < .01). Abusive leadership was positive correlated significantly with hindrance appraisal (r = .52, p < .01) and depression (r = .20, p < .01). The results also showed that hindrance appraisal was correlated to depression positively (r = .36, p < .01). A one-way ANOVA was conducted to compare the effect of lower/middle/order age groups on each cluster of depressive symptoms. The results showed that the effect of age groups on cognition was significant F (2, 157) =3.66, P < .05. Older age group (M=13.43 SD=6.84) reported less cognitive symptoms of depression than the middle (M=16.77 SD=7.49) and lower age (M=16.91 SD=6.97) groups. Besides, the effect of age groups on affect was also significant F (2,157)= 4.09 P < .05. Older age group (M=18.68 SD=8.98) reported less affective symptoms of depression than the middle (M=22.01 SD=7.96) and lower age (M=23.56 SD=7.67) groups. Moreover, the main effect of hindrance appraisal was found F (2, 157) =3.81, P < .05. Older age group (M=9.44 SD=2.89) reported fewer score on hindrance appraisals than the middle (M=11.06 SD=4.02) and lower age (M=9.62 SD=3.17) groups. To conclude, the severity of depression symptoms varies across different age groups. Maturity seems to be the protective factor to depression, accompanying with lower hindrance appraisals.

Keywords: abusive leadership, affective commitment, depression symptoms, psychological well-being

Procedia PDF Downloads 185
125 Women’s Lived Expriences in Prison: A Study Conducted in Haramaya Correctional Facilities, Ethiopia. March 2023

Authors: Ramzi Bekri Umer

Abstract:

Aim: This study attempts to investigate the causes and difficulties with women’s incarceration as well as threat for their reintegration after release from prison with emphasis on the correctional facility of Haramaya city. Method and Methodology: Both quantitative and qualitative research methods were employed in this study; key informant interviews and participant observation were utilized to gather qualitative data, while crosssectional and descriptive research designs were used to gather quantitative data. Findings: This study shows that the women's incarceration was caused by their family histories, genderbased violence, illiteracy, and socioeconomic issues. The principal charges made against the female culprits were theft, vandalism, murder, and moral perversion. A poor quality of life in prison, concerns about family dissolution, emotional instability, financial difficulties, and a lack of spirituality were the main causes of unhappiness for the women behind bars, while social stigma, mistrust, and retaliation fears were the main obstacles to the women's ability to reintegrate into their families and communities. Theoretical Importance: This study involves incarcerated women at correctional center of Haramaya who committed various types of crimes. The local government sectors and non-governmental organization will gain from the study in order to create workable plans to reduce women's criminality and the growing number of female lawbreakers. Local communities and other governmental and nongovernmental partners will be able to support gender equality initiatives that seek to eradicate gender-based violence and discrimination, which worsen the criminality of women. Data Collection and Analysis Procedures: The quantitative and qualitative data were collected prospectively from a sample of 100 women prisoners. Quantitative data were analyzed using descriptive statistics, whereas, thematic analysis, were used for qualitative data. Question Answered: 1. What are the main causes women’s imprisonment in Haramaya city correctional facility. 2. What are the main obstacles of the women's ability to reintegrate into their families and communities after released from incarceration. Conclusion: The study concludes that incarcerated women experience a tremendous impact on their daily life. It highlights the importance of addressing factors such as family backgrounds, gender-based violence, illiteracy and socio-economic problem to decrease the number of women imprisonment. Detention environment, fear for family breakup, financial hardship and deprivation of spiritual life are the major sources of distress among the incarcerated women.

Keywords: Ethiopia, women prisoner, incarceration, reintegration

Procedia PDF Downloads 48
124 Signal Transduction in a Myenteric Ganglion

Authors: I. M. Salama, R. N. Miftahof

Abstract:

A functional element of the myenteric nervous plexus is a morphologically distinct ganglion. Composed of sensory, inter- and motor neurons and arranged via synapses in neuronal circuits, their task is to decipher and integrate spike coded information within the plexus into regulatory output signals. The stability of signal processing in response to a wide range of internal/external perturbations depends on the plasticity of individual neurons. Any aberrations in this inherent property may lead to instability with the development of a dynamics chaos and can be manifested as pathological conditions, such as intestinal dysrhythmia, irritable bowel syndrome. The aim of this study is to investigate patterns of signal transduction within a two-neuronal chain - a ganglion - under normal physiological and structurally altered states. The ganglion contains the primary sensory (AH-type) and motor (S-type) neurons linked through a cholinergic dendro somatic synapse. The neurons have distinguished electrophysiological characteristics including levels of the resting and threshold membrane potentials and spiking activity. These are results of ionic channel dynamics namely: Na+, K+, Ca++- activated K+, Ca++ and Cl-. Mechanical stretches of various intensities and frequencies are applied at the receptive field of the AH-neuron generate a cascade of electrochemical events along the chain. At low frequencies, ν < 0.3 Hz, neurons demonstrate strong connectivity and coherent firing. The AH-neuron shows phasic bursting with spike frequency adaptation while the S-neuron responds with tonic bursts. At high frequency, ν > 0.5 Hz, the pattern of electrical activity changes to rebound and mixed mode bursting, respectively, indicating ganglionic loss of plasticity and adaptability. A simultaneous increase in neuronal conductivity for Na+, K+ and Ca++ ions results in tonic mixed spiking of the sensory neuron and class 2 excitability of the motor neuron. Although the signal transduction along the chain remains stable the synchrony in firing pattern is not maintained and the number of discharges of the S-type neuron is significantly reduced. A concomitant increase in Ca++- activated K+ and a decrease in K+ in conductivities re-establishes weak connectivity between the two neurons and converts their firing pattern to a bistable mode. It is thus demonstrated that neuronal plasticity and adaptability have a stabilizing effect on the dynamics of signal processing in the ganglion. Functional modulations of neuronal ion channel permeability, achieved in vivo and in vitro pharmacologically, can improve connectivity between neurons. These findings are consistent with experimental electrophysiological recordings from myenteric ganglia in intestinal dysrhythmia and suggest possible pathophysiological mechanisms.

Keywords: neuronal chain, signal transduction, plasticity, stability

Procedia PDF Downloads 372
123 Social and Economic Challenges of Adopting Sustainable Urban Development in Developing Economy: A Stakeholder's Perception

Authors: Raed Fawzi Mohammed Ameen, Haider I. Alyasari, Maryam Altaweel

Abstract:

Due to rapid urbanization, developing countries faced significant urban challenges that accompanied the population growth such as the inability to provide adequate housing; sustain human and community's health and wellbeing; ensure the safety in urban areas; the prevalence corruption; lack of jobs; and a shortage of investment. The destruction, degradation, and lack of planning are acute in countries such as Iraq that have suffered for more than four decades because of war and international sanctions, resulting in severe damages to the ecology sector, social utilities, housing, infrastructure, as well as the disruption of the economic sector. Many of significant urban development, housing, and regeneration projects are currently underway in different regions in Iraq, labelled as a means to reform the environmental, social, and economic sectors. However, most often with absence of public participation. Hence, there is an urgent need for understanding public perception, especially of urban socio-economic challenges, which represents a crucial concern for many planners, designers, and policy-makers in order to develop effective policies in addition to increasing their participation. The aim of this study is to investigate stakeholder perceptions of the socio-economic challenges of urban development and their priorities in the all Iraqi provinces. A nationwide questionnaire has been conducted (N = 643) across Iraq, using 19- item structured questionnaire where the stakeholder’s perspectives were collected on a 5-point Likert-type scale. The indicators were identified through deep investigation in previous studies. Principal component analysis (PCA) and statistical tests were utilized to the collected responses in order to investigate the linkage between the perceptions of socio- economic challenges and demographic factors. A high value of internal consistency and reliability of the instrument has been achieved (Cronbach’s alpha= 0.867). Five principal components have been identified, namely: economic, cultural aspects, design context, employment, security and housing demands. The item ‘safety of public places' was ranked as the most important, followed by the items 'minimize unplanned housing', and ‘provision of affordable housing’, respectively. Promote high-rise housing from the housing demands group, was ranked the lowest component between all indicators. 'Using sustainable local materials in construction' item had the second lowest mean score. The results also illustrate a link between deficiencies in the social and economic infrastructure because of the destruction and degradation caused by political instability in Iraq in the last few decades.

Keywords: public participation in development, socio-economic challenges, urban development, urban sustainability

Procedia PDF Downloads 113
122 Coping with Geological Hazards during Construction of Hydroelectric Projects in Himalaya

Authors: B. D. Patni, Ashwani Jain, Arindom Chakraborty

Abstract:

The world’s highest mountain range has been forming since the collision of Indian Plate with Asian Plate 40-50 million years ago. The Indian subcontinent has been deeper and deeper in to the rest of Asia resulting upliftment of Himalaya & Tibetan Plateau. The complex domain has become a major challenge for construction of hydro electric projects. The Himalayas are geologically complex & seismically active. Shifting of Indian Plate northwardly and increasing the amount of stresses in the fragile domain which leads to deformation in the form of several fold, faults and upliftment. It is difficult to undergo extensive geological investigation to ascertain the geological problems to be encountered during construction. Inaccessibility of the terrain, high rock cover, unpredictable ground water condition etc. are the main constraints. The hydroelectric projects located in Himalayas have faced many geological and geo-hydrological problems while construction of surface and subsurface works. Based on the experience, efforts have been made to identify the expected geological problems during and after construction of the projects. These have been classified into surface and subsurface problems which include existence of inhomogeneous deep overburden in the river bed or buried valley, abrupt change in bed rock profile, Occurrences of fault zones/shear zones/fractured rock in dam foundation and slope instability in the abutments. The tunneling difficulties are many such as squeezing ground condition, popping, rock bursting, high temperature gradient, heavy ingress of water, existence of shear seams/shear zones and emission of obnoxious gases. However, these problems were mitigated by adopting suitable remedial measures as per site requirement. The support system includes shotcrete, wire mesh, rock bolts, steel ribs, fore-poling, pre-grouting, pipe-roofing, MAI anchors, toe wall, retaining walls, reinforced concrete dowels, drainage drifts, anchorage cum drainage shafts, soil nails, concrete cladding and shear keys. Controlled drilling & blasting, heading & benching, proper drainage network and ventilation system are other remedial measures adopted to overcome such adverse situations. The paper highlights the geological uncertainties and its remedial measures in Himalaya, based on the analysis and evaluation of 20 hydroelectric projects during construction.

Keywords: geological problems, shear seams, slope, drilling & blasting, shear zones

Procedia PDF Downloads 387
121 Perception of Nurses and Caregivers on Fall Preventive Management for Hospitalized Children Based on Ecological Model

Authors: Mirim Kim, Won-Oak Oh

Abstract:

Purpose: The purpose of this study was to identify hospitalized children's fall risk factors, fall prevention status and fall prevention strategies recognized by nurses and caregivers of hospitalized children and present an ecological model for fall preventive management in hospitalized children. Method: The participants of this study were 14 nurses working in medical institutions and having more than one year of child care experience and 14 adult caregivers of children under 6 years of age receiving inpatient treatment at a medical institution. One to one interview was attempted to identify their perception of fall preventive management. Transcribed data were analyzed through latent content analysis method. Results: Fall risk factors in hospitalized children were 'unpredictable behavior', 'instability', 'lack of awareness about danger', 'lack of awareness about falls', 'lack of child control ability', 'lack of awareness about the importance of fall prevention', 'lack of sensitivity to children', 'untidy environment around children', 'lack of personalized facilities for children', 'unsafe facility', 'lack of partnership between healthcare provider and caregiver', 'lack of human resources', 'inadequate fall prevention policy', 'lack of promotion about fall prevention', 'a performanceism oriented culture'. Fall preventive management status of hospitalized children were 'absence of fall prevention capability', 'efforts not to fall', 'blocking fall risk situation', 'limit the scope of children's activity when there is no caregiver', 'encourage caregivers' fall prevention activities', 'creating a safe environment surrounding hospitalized children', 'special management for fall high risk children', 'mutual cooperation between healthcare providers and caregivers', 'implementation of fall prevention policy', 'providing guide signs about fall risk'. Fall preventive management strategies of hospitalized children were 'restrain dangerous behavior', 'inspiring awareness about fall', 'providing fall preventive education considering the child's eye level', 'efforts to become an active subject of fall prevention activities', 'providing customed fall prevention education', 'open communication between healthcare providers and caregivers', 'infrastructure and personnel management to create safe hospital environment', 'expansion fall prevention campaign', 'development and application of a valid fall assessment instrument', 'conversion of awareness about safety'. Conclusion: In this study, the ecological model of fall preventive management for hospitalized children reflects various factors that directly or indirectly affect the fall prevention of hospitalized children. Therefore, these results can be considered as useful baseline data for developing systematic fall prevention programs and hospital policies to prevent fall accident in hospitalized children. Funding: This study was funded by the National Research Foundation of South Korea (grant number NRF-2016R1A2B1015455).

Keywords: fall down, safety culture, hospitalized children, risk factors

Procedia PDF Downloads 143
120 Investigation of Fluid-Structure-Seabed Interaction of Gravity Anchor under Liquefaction and Scour

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg, Christian Windt

Abstract:

When a structure is installed on a seabed, the presence of the structure will influence the flow field around it. The changes in the flow field include, formation of vortices, turbulence generation, waves or currents flow breaking and pressure differentials around the seabed sediment. These changes allow the local seabed sediment to be carried off and results in Scour (erosion). These are a threat to the structure's stability. In recent decades, rapid developments of research work and the knowledge of scour On fixed structures (bridges and Monopiles) in rivers and oceans has been carried out, and very limited research work on scour and liquefaction for gravity anchors, particularly for floating Tension Leg Platform (TLP) substructures. Due to its importance and need for enhancement of knowledge in scour and liquefaction around marine structures, the MarTERA funded a three-year (2020-2023) research program called NuLIMAS (Numerical Modeling of Liquefaction Around Marine Structures). It’s a group consists of European institutions (Universities, laboratories, and consulting companies). The objective of this study is to build a numerical model that replicates the reality, which indeed helps to simulate (predict) underwater flow conditions and to study different marine scour and Liquefication situations. It helps to design a heavyweight anchor for the TLP substructure and to minimize the time and expenditure on experiments. And also, the achieved results and the numerical model will be a basis for the development of other design and concepts For marine structures. The Computational Fluid Dynamics (CFD) numerical model will build in OpenFOAM. A conceptual design of heavyweight anchor for TLP substructure is designed through taking considerations of available state-of-the-art knowledge on scour and Liquefication concepts and references to Previous existing designs. These conceptual designs are validated with the available similar experimental benchmark data and also with the CFD numerical benchmark standards (CFD quality assurance study). CFD optimization model/tool is designed as to minimize the effect of fluid flow, scour, and Liquefication. A parameterized model is also developed to automate the calculation process to reduce user interactions. The parameters such as anchor Lowering Process, flow optimized outer contours, seabed interaction study, and FSSI (Fluid-Structure-Seabed Interactions) are investigated and used to carve the model as to build an optimized anchor.

Keywords: gravity anchor, liquefaction, scour, computational fluid dynamics

Procedia PDF Downloads 125
119 Photochemical Behaviour of Carbamazepine in Natural Waters

Authors: Fanny Desbiolles, Laure Malleret, Isabelle Laffont-Schwob, Christophe Tiliacos, Anne Piram, Mohamed Sarakha, Pascal Wong-Wah-Chung

Abstract:

Pharmaceuticals in the environment have become a very hot topic in the recent years. This interest is related to the large amounts dispensed and to their release in urine or faeces from treated patients, resulting in their ubiquitous presence in water resources and wastewater treatment plants (WWTP) effluents. Thereby, many studies focused on the prediction of pharmaceuticals’ behaviour, to assess their fate and impacts in the environment. Carbamazepine is a widely consumed psychotropic pharmaceutical, thus being one of the most commonly detected drugs in the environment. This organic pollutant was proved to be persistent, especially with respect to its non-biodegradability, rendering it recalcitrant to usual biological treatment processes. Consequently, carbamazepine is very little removed in WWTP with a maximum abatement rate of 5 % and is then often released in natural surface waters. To better assess the environmental fate of carbamazepine in aqueous media, its photochemical transformation was undertaken in four natural waters (two French rivers, the Berre salt lagoon, Mediterranean Sea water) representative of coastal and inland water types. Kinetic experiments were performed in the presence of light using simulated solar irradiation (Xe lamp 300W). Formation of short-lifetime species was highlighted using chemical trap and laser flash photolysis (nanosecond). Identification of transformation by-products was assessed by LC-QToF-MS analyses. Carbamazepine degradation was observed after a four-day exposure and an abatement of 20% maximum was measured yielding to the formation of many by-products. Moreover, the formation of hydroxyl radicals (•OH) was evidenced in waters using terephthalic acid as a probe, considering the photochemical instability of its specific hydroxylated derivative. Correlations were implemented using carbamazepine degradation rate, estimated hydroxyl radical formation and chemical contents of waters. In addition, laser flash photolysis studies confirmed •OH formation and allowed to evidence other reactive species, such as chloride (Cl2•-)/bromine (Br2•-) and carbonate (CO3•-) radicals in natural waters. Radicals mainly originate from dissolved phase and their occurrence and abundance depend on the type of water. Rate constants between reactive species and carbamazepine were determined by laser flash photolysis and competitive reactions experiments. Moreover, LC-QToF-MS analyses of by-products help us to propose mechanistic pathways. The results will bring insights to the fate of carbamazepine in various water types and could help to evaluate more precisely potential ecotoxicological effects.

Keywords: carbamazepine, kinetic and mechanistic approaches, natural waters, photodegradation

Procedia PDF Downloads 355
118 Assessment of Morphodynamic Changes at Kaluganga River Outlet, Sri Lanka Due to Poorly Planned Flood Controlling Measures

Authors: G. P. Gunasinghe, Lilani Ruhunage, N. P. Ratnayake, G. V. I. Samaradivakara, H. M. R. Premasiri, A. S. Ratnayake, Nimila Dushantha, W. A. P. Weerakoon, K. B. A. Silva

Abstract:

Sri Lanka is affected by different natural disasters such as tsunami, landslides, lightning, and riverine flood. Out of them, riverine floods act as a major disaster in the country. Different strategies are applied to control the impacts of flood hazards, and the expansion of river mouth is considered as one of the main activities for flood mitigation and disaster reduction. However, due to this expansion process, natural sand barriers including sand spits, barrier islands, and tidal planes are destroyed or subjected to change. This, in turn, can change the hydrodynamics and sediment dynamics of the area leading to other damages to the natural coastal features. The removal of a considerable portion of naturally formed sand barrier at Kaluganga River outlet (Calido Beach), Sri Lanka to control flooding event at Kaluthara urban area on May 2017, has become a serious issue in the area causing complete collapse of river mouth barrier spit bar system leading to rapid coastal erosion Kaluganga river outlet area and saltwater intrusion into the Kaluganga River. The present investigation is focused on assessing effects due to the removal of a considerable portion of naturally formed sand barrier at Kaluganga river mouth. For this study, the beach profiles, the bathymetric surveys, and Google Earth historical satellite images, before and after the flood event were collected and analyzed. Furthermore, a beach boundary survey was also carried out in October 2018 to support the satellite image data. The results of Google Earth satellite images and beach boundary survey data analyzed show a chronological breakdown of the sand barrier at the river outlet. The comparisons of pre and post-disaster bathymetric maps and beach profiles analysis revealed a noticeable deepening of the sea bed at the nearshore zone as well. Such deepening in the nearshore zone can cause the sea waves to break very near to the coastline. This might also lead to generate new diffraction patterns resulting in differential coastal accretion and erosion scenarios. Unless immediate mitigatory measures were not taken, the impacts may cause severe problems to the sensitive Kaluganag river mouth system.

Keywords: bathymetry, beach profiles, coastal features, river outlet, sand barrier, Sri Lanka

Procedia PDF Downloads 119
117 Response Analysis of a Steel Reinforced Concrete High-Rise Building during the 2011 Tohoku Earthquake

Authors: Naohiro Nakamura, Takuya Kinoshita, Hiroshi Fukuyama

Abstract:

The 2011 off The Pacific Coast of Tohoku Earthquake caused considerable damage to wide areas of eastern Japan. A large number of earthquake observation records were obtained at various places. To design more earthquake-resistant buildings and improve earthquake disaster prevention, it is necessary to utilize these data to analyze and evaluate the behavior of a building during an earthquake. This paper presents an earthquake response simulation analysis (hereafter a seismic response analysis) that was conducted using data recorded during the main earthquake (hereafter the main shock) as well as the earthquakes before and after it. The data were obtained at a high-rise steel-reinforced concrete (SRC) building in the bay area of Tokyo. We first give an overview of the building, along with the characteristics of the earthquake motion and the building during the main shock. The data indicate that there was a change in the natural period before and after the earthquake. Next, we present the results of our seismic response analysis. First, the analysis model and conditions are shown, and then, the analysis result is compared with the observational records. Using the analysis result, we then study the effect of soil-structure interaction on the response of the building. By identifying the characteristics of the building during the earthquake (i.e., the 1st natural period and the 1st damping ratio) by the Auto-Regressive eXogenous (ARX) model, we compare the analysis result with the observational records so as to evaluate the accuracy of the response analysis. In this study, a lumped-mass system SR model was used to conduct a seismic response analysis using observational data as input waves. The main results of this study are as follows: 1) The observational records of the 3/11 main shock put it between a level 1 and level 2 earthquake. The result of the ground response analysis showed that the maximum shear strain in the ground was about 0.1% and that the possibility of liquefaction occurring was low. 2) During the 3/11 main shock, the observed wave showed that the eigenperiod of the building became longer; this behavior could be generally reproduced in the response analysis. This prolonged eigenperiod was due to the nonlinearity of the superstructure, and the effect of the nonlinearity of the ground seems to have been small. 3) As for the 4/11 aftershock, a continuous analysis in which the subject seismic wave was input after the 3/11 main shock was input was conducted. The analyzed values generally corresponded well with the observed values. This means that the effect of the nonlinearity of the main shock was retained by the building. It is important to consider this when conducting the response evaluation. 4) The first period and the damping ratio during a vibration were evaluated by an ARX model. Our results show that the response analysis model in this study is generally good at estimating a change in the response of the building during a vibration.

Keywords: ARX model, response analysis, SRC building, the 2011 off the Pacific Coast of Tohoku Earthquake

Procedia PDF Downloads 146
116 How Does Paradoxical Leadership Enhance Organizational Success?

Authors: Wageeh A. Nafei

Abstract:

This paper explores the role of Paradoxical Leadership (PL) in enhancing Organizational Success (OS) at private hospitals in Egypt. Based on the collected data from employees in private hospitals (doctors, nursing staff, and administrative staff). The researcher has adopted a sampling method to collect data for the study. The appropriate statistical methods, such as Alpha Correlation Coefficient (ACC), Confirmatory Factor Analysis (CFA), and Multiple Regression Analysis (MRA), are used to analyze the data and test the hypotheses. The research has reached a number of results, the most important of which are (1) there is a statistical relationship between the independent variable represented by PL and the dependent variable represented by Organizational Success (OS). The paradoxical leader encourages employees to express their opinions and builds a work environment characterized by flexibility and independence. Also, the paradoxical leader works to support specialized work teams, which leads to the creation of new ideas, on the one hand, and contributes to the achievement of outstanding performance on the other hand. (2) the mentality of the paradoxical leader is flexible and capable of absorbing all suggestions from all employees. Also, the paradoxical leader is interested in enhancing cooperation among them and provides an opportunity to transfer experience and increase knowledge-sharing. Also, the sharing of knowledge creates the necessary diversity that helps the organization to obtain rich external information and enables the organization to deal with a rapidly changing environment. (3) The PL approach helps in facing the paradoxical demands of employees. A paradoxical leader plays an important role in reducing the feeling of instability in the work environment and lack of job security, reducing negative feelings for employees, restoring balance in the work environment, improving the well-being of employees, and increasing the degree of job satisfaction of employees in the organization. The study referred to a number of recommendations, the most important of which are (1) the leaders of the organizations must listen to the views of employees and their needs and move away from the official method of control. The leader should give sufficient freedom to employees to participate in decision-making and maintain enough space among them. The treatment between the leaders and employees must be based on friendliness, (2) the need for organizational leaders to pay attention to sharing knowledge among employees through training courses. The leader should make sure that every information provided by the employee is valuable and useful, which can be used to solve a problem that may face his/her colleagues at work, (3) the need for organizational leaders to pay attention to sharing knowledge among employees through brainstorming sessions. The leader should ensure that employees obtain knowledge from their colleagues and share ideas and information among them. This is in addition to motivating employees to complete their work in a new creative way, which leads to employees’ not feeling bored of repeating the same routine procedures in the organization.

Keywords: paradoxical leadership, organizational success, human resourece, management

Procedia PDF Downloads 41
115 Pakistan Nuclear Security: Threats from Non-State Actors

Authors: Jennifer Wright

Abstract:

The recent rise of powerful terrorist groups such as ISIS and Al-Qaeda brings up concerns about nuclear terrorism as well as a focus on nuclear security, specifically the physical security of nuclear weapons and fissile material storage sites in countries where powerful nonstate actors are present. Particularly because these non-state actors, who lack their own sovereign territory, cannot be ‘deterred’ in the traditional sense. In light of the current threat environment, it’s necessary to now rethink these strategies in the 21st century – a multipolar world with the presence of powerful non-state actors. As a country in the spotlight for its low ranking on the Nuclear Threat Initiative’s (NTI) Nuclear Security Index, Pakistan is a relevant example to explore the question of whether the presence of non-state actors poses a real risk to nuclear security today. It’s necessary to take a look at their nuclear security policies to determine if they’re robust enough to deal with political instability and violence in the country. After carrying out interviews with experts in May 2017 in Islamabad on nuclear security and nuclear terrorism, this paper aims to highlight findings by providing a Pakistan-centric view on the subject and give experts there a chance to counter criticism. Western media would have us fearful of nuclear security mechanisms in Pakistan after reports that areas such as cybersecurity and accounting and control of materials are weak, as well as sensitive nuclear material being transported in unmarked, unguarded vehicles. Also reported are cases where terrorist groups carried out targeted attacks against Pakistani military bases or secure sites where nuclear material is stored. One specific question asked of each interviewee in Islamabad was Do you feel the threat of nuclear terrorism calls into question the reliance on deterrence? Their responses will be elaborated on in the longer paper, but overall they demonstrate views that deterrence still serves a purpose for state-to-state security strategy, but not for a state in countering nonstate threats. If nuclear security is lax enough for these non-state actors to get their hands on either an intact nuclear weapon or enough military-grade fissile material to build a nuclear weapon, then what would stop them from launching a nuclear attack? As deterrence is a state-centric strategy, it doesn’t work to deter non-state actors from carrying out an attack on another state, as they lack their own territory, and as such, are not fearful of a reprisal attack. Deterrence will need to be addressed, and its relevance analyzed to determine its utility in the current security environment. The aim of this research is to demonstrate the real risk of nuclear terrorism by pointing to weaknesses in global nuclear security, particularly in Pakistan. The research also aims to provoke thought on the weaknesses of deterrence as a whole. Original thinking is needed as we attempt to adequately respond to the 21st century’s current threat environment.

Keywords: deterrence, non-proliferation, nuclear security, nuclear terrorism

Procedia PDF Downloads 201
114 Incidences and Factors Associated with Perioperative Cardiac Arrest in Trauma Patient Receiving Anesthesia

Authors: Visith Siriphuwanun, Yodying Punjasawadwong, Suwinai Saengyo, Kittipan Rerkasem

Abstract:

Objective: To determine incidences and factors associated with perioperative cardiac arrest in trauma patients who received anesthesia for emergency surgery. Design and setting: Retrospective cohort study in trauma patients during anesthesia for emergency surgery at a university hospital in northern Thailand country. Patients and methods: This study was permitted by the medical ethical committee, Faculty of Medicine at Maharaj Nakorn Chiang Mai Hospital, Thailand. We clarified data of 19,683 trauma patients receiving anesthesia within a decade between January 2007 to March 2016. The data analyzed patient characteristics, traumas surgery procedures, anesthesia information such as ASA physical status classification, anesthesia techniques, anesthetic drugs, location of anesthesia performed, and cardiac arrest outcomes. This study excluded the data of trauma patients who had received local anesthesia by surgeons or monitoring anesthesia care (MAC) and the patient which missing more information. The factor associated with perioperative cardiac arrest was identified with univariate analyses. Multiple regressions model for risk ratio (RR) and 95% confidence intervals (CI) were used to conduct factors correlated with perioperative cardiac arrest. The multicollinearity of all variables was examined by bivariate correlation matrix. A stepwise algorithm was chosen at a p-value less than 0.02 was selected to further multivariate analysis. A P-value of less than 0.05 was concluded as statistically significant. Measurements and results: The occurrence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was 170.04 per 10,000 cases. Factors associated with perioperative cardiac arrest in trauma patients were age being more than 65 years (RR=1.41, CI=1.02–1.96, p=0.039), ASA physical status 3 or higher (RR=4.19–21.58, p < 0.001), sites of surgery (intracranial, intrathoracic, upper intra-abdominal, and major vascular, each p < 0.001), cardiopulmonary comorbidities (RR=1.55, CI=1.10–2.17, p < 0.012), hemodynamic instability with shock prior to receiving anesthesia (RR=1.60, CI=1.21–2.11, p < 0.001) , special techniques for surgery such as cardiopulmonary bypass (CPB) and hypotensive techniques (RR=5.55, CI=2.01–15.36, p=0.001; RR=6.24, CI=2.21–17.58, p=0.001, respectively), and patients who had a history of being alcoholic (RR=5.27, CI=4.09–6.79, p < 0.001). Conclusion: Incidence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was very high and correlated with many factors, especially age of patient and cardiopulmonary comorbidities, patient having a history of alcoholic addiction, increasing ASA physical status, preoperative shock, special techniques for surgery, and sites of surgery including brain, thorax, abdomen, and major vascular region. Anesthesiologists and multidisciplinary teams in pre- and perioperative periods should remain alert for warning signs of pre-cardiac arrest and be quick to manage the high-risk group of surgical trauma patients. Furthermore, a healthcare policy should be promoted for protecting against accidents in high-risk groups of the population as well.

Keywords: perioperative cardiac arrest, trauma patients, emergency surgery, anesthesia, factors risk, incidence

Procedia PDF Downloads 146
113 Experimental Studies of the Reverse Load-Unloading Effect on the Mechanical, Linear and Nonlinear Elastic Properties of n-AMg6/C60 Nanocomposite

Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy, Vyacheslav M. Prokhorov

Abstract:

The paper presents the results of an experimental study of the effect of reverse mechanical load-unloading on the mechanical, linear, and nonlinear elastic properties of n-AMg6/C60 nanocomposite. Samples for experimental studies of n-AMg6/C60 nanocomposite were obtained by grinding AMg6 polycrystalline alloy in a planetary mill with 0.3 wt % of C60 fullerite in an argon atmosphere. The resulting product consisted of 200-500-micron agglomerates of nanoparticles. X-ray coherent scattering (CSL) method has shown that the average nanoparticle size is 40-60 nm. The resulting preform was extruded at high temperature. Modifications of C60 fullerite interferes the process of recrystallization at grain boundaries. In the samples of n-AMg6/C60 nanocomposite, the load curve is measured: the dependence of the mechanical stress σ on the strain of the sample ε under its multi-cycle load-unloading process till its destruction. The hysteresis dependence σ = σ(ε) was observed, and insignificant residual strain ε < 0.005 were recorded. At σ≈500 MPa and ε≈0.025, the sample was destroyed. The destruction of the sample was fragile. Microhardness was measured before and after destruction of the sample. It was found that the loading-unloading process led to an increase in its microhardness. The effect of the reversible mechanical stress on the linear and nonlinear elastic properties of the n-AMg6/C60 nanocomposite was studied experimentally by ultrasonic method on the automated complex Ritec RAM-5000 SNAP SYSTEM. In the n-AMg6/C60 nanocomposite, the velocities of the longitudinal and shear bulk waves were measured with the pulse method, and all the second-order elasticity coefficients and their dependence on the magnitude of the reversible mechanical stress applied to the sample were calculated. Studies of nonlinear elastic properties of the n-AMg6/C60 nanocomposite at reversible load-unloading of the sample were carried out with the spectral method. At arbitrary values of the strain of the sample (up to its breakage), the dependence of the amplitude of the second longitudinal acoustic harmonic at a frequency of 2f = 10MHz on the amplitude of the first harmonic at a frequency f = 5MHz of the acoustic wave is measured. Based on the results of these measurements, the values of the nonlinear acoustic parameter in the n-AMg6/C60 nanocomposite sample at different mechanical stress were determined. The obtained results can be used in solid-state physics, materials science, for development of new techniques for nondestructive testing of structural materials using methods of nonlinear acoustic diagnostics. This study was supported by the Russian Science Foundation (project №14-22-00042).

Keywords: nanocomposite, generation of acoustic harmonics, nonlinear acoustic parameter, hysteresis

Procedia PDF Downloads 127
112 Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements

Authors: Dragan Ribarić

Abstract:

We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes.

Keywords: Mindlin plate theory, problem-independent linked interpolation, problem-dependent interpolation, quadrilateral displacement-based plate finite elements

Procedia PDF Downloads 294
111 The Effects of Irregular Immigration Originating from Syria on Turkey's Security Issues

Authors: Muzaffer Topgul, Hasan Atac

Abstract:

After the September 11 attacks, fight against terrorism has risen to higher levels in security concepts of the countries. The following reactions of some nation states have led to the formation of unstable areas in different parts of the World. Especially, in Iraq and Syria, the influences of radical groups have risen with the weakening of the central governments. Turkey (with the geographical proximity to the current crisis) has become a stop on the movement of people who were displaced because of terrorism. In the process, the policies of the Syrian regime resulted in a civil war which is still going on since 2011, and remain as an unresolved crisis. With the extension of the problem, changes occurred in foreign policies of the World Powers; moreover, the ongoing effects of the riots, conflicts of interests of foreign powers, conflicts in the region because of the activities of radical groups increased instability within the country. This case continues to affect the security of Turkey, particularly illegal immigration. It has exceeded the number of two million Syrians who took refuge in Turkey due to the civil war, while continuing uncertainty about the legal status of asylum seekers, besides the security problems of asylum-seekers themselves, there are problems in education, health and communication (language) as well. In this study, we will evaluate the term of immigration through the eyes of national and international law, place the disorganized and illegal immigration in security sphere, and define the elements/components of irregular migration within the changing security concept. Ultimately, this article will assess the effects of the Syrian refuges to Turkey’s short-term, mid-term, and long-term security in the light of the national and international data flows and solutions will be presented to the ongoing problem. While explaining the security problems the data and the donnees obtained from the nation and international corporations will be examined thorough the human security dimensions such as living conditions of the immigrants, the ratio of the genders, especially birth rate occasions, the education circumstances of the immigrant children, the effects of the illegal passing on the public order. In addition, the demographic change caused by the immigrants will be analyzed, the changing economical conditions where the immigrants mostly accumulate, and their participation in public life will be worked on and the economical obstacles sourcing due to irregular immigration will be clarified. By the entire datum gathered from the educational, cultural, social, economic, demographical extents, the regional factors affecting the migration and the role of irregular migration in Turkey’s future security will be revealed by implication to current knowledge sources.

Keywords: displaced people, human security, irregular migration, refugees

Procedia PDF Downloads 290
110 Modeling of Alpha-Particles’ Epigenetic Effects in Short-Term Test on Drosophila melanogaster

Authors: Z. M. Biyasheva, M. Zh. Tleubergenova, Y. A. Zaripova, A. L. Shakirov, V. V. Dyachkov

Abstract:

In recent years, interest in ecogenetic and biomedical problems related to the effects on the population of radon and its daughter decay products has increased significantly. Of particular interest is the assessment of the consequence of irradiation at hazardous radon areas, which includes the Almaty region due to the large number of tectonic faults that enhance radon emanation. In connection with the foregoing, the purpose of this work was to study the genetic effects of exposure to supernormal radon doses on the alpha-radiation model. Irradiation does not affect the growth of the cell, but rather its ability to differentiate. In addition, irradiation can lead to somatic mutations, morphoses and modifications. These damages most likely occur from changes in the composition of the substances of the cell. Such changes are epigenetic since they affect the regulatory processes of ontogenesis. Variability in the expression of regulatory genes refers to conditional mutations that modify the formation of signs of intraspecific similarity. Characteristic features of these conditional mutations are the dominant type of their manifestation, phenotypic asymmetry and their instability in the generations. Currently, the terms “morphosis” and “modification” are used to describe epigenetic variability, which are maintained in Drosophila melanogaster cultures using linkaged X- chromosomes, and the mutant X-chromosome is transmitted along the paternal line. In this paper, we investigated the epigenetic effects of alpha particles, whose source in nature is mainly radon and its daughter decay products. In the experiment, an isotope of plutonium-238 (Pu238), generating radiation with an energy of about 5500 eV, was used as a source of alpha particles. In an experiment in the first generation (F1), deformities or morphoses were found, which can be called "radiation syndromes" or mutations, the manifestation of which is similar to the pleiotropic action of genes. The proportion of morphoses in the experiment was 1.8%, and in control 0.4%. In this experiment, the morphoses in the flies of the first and second generation looked like black spots, or melanomas on different parts of the imago body; "generalized" melanomas; curled, curved wings; shortened wing; bubble on one wing; absence of one wing, deformation of thorax, interruption and violation of tergite patterns, disruption of distribution of ocular facets and bristles; absence of pigmentation of the second and third legs. Statistical analysis by the Chi-square method showed the reliability of the difference in experiment and control at P ≤ 0.01. On the basis of this, it can be considered that alpha particles, which in the environment are mainly generated by radon and its isotopes, have a mutagenic effect that manifests itself, mainly in the formation of morphoses or deformities.

Keywords: alpha-radiation, genotoxicity, morphoses, radioecology, radon

Procedia PDF Downloads 130
109 Welfare Dynamics and Food Prices' Changes: Evidence from Landholding Groups in Rural Pakistan

Authors: Lubna Naz, Munir Ahmad, G. M. Arif

Abstract:

This study analyzes static and dynamic welfare impacts of food price changes for various landholding groups in Pakistan. The study uses three classifications of land ownership, landless, small landowners and large landowners, for analysis. The study uses Panel Survey, Pakistan Rural Household Survey (PRHS) of Pakistan Institute of Development Economics Islamabad, of rural households from two largest provinces (Sindh and Punjab) of Pakistan. The study uses all three waves (2001, 2004 and 2010) of PRHS. This research work makes three important contributions in literature. First, this study uses Quadratic Almost Ideal Demand System (QUAIDS) to estimate demand functions for eight food groups-cereals, meat, milk and milk products, vegetables, cooking oil, pulses and other food. The study estimates food demand functions with Nonlinear Seemingly Unrelated (NLSUR), and employs Lagrange Multiplier and test on the coefficient of squared expenditure term to determine inclusion of squared expenditure term. Test results support the inclusion of squared expenditure term in the food demand model for each of landholding groups (landless, small landowners and large landowners). This study tests for endogeneity and uses control function for its correction. The problem of observed zero expenditure is dealt with a two-step procedure. Second, it creates low price and high price periods, based on literature review. It uses elasticity coefficients from QUAIDS to analyze static and dynamic welfare effects (first and second order Tylor approximation of expenditure function is used) of food price changes across periods. The study estimates compensation variation (CV), money metric loss from food price changes, for landless, small and large landowners. Third, this study compares the findings on welfare implications of food price changes based on QUAIDS with the earlier research in Pakistan, which used other specification of the demand system. The findings indicate that dynamic welfare impacts of food price changes are lower as compared to static welfare impacts for all landholding groups. The static and dynamic welfare impacts of food price changes are highest for landless. The study suggests that government should extend social security nets to landless poor and categorically to vulnerable landless (without livestock) to redress the short-term impact of food price increase. In addition, the government should stabilize food prices and particularly cereal prices in the long- run.

Keywords: QUAIDS, Lagrange multiplier, NLSUR, and Tylor approximation

Procedia PDF Downloads 348
108 Storms Dynamics in the Black Sea in the Context of the Climate Changes

Authors: Eugen Rusu

Abstract:

The objective of the work proposed is to perform an analysis of the wave conditions in the Black Sea basin. This is especially focused on the spatial and temporal occurrences and on the dynamics of the most extreme storms in the context of the climate changes. A numerical modelling system, based on the spectral phase averaged wave model SWAN, has been implemented and validated against both in situ measurements and remotely sensed data, all along the sea. Moreover, a successive correction method for the assimilation of the satellite data has been associated with the wave modelling system. This is based on the optimal interpolation of the satellite data. Previous studies show that the process of data assimilation improves considerably the reliability of the results provided by the modelling system. This especially concerns the most sensitive cases from the point of view of the accuracy of the wave predictions, as the extreme storm situations are. Following this numerical approach, it has to be highlighted that the results provided by the wave modelling system above described are in general in line with those provided by some similar wave prediction systems implemented in enclosed or semi-enclosed sea basins. Simulations of this wave modelling system with data assimilation have been performed for the 30-year period 1987-2016. Considering this database, the next step was to analyze the intensity and the dynamics of the higher storms encountered in this period. According to the data resulted from the model simulations, the western side of the sea is considerably more energetic than the rest of the basin. In this western region, regular strong storms provide usually significant wave heights greater than 8m. This may lead to maximum wave heights even greater than 15m. Such regular strong storms may occur several times in one year, usually in the wintertime, or in late autumn, and it can be noticed that their frequency becomes higher in the last decade. As regards the case of the most extreme storms, significant wave heights greater than 10m and maximum wave heights close to 20m (and even greater) may occur. Such extreme storms, which in the past were noticed only once in four or five years, are more recent to be faced almost every year in the Black Sea, and this seems to be a consequence of the climate changes. The analysis performed included also the dynamics of the monthly and annual significant wave height maxima as well as the identification of the most probable spatial and temporal occurrences of the extreme storm events. Finally, it can be concluded that the present work provides valuable information related to the characteristics of the storm conditions and on their dynamics in the Black Sea. This environment is currently subjected to high navigation traffic and intense offshore and nearshore activities and the strong storms that systematically occur may produce accidents with very serious consequences.

Keywords: Black Sea, extreme storms, SWAN simulations, waves

Procedia PDF Downloads 222
107 Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Pavel V. Usik, Ekmel Ozbay

Abstract:

Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 169
106 Development of a Finite Element Model of the Upper Cervical Spine to Evaluate the Atlantoaxial Fixation Techniques

Authors: Iman Zafarparandeh, Muzammil Mumtaz, Paniz Taherzadeh, Deniz Erbulut

Abstract:

The instability in the atlantoaxial joint may occur due to cervical surgery, congenital anomalies, and trauma. There are different types of fixation techniques proposed for restoring the stability and preventing harmful neurological deterioration. Application of the screw constructs has become a popular alternative to the older techniques for stabilizing the joint. The main difference between the various screw constructs is the type of the screw which can be lateral mass screw, pedicle screw, transarticular screw, and translaminar screw. The aim of this paper is to study the effect of three popular screw constructs fixation techniques on the biomechanics of the atlantoaxial joint using the finite element (FE) method. A three-dimensional FE model of the upper cervical spine including the skull, C1 and C2 vertebrae, and groups of the existing ligaments were developed. The accurate geometry of the model was obtained from the CT data of a 35-year old male. Three screw constructs were designed to compare; Magerl transarticular screw (TA-Screw), Goel-Harms lateral mass screw and pedicle screw (LM-Screw and Pedicle-Screw), and Wright lateral mass screw and translaminar screw (LM-Screw and TL-Screw). Pure moments were applied to the model in the three main planes; flexion (Flex), extension (Ext), axial rotation (AR) and lateral bending (LB). The range of motion (ROM) of C0-C1 and C1-C2 segments for the implanted FE models are compared to the intact FE model and the in vitro study of Panjabi (1988). The Magerl technique showed less effect on the ROM of C0-C1 than the other two techniques in sagittal plane. In lateral bending and axial rotation, the Goel-Harms and Wright techniques showed less effect on the ROM of C0-C1 than the Magerl technique. The Magerl technique has the highest fusion rate as 99% in all loading directions for the C1-C2 segment. The Wright technique has the lowest fusion rate in LB as 79%. The three techniques resulted in the same fusion rate in extension loading as 99%. The maximum stress for the Magerl technique is the lowest in all load direction compared to other two techniques. The maximum stress in all direction was 234 Mpa and occurred in flexion with the Wright technique. The maximum stress for the Goel-Harms and Wright techniques occurred in lateral mass screw. The ROM obtained from the FE results support this idea that the fusion rate of the Magerl is more than 99%. Moreover, the maximum stress occurred in each screw constructs proves the less failure possibility for the Magerl technique. Another advantage of the Magerl technique is the less number of components compared to other techniques using screw constructs. Despite the benefits of the Magerl technique, there are drawbacks to using this method such as reduction of the C1 and C2 before screw placement. Therefore, other fixation methods such as Goel-Harms and Wright techniques find the solution for the drawbacks of the Magerl technique by adding screws separately to C1 and C2. The FE model implanted with the Wright technique showed the highest maximum stress almost in all load direction.

Keywords: cervical spine, finite element model, atlantoaxial, fixation technique

Procedia PDF Downloads 366
105 Cognitive Linguistic Features Underlying Spelling Development in a Second Language: A Case Study of L2 Spellers in South Africa

Authors: A. Van Staden, A. Tolmie, E. Vorster

Abstract:

Research confirms the multifaceted nature of spelling development and underscores the importance of both cognitive and linguistic skills that affect sound spelling development such as working and long-term memory, phonological and orthographic awareness, mental orthographic images, semantic knowledge and morphological awareness. This has clear implications for many South African English second language spellers (L2) who attempt to become proficient spellers. Since English has an opaque orthography, with irregular spelling patterns and insufficient sound/grapheme correspondences, L2 spellers can neither rely, nor draw on the phonological awareness skills of their first language (for example Sesotho and many other African languages), to assist them to spell the majority of English words. Epistemologically, this research is informed by social constructivism. In addition the researchers also hypothesized that the principles of the Overlapping Waves Theory was an appropriate lens through which to investigate whether L2 spellers could significantly improve their spelling skills via the implementation of an alternative route to spelling development, namely the orthographic route, and more specifically via the application of visual imagery. Post-test results confirmed the results of previous research that argues for the interactive nature of different cognitive and linguistic systems such as working memory and its subsystems and long-term memory, as learners were systematically guided to store visual orthographic images of words in their long-term lexicons. Moreover, the results have shown that L2 spellers in the experimental group (n = 9) significantly outperformed L2 spellers (n = 9) in the control group whose intervention involved phonological awareness (and coding) including the teaching of spelling rules. Consequently, L2 learners in the experimental group significantly improved in all the post-test measures included in this investigation, namely the four sub-tests of short-term memory; as well as two spelling measures (i.e. diagnostic and standardized measures). Against this background, the findings of this study look promising and have shown that, within a social-constructivist learning environment, learners can be systematically guided to apply higher-order thinking processes such as visual imagery to successfully store and retrieve mental images of spelling words from their output lexicons. Moreover, results from the present study could play an important role in directing research into this under-researched aspect of L2 literacy development within the South African education context.

Keywords: English second language spellers, phonological and orthographic coding, social constructivism, visual imagery as spelling strategy

Procedia PDF Downloads 332