Search results for: highly porous scaffolds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5114

Search results for: highly porous scaffolds

4004 A Computational Approach to Screen Antagonist’s Molecule against Mycobacterium tuberculosis Lipoprotein LprG (Rv1411c)

Authors: Syed Asif Hassan, Tabrej Khan

Abstract:

Tuberculosis (TB) caused by bacillus Mycobacterium tuberculosis (Mtb) continues to take a disturbing toll on human life and healthcare facility worldwide. The global burden of TB remains enormous. The alarming rise of multi-drug resistant strains of Mycobacterium tuberculosis calls for an increase in research efforts towards the development of new target specific therapeutics against diverse strains of M. tuberculosis. Therefore, the discovery of new molecular scaffolds targeting new drug sites should be a priority for a workable plan for fighting resistance in Mycobacterium tuberculosis (Mtb). Mtb non-acylated lipoprotein LprG (Rv1411c) has a Toll-like receptor 2 (TLR2) agonist actions that depend on its association with triacylated glycolipids binding specifically with the hydrophobic pocket of Mtb LprG lipoprotein. The detection of a glycolipid carrier function has important implications for the role of LprG in Mycobacterial physiology and virulence. Therefore, considering the pivotal role of glycolipids in mycobacterial physiology and host-pathogen interactions, designing competitive antagonist (chemotherapeutics) ligands that competitively bind to glycolipid binding domain in LprG lipoprotein, will lead to inhibition of tuberculosis infection in humans. In this study, a unified approach involving ligand-based virtual screening protocol USRCAT (Ultra Shape Recognition) software and molecular docking studies using Auto Dock Vina 1.1.2 using the X-ray crystal structure of Mtb LprG protein was implemented. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the Ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has the higher hypothetical affinity, also has greater negative value. Based on the USRCAT, Lipinski’s values and molecular docking results, [(2R)-2,3-di(hexadecanoyl oxy)propyl][(2S,3S,5S,6R)-3,4,5-trihydroxy-2,6-bis[[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6 (hydroxymethyl)tetrahydropyran-2-yl]oxy]cyclohexyl] phosphate (XPX) was confirmed as a promising drug-like lead compound (antagonist) binding specifically to the hydrophobic domain of LprG protein with affinity greater than that of PIM2 (agonist of LprG protein) with a free binding energy of -9.98e+006 Kcal/mol and binding affinity of -132 Kcal/mol, respectively. A further, in vitro assay of this compound is required to establish its potency in inhibiting molecular evasion mechanism of MTB within the infected host macrophages. These results will certainly be helpful in future anti-TB drug discovery efforts against Multidrug-Resistance Tuberculosis (MDR-TB).

Keywords: antagonist, agonist, binding affinity, chemotherapeutics, drug-like, multi drug resistance tuberculosis (MDR-TB), RV1411c protein, toll-like receptor (TLR2)

Procedia PDF Downloads 266
4003 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 55
4002 Low Energy Technology for Leachate Valorisation

Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo

Abstract:

Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.

Keywords: forward osmosis, landfills, leachate valorization, solar evaporation

Procedia PDF Downloads 198
4001 Influence of Initial Curing Time, Water Content and Apparent Water Content on Geopolymer Modified Sludge Generated in Landslide Area

Authors: Minh Chien Vu, Tomoaki Satomi, Hiroshi Takahashi

Abstract:

As being lack of sufficient strength to support the loading of construction as well as service life cause the clay content and clay mineralogy, soft and highly compressible soils (sludge) constitute a major problem in geotechnical engineering projects. Geopolymer, a kind of inorganic polymer, is a promising material with a wide range of applications and offers a lower level of CO₂ emissions than conventional Portland cement. However, the feasibility of geopolymer in term of modified the soft and highly compressible soil has not been received much attention due to the requirement of heat treatment for activating the fly ash component and the existence of high content of clay-size particles in the composition of sludge that affected on the efficiency of the reaction. On the other hand, the geopolymer modified sludge could be affected by other important factors such as initial curing time, initial water content and apparent water content. Therefore, this paper describes a different potential application of geopolymer: soil stabilization in landslide areas to adapt to the technical properties of sludge so that heavy machines can move on. Sludge condition process is utilized to demonstrate the possibility for stabilizing sludge using fly ash-based geopolymer at ambient curing condition ( ± 20 °C) in term of failure strength, strain and bulk density. Sludge conditioning is a process whereby sludge is treated with chemicals or various other means to improve the dewatering characteristics of sludge before applying in the construction area. The effect of initial curing time, water content and apparent water content on the modification of sludge are the main focus of this study. Test results indicate that the initial curing time has potential for improving failure strain and strength of modified sludge with the specific condition of soft soil. The result further shows that the initial water content over than 50% total mass of sludge could significantly lead to a decrease of strength performance of geopolymer-based modified sludge. The optimum apparent water content of geopolymer modified sludge is strongly influenced by the amount of geopolymer content and initial water content of sludge. The solution to minimize the effect of high initial water content will be considered deeper in the future.

Keywords: landslide, sludge, fly ash, geopolymer, sludge conditioning

Procedia PDF Downloads 113
4000 Common Ragweed (Ambrosia artemisiifolia): Changing Proteomic Patterns of Pollen under Elevated NO₂ Concentration and/or Future Rising Temperature Scenario

Authors: Xiaojie Cheng, Ulrike Frank, Feng Zhao, Karin Pritsch

Abstract:

Ragweed (Ambrosia artemisiifolia) is an invasive weed that has become an increasing global problem. In addition to affecting land use and crop yields, ragweed has a strong impact on human health as it produces highly allergenic pollen. Global warming will result in an earlier and longer pollen season enhanced pollen production and an increase in pollen allergenicity with a negative effect on atopic patients. The aims of this study were to investigate the effects of increasing temperature, the future climate scenario in the Munich area, southern Germany, predicted on the basis of RCP8.5 until the end of 2050s, or/and NO₂, a major air pollutant, 1) on the vegetative and reproductive characteristics of ragweed plants, 2) on the total allergenicity of ragweed pollen, 3) on the total pollen proteomic patterns. Ragweed plants were cultivated for the whole plant vegetation period under controlled conditions either under ambient climate conditions or 4°C higher temperatures with or without additional NO₂. Higher temperature resulted in bigger plant sizes, longer male inflorescences, and longer pollen seasons. The total allergenic potential of the pollen was accessed by dot blot using serum from ragweed pollen sensitized patients. The comparative immunoblot analysis revealed that the in vivo fumigation of ragweed plants with elevated NO₂-concentrations significantly increased the allergenic potential of the pollen, and in combination with increased temperature, the allergenic potential was even higher. On the other hand, label-free protein quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed. The results showed that more proteins were significantly up- and down-regulated under higher temperatures with/without elevated NO₂ conditions. Most of the highly expressed proteins were participating intensively in the metabolic process, the cellular process, and the stress defense process. These findings suggest that rising temperature and elevated NO₂ are important environmental factors for higher abiotic stress activities, catalytic activities, and thus higher allergenic potential observed in pollen proteins.

Keywords: climate change, NO₂, pollen proteome, ragweed, temperature

Procedia PDF Downloads 180
3999 Theoretical Analysis and Design Consideration of Screened Heat Pipes for Low-Medium Concentration Solar Receivers

Authors: Davoud Jafari, Paolo Di Marco, Alessandro Franco, Sauro Filippeschi

Abstract:

This paper summarizes the results of an investigation into the heat pipe heat transfer for solar collector applications. The study aims to show the feasibility of a concentrating solar collector, which is coupled with a heat pipe. Particular emphasis is placed on the capillary and boiling limits in capillary porous structures, with different mesh numbers and wick thicknesses. A mathematical model of a cylindrical heat pipe is applied to study its behaviour when it is exposed to higher heat input at the evaporator. The steady state analytical model includes two-dimensional heat conduction in the HP’s wall, the liquid flow in the wick and vapor hydrodynamics. A sensitivity analysis was conducted by considering different design criteria and working conditions. Different wicks (mesh 50, 100, 150, 200, 250, and, 300), different porosities (0.5, 0.6, 0.7, 0.8, and 0.9) with different wick thicknesses (0.25, 0.5, 1, 1.5, and 2 mm) are analyzed with water as a working fluid. Results show that it is possible to improve heat transfer capability (HTC) of a HP by selecting the appropriate wick thickness, the effective pore radius, and lengths for a given HP configuration, and there exist optimal design criteria (optimal thick, evaporator adiabatic and condenser sections). It is shown that the boiling and wicking limits are connected and occurs in dependence on each other. As different parts of the HP external surface collect different fractions of the total incoming insolation, the analysis of non-uniform heat flux distribution indicates that peak heat flux is not affecting parameter. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature SC application.

Keywords: screened heat pipes, analytical model, boiling and capillary limits, concentrating collector

Procedia PDF Downloads 553
3998 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.

Keywords: antibacterial, bioglass, drug delivery system, sol- gel

Procedia PDF Downloads 55
3997 Microwave Freeze Drying of Fruit Foams for the Production of Healthy Snacks

Authors: Sabine Ambros, Mine Oezcelik, Evelyn Dachmann, Ulrich Kulozik

Abstract:

Nutritional quality and taste of dried fruit products is still often unsatisfactory and does not meet anymore the current consumer trends. Dried foams from fruit puree could be an attractive alternative. Due to their open-porous structure, a new sensory perception with a sudden and very intense aroma release could be generated. To make such high quality fruit snacks affordable for the consumer, a gentle but at the same time fast drying process has to be applied. Therefore, microwave-assisted freeze drying of raspberry foams was investigated in this work and compared with the conventional freeze drying technique in terms of nutritional parameters such as antioxidative capacity, anthocyanin content and vitamin C and the physical parameters colour and wettability. The following process settings were applied: 0.01 kPa chamber pressure and a maximum temperature of 30 °C for both freeze and microwave freeze drying. The influence of microwave power levels on the dried foams was investigated between 1 and 5 W/g. Intermediate microwave power settings led to the highest nutritional values, a colour appearance comparable to the undried foam and a proper wettability. A proper process stability could also be guaranteed for these power levels. By the volumetric energy input of the microwaves drying time could be reduced from 24 h in conventional freeze drying to about 6 h. The short drying times further resulted in an equally high maintenance of the above mentioned parameters in both drying techniques. Hence, microwave assisted freeze drying could lead to a process acceleration in comparison to freeze drying and be therefore an interesting alternative drying technique which on industrial scale enables higher efficiency and higher product throughput.

Keywords: foam drying, freeze drying, fruit puree, microwave freeze drying, raspberry

Procedia PDF Downloads 331
3996 Assessing Usability of Behavior Coaching Organizer

Authors: Nathaniel A. Hoston

Abstract:

Teacher coaching is necessary for improving student behaviors. While coaching technologies (e.g., bug-in-ear coaching, video-coaching) can assist the coaching process, little is known about the usability of those tools. This study assessed the usability and perceived efficacy of the Behavior Coaching Organizer (BCO) using usability testing methods (i.e., concurrent think-aloud, retrospective probing) in a simulated learning environment. Participants found that the BCO is moderately usable while perceiving the tool as highly effective for addressing concerning student behaviors. Additionally, participants noted a general need for continued coaching support. The results indicate a need for further usability testing with education research.

Keywords: behavioral interventions, Behavior Coaching Organizer, coaching technologies, usability methods

Procedia PDF Downloads 121
3995 Comparison of Analytical Method and Software for Analysis of Flat Slab Subjected to Various Parametric Loadings

Authors: Hema V. Vanar, R. K. Soni, N. D. Shah

Abstract:

Slabs supported directly on columns without beams are known as Flat slabs. Flat slabs are highly versatile elements widely used in construction, providing minimum depth, fast construction and allowing flexible column grids. The main objective of this thesis is comparison of analytical method and soft ware for analysis of flat slab subjected to various parametric loadings. Study presents analysis of flat slab is performed under different types of gravity.

Keywords: fat slab, parametric load, analysis, software

Procedia PDF Downloads 484
3994 Understanding the Excited State Dynamics of a Phase Transformable Photo-Active Metal-Organic Framework MIP 177 through Time-Resolved Infrared Spectroscopy

Authors: Aneek Kuila, Yaron Paz

Abstract:

MIP 177 LT and HT are two-phase transformable metal organic frameworks consisting of a Ti12O15 oxocluster and a tetracarboxylate ligand that exhibits robust chemical stability and improved photoactivity. LT to HT only shows the changes in dimensionality from 0D to 1D without any change in the overall chemical structure. In terms of chemical and photoactivity MIP 177 LT is found to perform better than the MIP 177HT. Step-scan Fourier transform absorption difference time-resolved spectroscopy has been used to collect mid-IR time-resolved infrared spectra of the transient electronic excited states of a nano-porous metal–organic framework MIP 177-LT and HT with 2.5 ns time resolution. Analyzing the time-resolved vibrational data after 355nm LASER excitation reveals the presence of the temporal changes of ν (O-Ti-O) of Ti-O metal cluster and ν (-COO) of the ligand concluding the fact that these moieties are the ultimate acceptors of the excited charges which are localized over those regions on the nanosecond timescale. A direct negative correlation between the differential absorbance (Δ Absorbance) reveals the charge transfer relation among these two moieties. A longer-lived transient signal up to 180ns for MIP 177 LT compared to the 100 ns of MIP 177 HT shows the extended lifetime of the reactive charges over the surface that exerts in their effectivity. An ultrafast change of bidentate to monodentate bridging in the -COO-Ti-O ligand-metal coordination environment was observed after the photoexcitation of MIP 177 LT which remains and lives with for seconds after photoexcitation is halted. This phenomenon is very unique to MIP 177 LT but not observed with HT. This in-situ change in the coordination denticity during the photoexcitation was not observed previously which can rationalize the reason behind the ability of MIP 177 LT to accumulate electrons during continuous photoexcitation leading to a superior photocatalytic activity.

Keywords: time resolved FTIR, metal organic framework, denticity, photoacatalysis

Procedia PDF Downloads 53
3993 Bi-Functional Natural Carboxylic Acid Catalysts for the Synthesis of Diethyl α-Aminophosphonates in Aqueous Media

Authors: Hellal Abdelkader, Chafaa Salah, Boudjemaa Fouzia

Abstract:

A new, convenient, and high yielding procedure for the preparation of diethyl α-aminophosphonates in water via Kabachnik-Fields reaction by one-pot reaction of aromatic aldehydes, ortho-aminophenols, and dialkylphosphites in the presence of a low catalytic amount of citric, malic, tartaric, and oxalic acids as a natural, bi-functional, and highly stable catalyst is described, the obtained products were characterized by elemental analyses, molar conductance, magnetic susceptibility, FTIR, Uv-Vis spectral data, NMR-C, NMR-H, and NMR-P analyses.

Keywords: α-aminophosphonates, aminophenols, natural acids, aqueous media, Kabachnik-Fields reaction

Procedia PDF Downloads 327
3992 The Work System Method for Designing Knowledge Mobilization Projects

Authors: Chihab Benmoussa

Abstract:

Could the Work System Approach (WSA) function as a framework for designing high-impact knowledge mobilization systems? This paper put forward arguments in favor of the applicability of WSA for knowledge mobilization design based on evidences from a practical research. Normative approaches for practitioners are highly needed especially in the field of knowledge management (KM), given the abysmal rate of disappointment and failure of KM projects. The paper contrasts knowledge management and knowledge mobilization, presents the WSA and showed how the WSA’s concepts and ideas fit with the approach adopted by a multinational company in designing a successful knowledge mobilization initiative.

Keywords: knowledge management, knowledge mobilizations, work system method

Procedia PDF Downloads 515
3991 Modeling the Current and Future Distribution of Anthus Pratensis under Climate Change

Authors: Zahira Belkacemi

Abstract:

One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. In this study, we used maximum-entropy niche modeling (Maxent) to predict the current and future distribution of Anthus pratensis using climatic variables. The results showed that the species would not be highly affected by the climate change in shifting its distribution; however, the results of this study should be improved by taking into account other predictors, and that the NATURA 2000 protected sites will be efficient at 42% in protecting the species.

Keywords: anthus pratensis, climate change, Europe, species distribution model

Procedia PDF Downloads 135
3990 Argos-Linked Fastloc GPS Reveals the Resting Activity of Migrating Sea Turtles

Authors: Gail Schofield, Antoine M. Dujon, Nicole Esteban, Rebecca M. Lester, Graeme C. Hays

Abstract:

Variation in diel movement patterns during migration provides information on the strategies used by animals to maximize energy efficiency and ensure the successful completion of migration. For instance, many flying and land-based terrestrial species stop to rest and refuel at regular intervals along the migratory route, or at transitory ‘stopover’ sites, depending on resource availability. However, in cases where stopping is not possible (such as over–or through deep–open oceans, or over deserts and mountains), non-stop travel is required, with animals needing to develop strategies to rest while actively traveling. Recent advances in biologging technologies have identified mid-flight micro sleeps by swifts in Africa during the 10-month non-breeding period, and the use of lateralized sleep behavior in orca and bottlenose dolphins during migration. Here, highly accurate locations obtained by Argos-linked Fastloc-GPS transmitters of adult green (n=8 turtles, 9487 locations) and loggerhead (n=46 turtles, 47,588 locations) sea turtles migrating around thousand kilometers (over several weeks) from breeding to foraging grounds across the Indian and Mediterranean oceans were used to identify potential resting strategies. Stopovers were only documented for seven turtles, lasting up to 6 days; thus, this strategy was not commonly used, possibly due to the lack of potential ‘shallow’ ( < 100 m seabed depth) sites along routes. However, observations of the day versus night speed of travel indicated that turtles might use other mechanisms to rest. For instance, turtles traveled an average 31% slower at night compared to day during oceanic crossings. Slower travel speeds at night might be explained by turtles swimming in a less direct line at night and/or deeper dives reducing their forward motion, as indicated through studies using Argos-linked transmitters and accelerometers. Furthermore, within the first 24 h of entering waters shallower than 100 m towards the end of migration (the depth at which sea turtles can swim and rest on the seabed), some individuals travelled 72% slower at night, repeating this behavior intermittently (each time for a one-night duration at 3–6-day intervals) until reaching the foraging grounds. If the turtles were, in fact, resting on the seabed at this point, they could be inactive for up to 8-hours, facilitating protracted periods of rest after several weeks of constant swimming. Turtles might not rest every night once within these shallower depths, due to the time constraints of reaching foraging grounds and restoring depleted energetic reserves (as sea turtles are capital breeders, they tend not to feed for several months during migration to and from the breeding grounds and while breeding). In conclusion, access to data-rich, highly accurate Argos-linked Fastloc-GPS provided information about differences in the day versus night activity at different stages of migration, allowing us, for the first time, to compare the strategies used by a marine vertebrate with terrestrial land-based and flying species. However, the question of what resting strategies are used by individuals that remain in oceanic waters to forage, with combinations of highly accurate Argos-linked Fastloc-GPS transmitters and accelerometry or time-depth recorders being required for sufficient numbers of individuals.

Keywords: argos-linked fastloc GPS, data loggers, migration, resting strategy, telemetry

Procedia PDF Downloads 148
3989 A Study on the Current Challenges Hindering Urban Park Development in Ulaanbaatar City, Mongolia

Authors: Bayarmaa Enkhbold, Kenichi Matsui

Abstract:

Urban parks are important assets to every community in terms of providing space for health, cultural and leisure activities. However, Ulaanbaatar, the capital of Mongolia, faces a shortage of green spaces, particularly urban parks, due to overpopulation and haphazard growth. Therefore, in order to increase green space per person, the city government has planned to increase green space per person up to 20m² by 2020 and 30m² by 2030 by establishing more urban parks throughout the city. But this plan was estimated that it is highly unlikely to reach those goals according to the analysis of the present status of plan implementation because the current amount of green space per person is still 4m². In the past studies globally, city planners and scientists agree that it is highly improbable to develop urban parks and keep maintenance sustainably without reflecting community perceptions and their involvement in the park establishment. Therefore, this research aims to find the challenges which stymie urban park development in Ulaanbaatar city and recommend dealing with the problems. In order to reach the goal, communities’ perceptions about the current challenges and their necessity for urban parks were identified and determined whether they differentiated depending on two different types of residential areas (urban and suburban areas). It also attempted to investigate international good practices on how they deal with similar problems. The research methodology was based on a questionnaire survey among city residents, a document review regarding the involvement of stakeholders, and a literature review of relevant past studies. According to the residents’ perceptions, the biggest challenge was a lack of land availability and followed by a lack of proper policy, planning, management, and maintenance out of seven key challenges identified. The biggest community demand from the urban park was a playground for children and followed by recreation and relaxation out of six types of needs. Based on research findings, the study proposed several recommendations for enhancements as institutional and legal framework, park plan and management, supportive environment and monitoring, evaluation, and reporting.

Keywords: challenges of urban park planning and maintenance, community-based urban park establishment, community perceptions and participation, urban parks in Ulaanbaatar, Mongolia

Procedia PDF Downloads 114
3988 Level of Understanding of the Catholic Doctrines in Relation to the Way of Life of Ignatian Graduates

Authors: Maria Wendy Mendoza-Solomo

Abstract:

The study assessed the level of understanding of catholic doctrines in relation to the way of life of Ignatian graduates of Ateneo de Naga University (ADNU). It was conducted to find out if ADNU is successful in leading their students to a deeper moral understanding of the world centered on Jesus Christ through their curriculum, academic programs, activities and practices. This study further evaluated if their graduates live out their Catholic commitment to Christ in their current way of life. It also determined the factors that affected their level of understanding of Catholic doctrines and their current way of life. The descriptive, qualitative, evaluative and correlational analyses determined the level of understanding of the Catholic doctrines and the current way of life of 390 graduates. It also correlated the level of understanding to moral life and worship. The factors that affected the graduates’ level of understanding and their current way of life were measured. A researcher-made instrument was distributed to the respondents either using the traditional way or the online survey to reach out graduates across the globe. Major findings were (1) The weighted mean of graduates’ level of understanding of Catholic doctrines was 4.63. (2) Along moral life, 4.07 while along worship, 3.83. (3) The Catholic doctrines and moral life had Pearson r value of 0.79. The doctrines and worship, 0.87; and worship and moral life, 0.89. (4) The understanding of the doctrines was affected highly by the teacher factor with 4.09 mean. The moral life and worship were affected highly by the teacher and technological factors both ranked 1.5 (4.04). (5) Along Catholic doctrines, the teacher factor had 0.90 r value; and environmental, -0.40. Along moral life, teacher had r value of -0.30; technological (-0.92), socio-economic (-0.93), political (-0.83), and environmental (-0.90). Along worship, the teacher had 0.36 Pearson r value, technological and socio-economic (-0.78), political (-0.73) and environmental (-0.72). Major conclusions were: (1) Graduates had very high level of understanding of the Catholic doctrines as summarized in the Creed which is grounded in the Sacred Scriptures. (2) They live out this Catholic commitment to Christ by obeying the Commandments very extensively but needed more participation in religious and parish activities. They have overwhelming spirituality and religiosity in terms of receiving of sacraments and sacramental practices except reading the Bible and reflecting on its passages. (3) The graduates’ level of understanding of the Catholic doctrines had very strong correlation with their current way of life. (4) Teacher, socio-economic, technological, environmental, and political factors significantly affected their understanding of the Catholic doctrines and their current way of life. (5) The teacher factor had very strong relationship with the doctrines; technological and political, weak; environmental, moderate; and socio-economic, very weak relationship. The teacher factor had weak relationship but the other factors had very strong relationship with moral life and strong relationship with worship.

Keywords: Catholic doctrines, Ignatian graduates, relationship, way of life

Procedia PDF Downloads 348
3987 Hepatitis B, Hepatitis C and HIV Infections and Associated Risk Factors among Substance Abusers in Mekelle Substance Users Treatment and Rehabilitation Centers, Tigrai, Northern Ethiopia

Authors: Tadele Araya, Tsehaye Asmelash, Girmatsion Fiseha

Abstract:

Background: Hepatitis B virus (HBV), Hepatitis C virus (HCV) and Human Immunodeficiency Virus (HIV) constitute serious healthcare problems worldwide. Blood-borne pathogens HBV, HCV and HIV are commonly associated with infections among substance or Injection Drug Users (IDUs). The objective of this study was to determine the prevalence of HBV, HCV, and HIV infections among substance users in Mekelle Substance users Treatment and Rehabilitation Centers. Methods: A cross-sectional study design was used from Dec 2020 to Sep / 2021 to conduct the study. A total of 600 substance users were included. Data regarding the socio-demographic, clinical and sexual behaviors of the substance users were collected using a structured questionnaire. For laboratory analysis, 5-10 ml of venous blood was taken from the substance users. The laboratory analysis was performed by Enzyme-Linked Immunosorbent Assay (ELISA) at Mekelle University, Department of Medical Microbiology and Immunology Research Laboratory. The Data was analyzed using SPSS and Epi-data. The association of variables with HBV, HCV and HIV infections was determined using multivariate analysis and a P value < 0.05 was considered statistically significant. Result: The overall prevalence rate of HBV, HCV and HIV infections were 10%, 6.6%, and 7.5%, respectively. The mean age of the study participants was 28.12 ± 6.9. A higher prevalence of HBV infection was seen in participants who were users of drug injections and in those who were infected with HIV. HCV was comparatively higher in those who had a previous history of unsafe surgical procedures than their counterparts. Homeless participants were highly exposed to HCV and HIV infections than their counterparts. The HBV/HIV Co-infection prevalence was 3.5%. Those doing unprotected sexual practices [P= 0.03], Injection Drug users [P= 0.03], those who had an HBV-infected person in their family [P=0.02], infected with HIV [P= 0.025] were statistically associated with HBV infection. HCV was significantly associated with Substance users and previous history of unsafe surgical procedures [p=0.03, p=0.04), respectively. HIV was significantly associated with unprotected sexual practices and being homeless [p=0.045, p=0.05) respectively. Conclusion-The highly prevalent viral infection was HBV compared to others. There was a High prevalence of HBV/HIV co-infection. The presence of HBV-infected persons in a family, unprotected sexual practices and sharing of needles for drug injection were the risk factors associated with HBV, HIV, and HCV. Continuous health education and screening of the viral infection coupled with medical and psychological treatment is mandatory for the prevention and control of the infections.

Keywords: hepatitis b virus, hepatitis c virus, HIV, substance users

Procedia PDF Downloads 80
3986 Preparation of Silver and Silver-Gold, Universal and Repeatable, Surface Enhanced Raman Spectroscopy Platforms from SERSitive

Authors: Pawel Albrycht, Monika Ksiezopolska-Gocalska, Robert Holyst

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) is a technique of growing importance not only in purely scientific research related to analytical chemistry. It finds more and more applications in broadly understood testing - medical, forensic, pharmaceutical, food - and everywhere works perfectly, on one condition that SERS substrates used for testing give adequate enhancement, repeatability, and homogeneity of SERS signal. This is a problem that has existed since the invention of this technique. Some laboratories use as SERS amplifiers colloids with silver or gold nanoparticles, others form rough silver or gold surfaces, but results are generally either weak or unrepeatable. Furthermore, these structures are very often highly specific - they amplify the signal only of a small group of compounds. It means that they work with some kinds of analytes but only with those which were used at a developer’s laboratory. When it comes to research on different compounds, completely new SERS 'substrates' are required. That underlay our decision to develop universal substrates for the SERS spectroscopy. Generally, each compound has different affinity for both silver and gold, which have the best SERS properties, and that's what depends on what signal we get in the SERS spectrum. Our task was to create the platform that gives a characteristic 'fingerprint' of the largest number of compounds with very high repeatability - even at the expense of the intensity of the enhancement factor (EF) (possibility to repeat research results is of the uttermost importance). As specified above SERS substrates are offered by SERSitive company. Applied method is based on cyclic potentiodynamic electrodeposition of silver or silver-gold nanoparticles on the conductive surface of ITO-coated glass at controlled temperature of the reaction solution. Silver nanoparticles are supplied in the form of silver nitrate (AgNO₃, 10 mM), gold nanoparticles are derived from tetrachloroauric acid (10 mM) while sodium sulfite (Na₂O₃, 5 mM) is used as a reductor. To limit and standardize the size of the SERS surface on which nanoparticles are deposited, photolithography is used. We secure the desired ITO-coated glass surface, and then etch the unprotected ITO layer which prevents nanoparticles from settling at these sites. On the prepared surface, we carry out the process described above, obtaining SERS surface with nanoparticles of sizes 50-400 nm. The SERSitive platforms present highly sensitivity (EF = 10⁵-10⁶), homogeneity and repeatability (70-80%).

Keywords: electrodeposition, nanoparticles, Raman spectroscopy, SERS, SERSitive, SERS platforms, SERS substrates

Procedia PDF Downloads 151
3985 Noise Reduction by Energising the Boundary Layer

Authors: Kiran P. Kumar, H. M. Nayana, R. Rakshitha, S. Sushmitha

Abstract:

Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft.

Keywords: airframe, boundary layer, noise, reduction

Procedia PDF Downloads 472
3984 Screening Maize for Compatibility with F. Oxysporum to Enhance Striga asiatica (L.) Kuntze Resistance

Authors: Admire Isaac Tichafa Shayanowako, Mark Laing, Hussein Shimelis

Abstract:

Striga asiatica is among the leading abiotic constraints to maize production under small-holder farming communities in southern African. However, confirmed sources of resistance to the parasitic weed are still limited. Conventional breeding programmes have been progressing slowly due to the complex nature of the inheritance of Striga resistance, hence there is a need for more innovative approaches. This study aimed to achieve partial resistance as well as to breed for compatibility with Fusarium oxysporum fsp strigae, a soil fungus that is highly specific in its pathogenicity. The agar gel and paper roll assays in conjunction with a glass house pot trial were done to select genotypes based on their potential to stimulate germination of Striga and to test the efficacy of Fusarium oxysporum as a biocontrol agent. Results from agar gel assays showed a moderate to high potential in the release of Strigalactones among the 33 OPVs. Maximum Striga germination distances from the host root of 1.38 cm and up to 46% germination were observed in most of the populations. Considerable resistance was observed in a landrace ‘8lines’ which had the least Striga germination percentage (19%) with a maximum distance of 0.93 cm compared to the resistant check Z-DPLO-DTC1 that had 23% germination at a distance of 1.4cm. The number of fusarium colony forming units significantly deferred (P < 0.05) amongst the genotypes growing between germination papers. The number of crown roots, length of primary root and fresh weight of shoot and roots were highly correlated with concentration of fusarium macrospore counts. Pot trials showed significant differences between the fusarium coated and the uncoated treatments in terms of plant height, leaf counts, anthesis-silks intervals, Striga counts, Striga damage rating and Striga vigour. Striga emergence counts and Striga flowers were low in fusarium treated pots. Plants in fusarium treated pots had non-significant differences in height with the control treatment. This suggests that foxy 2 reduces the impact of Striga damage severity. Variability within fusarium treated genotypes with respect to traits under evaluation indicates the varying degree of compatibility with the biocontrol.

Keywords: maize, Striga asiaitca, resistance, compatibility, F. oxysporum

Procedia PDF Downloads 242
3983 Numerical Analysis of Solar Cooling System

Authors: Nadia Allouache, Mohamed Belmedani

Abstract:

Energy source is a sustainable, totally inexhaustible and environmentally friendly alternative to the fossil fuels available. It is a renewable and economical energy that can be harnessed sustainably over the long term and thus stabilizes energy costs. Solar cooling technologies have been developed to decrease the augmentation electricity consumption for air conditioning and to displace the peak load during hot summer days. A numerical analysis of thermal and solar performances of an annular finned adsorber, which is the most important component of the adsorption solar refrigerating system, is considered in this work. Different adsorbent/adsorbate pairs, such as activated carbon AC35/methanol, activated carbon AC35/ethanol, and activated carbon BPL/Ammoniac, are undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular finned adsorber. The Wilson and Dubinin- Astakhov models of the solid-adsorbate equilibrium are used to calculate the adsorbed quantity. The porous medium and the fins are contained in the annular space, and the adsorber is heated by solar energy. Effects of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The AC35/methanol pair is the best pair compared to BPL/Ammoniac and AC35/ethanol pairs in terms of system performance. The system performances are sensitive to the fin geometry. For the considered data measured for clear type days of July 2023 in Algeria and Morocco, the performances of the cooling system are very significant in Algeria.

Keywords: activated carbon AC35-methanol pair, activated carbon AC35-ethanol pair, activated carbon BPL-ammoniac pair, annular finned adsorber, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 49
3982 Nano-Sized Iron Oxides/ZnMe Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts for Degrading Specific Pharmaceutical Agents

Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja

Abstract:

Persistent organic pollutant discharged by various industries or urban regions into the aquatic ecosystems represent a serious threat to fauna and human health. The endocrine disrupting compounds are known to have toxic effects even at very low values of concentration. The anti-inflammatory agent Ibuprofen is an endocrine disrupting compound and is considered as model pollutant in the present study. The use of light energy to accomplish the latest requirements concerning wastewater discharge demands highly-performant and robust photo-catalysts. Many efforts have been paid to obtain efficient photo-responsive materials. Among the promising photo-catalysts, layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents Fe(II) self-supported on ZnMeLDHs (Me =Al3+, Fe3+) as novel efficient photo-catalysts for Fenton-like catalysis. The co-precipitation method was used to prepare ZnAlLDH, ZnFeAlLDH and ZnCrLDH (Zn2+/Me3+ = 2 molar ratio). Fe(II) was self-supported on the LDHs matrices by using the reconstruction method, at two different values of weight concentration. X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) were used to investigate the structural, textural, and micromorphology of the catalysts. The Fe(II)/ZnMeLDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively. The results point out that the embedment Fe(II) into ZnFeAlLDH and ZnCrLDH lead to a slight enhancement of ibuprofen degradation by light irradiation, whereas in case of ZnAlLDH, the degradation process is relatively low. A remarkable enhancement of ibuprofen degradation was found in the case of Fe(II)/ZnMeLDHs by photo-Fenton process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: layered double hydroxide, heterogeneous Fenton, micropollutant, photocatalysis

Procedia PDF Downloads 291
3981 High-Temperature X-Ray Powder Diffraction of Secondary Gypsum

Authors: D. Gazdič, I. Hájková, M. Fridrichová

Abstract:

This paper involved the performance of a high-temperature X-Ray powder diffraction analysis (XRD) of a sample of chemical gypsum generated in the production of titanium white; this gypsum originates by neutralizing highly acidic water with limestone suspension. Specifically, it was gypsum formed in the first stage of neutralization when the resulting material contains, apart from gypsum, a number of waste products resulting from the decomposition of ilmenite by sulphuric acid. So it can be described as red titanogypsum. By conducting the experiment using XRD apparatus Bruker D8 Advance with a Cu anode (λkα=1.54184 Å) equipped with high-temperature chamber Anton Paar HTK 16, it was possible to identify clearly in the sample each phase transition in the system of CaSO4•xH2O.

Keywords: anhydrite, gypsum, bassanite, hematite, XRD, powder, high-temperature

Procedia PDF Downloads 338
3980 Overview of Risk Management in Electricity Markets Using Financial Derivatives

Authors: Aparna Viswanath

Abstract:

Electricity spot prices are highly volatile under optimal generation capacity scenarios due to factors such as non-storability of electricity, peak demand at certain periods, generator outages, fuel uncertainty for renewable energy generators, huge investments and time needed for generation capacity expansion etc. As a result market participants are exposed to price and volume risk, which has led to the development of risk management practices. This paper provides an overview of risk management practices by market participants in electricity markets using financial derivatives.

Keywords: financial derivatives, forward, futures, options, risk management

Procedia PDF Downloads 473
3979 A Comparative Study of Photo and Electro-Fenton Reactions Efficiency in Degradation of Cationic Dyes Mixture

Authors: S. Bouafia Chergui, Nihal Oturan, Hussein Khalaf, Mehmet A. Oturan

Abstract:

The aim of this work was to compare the degradation of a mixture of three cationic dyes by advanced oxidation processes (electro-Fenton, photo-Fenton) in aqueous solution. These processes are based on the in situ production of hydroxyl radical, a highly strong oxidant, which allows the degradation of organic pollutants until their mineralization into CO2 and H2O. Under optimal operating conditions, the evolution of total organic carbon (TOC) and electrical energy efficiency have been investigated for the two processes.

Keywords: photo-fenton, electro-fenton, energy efficiency, water treatment

Procedia PDF Downloads 502
3978 A Sustainable Approach for Waste Management: Automotive Waste Transformation into High Value Titanium Nitride Ceramic

Authors: Mohannad Mayyas, Farshid Pahlevani, Veena Sahajwalla

Abstract:

Automotive shredder residue (ASR) is an industrial waste, generated during the recycling process of End-of-life vehicles. The large increasing production volumes of ASR and its hazardous content have raised concerns worldwide, leading some countries to impose more restrictions on ASR waste disposal and encouraging researchers to find efficient solutions for ASR processing. Although a great deal of research work has been carried out, all proposed solutions, to our knowledge, remain commercially and technically unproven. While the volume of waste materials continues to increase, the production of materials from new sustainable sources has become of great importance. Advanced ceramic materials such as nitrides, carbides and borides are widely used in a variety of applications. Among these ceramics, a great deal of attention has been recently paid to Titanium nitride (TiN) owing to its unique characteristics. In our study, we propose a new sustainable approach for ASR management where TiN nanoparticles with ideal particle size ranging from 200 to 315 nm can be synthesized as a by-product. In this approach, TiN is thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) incorporated with titanium oxide (TiO2). Results indicated that TiO2 influences and catalyses degradation reactions of ASR and helps to achieve fast and full decomposition. In addition, the process resulted in titanium nitride (TiN) ceramic with several unique structures (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) that were simply obtained by tuning the ratio of TiO2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C.

Keywords: automotive shredder residue, nano-ceramics, waste treatment, titanium nitride, thermal conversion

Procedia PDF Downloads 292
3977 Flowback Fluids Treatment Technology with Water Recycling and Valuable Metals Recovery

Authors: Monika Konieczyńska, Joanna Fajfer, Olga Lipińska

Abstract:

In Poland works related to the exploration and prospection of unconventional hydrocarbons (natural gas accumulated in the Silurian shale formations) started in 2007, based on the experience of the other countries that have created new possibilities for the use of existing hydrocarbons resources. The highly water-consuming process of hydraulic fracturing is required for the exploitation of shale gas which implies a need to ensure large volume of water available. As a result considerable amount of mining waste is generated, particularly liquid waste, i.e. flowback fluid with variable chemical composition. The chemical composition of the flowback fluid depends on the composition of the fracturing fluid and the chemistry of the fractured geological formations. Typically, flowback fluid is highly salinated, can be enriched in heavy metals, including rare earth elements, naturally occurring radioactive materials and organic compounds. The generated fluids considered as the extractive waste should be properly managed in the recovery or disposal facility. Problematic issue is both high hydration of waste as well as their variable chemical composition. Also the limited capacity of currently operating facilities is a growing problem. Based on the estimates, currently operating facilities will not be sufficient for the need of waste disposal when extraction of unconventional hydrocarbons starts. Further more, the content of metals in flowback fluids including rare earth elements is a considerable incentive to develop technology of metals recovery. Also recycling is a key factor in terms of selection of treatment process, which should provide that the thresholds required for reuse are met. The paper will present the study of the flowback fluids chemical composition, based on samples from hydraulic fracturing processes performed in Poland. The scheme of flowback fluid cleaning and recovering technology will be reviewed along with a discussion of the results and an assessment of environmental impact, including all generated by-products. The presented technology is innovative due to the metal recovery, as well as purified water supply for hydraulic fracturing process, which is significant contribution to reducing water consumption.

Keywords: environmental impact, flowback fluid, management of special waste streams, metals recovery, shale gas

Procedia PDF Downloads 258
3976 Characterization of White Spot Lesion Using Focused Ion Beam - Scanning Electron Microscopy

Authors: Malihe Moeinin, Robert Hill, Ferranti Wong

Abstract:

Background: A white spot lesion (WSL) is defined as subsurface enamel porosity from carious demineralisation on the smooth surfaces of the tooth. It appears as a milky white opacity. Lesions shown an apparently intact surface layer, followed underneath by the more porous lesion body. The small pores within the body of the lesion act as diffusion pathway for both acids and minerals, so allowing the demineralisation of enamel to occur at the advancing front of the lesion. Objectives: The objective is to mapthe porosity and its size on WSL with Focused Ion Bean- Scanning Electron Microscopy (FIB-SEM) Method: The basic method used for FIB-SEM consisted of depositing a one micron thick layer of platinum over 25μmx 25μm of the interest region of enamel. Then, making a rough cut (25μmx 5μmx 20μm) with 3nA current and 30Kv was applied with the help of drift suppression (DS), using a standard “cross-sectional” cutting pattern, which ended at the front of the deposited platinum layer. Two adjacent areas (25μmx 5μmx 20μm) on the both sides of the platinum layer were milled under the same conditions. Subsequent, cleaning cross-sections were applied to polish the sub-surface edge of interest running perpendicular to the surface. The "slice and view" was carried out overnight for milling almost 700 slices with 2Kv and 4nA and taking backscattered (BS) images. Then, images were imported into imageJ and analysed. Results: The prism structure is clearly apparent on FIB-SEM slices of WSL with the dissolution of prism boundaries as well as internal porosity within the prism itself. Porosity scales roughly 100-400nm, which is comparable to the light wavelength (500nm). Conclusion: FIB-SEM is useful to characterize the porosity of WSL and it clearly shows the difference between WSL and normal enamel.

Keywords: white spot lesion, FIB-SEM, enamel porosity, porosity

Procedia PDF Downloads 85
3975 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes

Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi

Abstract:

The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.

Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees

Procedia PDF Downloads 137