Search results for: green chemical analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31454

Search results for: green chemical analysis

30344 Rolling Contact Fatigue Failure Analysis of Ball Bearing in Gear Box

Authors: Piyas Palit, Urbi Pal, Jitendra Mathur, Santanu Das

Abstract:

Bearing is an important machinery part in the industry. When bearings fail to meet their expected life the consequences are increased downtime, loss of revenue and missed the delivery. This article describes the failure of a gearbox bearing in rolling contact fatigue. The investigation consists of visual observation, chemical analysis, characterization of microstructures using optical microscopes and hardness test. The present study also considers bearing life as well as the operational condition of bearings. Surface-initiated rolling contact fatigue, leading to a surface failure known as pitting, is a life-limiting failure mode in many modern machine elements, particularly rolling element bearings. Metallography analysis of crack propagation, crack morphology was also described. Indication of fatigue spalling in the ferrography test was also discussed. The analysis suggested the probable reasons for such kind of failure in operation. This type of spalling occurred due to (1) heavier external loading condition or (2) exceeds its service life.

Keywords: bearing, rolling contact fatigue, bearing life

Procedia PDF Downloads 155
30343 Architecture Performance-Related Design Based on Graphic Parameterization

Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding

Abstract:

Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.

Keywords: graphic parameterization, green building design, mathematical model, plane form

Procedia PDF Downloads 139
30342 Assessing the Factors Mediating the Attitude-Behaviour Gap in Sustainable Fashion Consumerism

Authors: A. Bardey, P. James

Abstract:

With the rise of fast-fashion, over consumerism and overproduction, the fashion industry is believed to be one of the most polluting industry. It is a matter of importance today to further understand the factors involved in green consumerism to enhance sustainable fashion. One of the critical issues in also evaluating green consumerism, particularly in fashion, is the attitude-behaviour gap. Indeed, many consumers report a positive attitude towards sustainable fashion consumerism, but this attitude is not always actioned into behaviour. This study aims to further investigate the attitude-behaviour gap in sustainable fashion consumerism. S triangulation of qualitative and quantitative methods was used. Focus groups were used to gain opinions and understanding of the barriers to sustainable fashion consumption. A quantitative online questionnaire was then used to quantify the barriers identified in Study 1 and measure their influence on the attitude-behaviour gap. The results suggest that knowledge about sustainable fashion is the key factor in the attitude-behaviour gap in sustainable fashion consumerism. Accessibility was also identified as a factor, but this relationship is more complex. It is suggested that knowledge is the main factor in the attitude-behaviour gap and that once knowledge is controlled for, accessibility will become a main factor. The present study is the first one to identify the factors involved in sustainable fashion consumerism.

Keywords: fashion, consumer behaviour, sustainable consumerism, attitude-behavioural gap

Procedia PDF Downloads 167
30341 A Rapid and Greener Analysis Approach Based on Carbonfiber Column System and MS Detection for Urine Metabolomic Study After Oral Administration of Food Supplements 

Authors: Zakia Fatima, Liu Lu, Donghao Li

Abstract:

The analysis of biological fluid metabolites holds significant importance in various areas, such as medical research, food science, and public health. Investigating the levels and distribution of nutrients and their metabolites in biological samples allows researchers and healthcare professionals to determine nutritional status, find hypovitaminosis or hypervitaminosis, and monitor the effectiveness of interventions such as dietary supplementation. Moreover, analysis of nutrient metabolites provides insight into their metabolism, bioavailability, and physiological processes, aiding in the clarification of their health roles. Hence, the exploration of a distinct, efficient, eco-friendly, and simpler methodology is of great importance to evaluate the metabolic content of complex biological samples. In this work, a green and rapid analytical method based on an automated online two-dimensional microscale carbon fiber/activated carbon fiber fractionation system and time-of-flight mass spectrometry (2DμCFs-TOF-MS) was used to evaluate metabolites of urine samples after oral administration of food supplements. The automated 2DμCFs instrument consisted of a microcolumn system with bare carbon fibers and modified carbon fiber coatings. Carbon fibers and modified carbon fibers exhibit different surface characteristics and retain different compounds accordingly. Three kinds of mobile-phase solvents were used to elute the compounds of varied chemical heterogeneities. The 2DμCFs separation system has the ability to effectively separate different compounds based on their polarity and solubility characteristics. No complicated sample preparation method was used prior to analysis, which makes the strategy more eco-friendly, practical, and faster than traditional analysis methods. For optimum analysis results, mobile phase composition, flow rate, and sample diluent were optimized. Water-soluble vitamins, fat-soluble vitamins, and amino acids, as well as 22 vitamin metabolites and 11 vitamin metabolic pathway-related metabolites, were found in urine samples. All water-soluble vitamins except vitamin B12 and vitamin B9 were detected in urine samples. However, no fat-soluble vitamin was detected, and only one metabolite of Vitamin A was found. The comparison with a blank urine sample showed a considerable difference in metabolite content. For example, vitamin metabolites and three related metabolites were not detected in blank urine. The complete single-run screening was carried out in 5.5 minutes with the minimum consumption of toxic organic solvent (0.5 ml). The analytical method was evaluated in terms of greenness, with an analytical greenness (AGREE) score of 0.72. The method’s practicality has been investigated using the Blue Applicability Grade Index (BAGI) tool, obtaining a score of 77. The findings in this work illustrated that the 2DµCFs-TOF-MS approach could emerge as a fast, sustainable, practical, high-throughput, and promising analytical tool for screening and accurate detection of various metabolites, pharmaceuticals, and ingredients in dietary supplements as well as biological fluids.

Keywords: metabolite analysis, sustainability, carbon fibers, urine.

Procedia PDF Downloads 1
30340 Chemical Bath Deposition Technique of CdS Used in Closed Space Sublimation of CdTe Solar Cell

Authors: Z. Mahmood, F. U. Babar, S. Naz, H. U. Rehman

Abstract:

Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Ellipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here). The efficiency came out to be approximately 16.5 % and the CIGS (copper-indium–gallium-selenide) maximum efficiency is 20 %. The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).

Keywords: Chemical Bath Deposition Technique (CBD), cadmium sulphide (CdS), CdTe, CSS (Closed Space Sublimation)

Procedia PDF Downloads 347
30339 Research on the Strategy of Whole-Life-Cycle Campus Design from the Perspective of Sustainable Concept: A Case Study on Hangzhou Senior High School in Zhejiang

Authors: Fan Yang

Abstract:

With the development of social economy and the popularization of quality education, the Chinese government invests more and more funding in education. Campus constructions are experiencing a great development phase. Under the trend of sustainable development, modern green campus design needs to meet new requirements of contemporary, informational and diversified education means and adapt to future education development. Educators, designers and other participants of campus design are facing new challenges. By studying and analyzing the universal unsatisfied current situations and sustainable development requirements of Chinese campuses, this paper summarizes the strategies and intentions of the whole-life-cycle campus design. In addition, a Chinese high school in Zhejiang province is added to illustrate the design cycle in an actual case. It is aimed to make all participants of campus design, especially the designers, to realize the importance of whole-life-cycle campus design and cooperate better. Sustainable campus design is expected to come true in deed instead of becoming a slogan in this way.

Keywords: campus design, green school, sustainable development, whole-life-cycle design

Procedia PDF Downloads 356
30338 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach

Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi

Abstract:

This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.

Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat

Procedia PDF Downloads 484
30337 ‘Green Gait’ – The Growing Relevance of Podiatric Medicine amid Climate Change

Authors: Angela Evans, Gabriel Gijon-Nogueron, Alfonso Martinez-Nova

Abstract:

Background The health sector, whose mission is protecting health, also contributes to the climate crisis, the greatest health threat of the 21st century. The carbon footprint from healthcare exceeds 5% of emissions globally, surpassing 7% in the USA and Australia. Global recognition has led to the Paris Agreement, the United Nations Sustainable Development Goals, and the World Health Organization's Climate Change Action Plan. It is agreed that the majority of health impacts stem from energy and resource consumption, as well as the production of greenhouse gases in the environment and deforestation. Many professional medical associations and healthcare providers advocate for their members to take the lead in environmental sustainability. Objectives To avail and expand ‘Green Podiatry’ via the three pillars of: Exercise ; Evidence ; Everyday changes; to highlight the benefits of physical activity and exercise for both human health and planet health. Walking and running are beneficial for health, provide low carbon transport, and have evidence-based health benefits. Podiatrists are key healthcare professionals in the physical activity space and can influence and guide their patients to increase physical activity and avert the many non-communicable diseases that are decimating public health, eg diabetes, arthritis, depression, cancer, obesity. Methods Publications, conference presentations, and pilot projects pertinent to ‘Green Podiatry’ have been activated since 2021, and a survey of podiatrist’s knowledge and awareness has been undertaken.The survey assessed attitudes towards environmental sustainability in work environment. The questions addressed commuting habits, hours of physical exercise per week, and attitudes in the clinic, such as prescribing unnecessary treatments or emphasizing sports as primary treatment. Results Teaching and Learning modules have been developed for podiatric medicine students and graduates globally. These will be availed. A pilot foot orthoses recycling project has been undertaken and will be reported, in addition to established footwear recycling. The preliminary survey found almost 90% of respondents had no knowledge of green podiatry or footwear recycling. Only 30% prescribe sports/exercise as the primary treatment for patients, and 45% do not to prescribe unnecessary treatments. Conclusions Podiatrists are in a good position to lead in the crucial area of healthcare and climate change implications. Sufficient education of podiatrists is essential for the profession to beneficially promote health and physical activity, which is beneficial for the health of all peoples and all communities.

Keywords: climate change, gait, green, healthcare, sustainability

Procedia PDF Downloads 76
30336 Physico-Chemical Basis of Thermal Destruction of Benzo(a)Pyrene and Reducing Their Concentration in the Gas Phase

Authors: K. A. Kemelov, Z. K. Maymekov, D. A. Sambaeva, W. Frenzel

Abstract:

Benzo(a)pyrene is widespread carcinogenic and mutagenic environmental pollutant, which is formed in combustion processes of carbonaceous materials at high temperature and still health safety problem related benz(a)pyrene continues to remain actual. At the moment the mechanisms of formation of benzo(a)pyrene are not studied in detail, there is not concrete certain full scheme of synthesis of benzo(a)pyrene. Studies in this area are mainly dedicated to development of measuring tools and chemical reactions analyzes, or to obtain specific evidence of a large group of polycyclic aromatic hydrocarbons (PAHs). Consequently in this study we try to create physical and chemical model of oxidation and thermo destruction processes of benzo(a)pyrene, using critical thermodynamical parameters in order to estimate theoretical derivatives of benzo(a)pyrene and which conditions benzo(a)pyrene degraded into more harmful substances. According to this physical and chemical modeling of thermal destruction process of benzo(a)pyrene in wide ranges of change of temperature value were calculated. C20H12 - H2O-O2 system was taken for modeling of thermal destruction process of benzo(a)pyrene in order to establish distribution range of equilibrium structures and concentrations of molecules in a gas phase. Also technological ways of reduction of concentration of benzo(a)pyrene in a gas phase were supposed.

Keywords: benzo(a)pyrene, emission, PAH, thermodynamic parameters

Procedia PDF Downloads 281
30335 Utilization of Kitchen Waste inside Green House Chamber: A Community Level Biogas Programme

Authors: Ravi P. Agrahari

Abstract:

The present study was undertaken with the objective of evaluating kitchen waste as an alternative organic material for biogas production in community level biogas plant. The field study was carried out for one month (January 19, 2012– February 17, 2012) at Centre for Energy Studies, IIT Delhi, New Delhi, India. This study involves the uses of greenhouse canopy to increase the temperature for the production of biogas in winter period. In continuation, a semi-continuous study was conducted for one month with the retention time of 30 days under batch system. The gas generated from the biogas plant was utilized for cooking (burner) and lighting (lamp) purposes. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted biogas plant can be efficiently adopted in colder region or in winter season because temperature plays a major role in biogas production. 

Keywords: biogas, green house chamber, organic material, solar intensity, batch system

Procedia PDF Downloads 375
30334 Chemical Composition and Antifungal Activity of Selected Essential Oils against Toxigenic Fungi Associated with Maize (Zea mays L.)

Authors: Birhane Atnafu, Chemeda Abedeta Garbaba, Fikre Lemessa, Abdi Mohammed, Alemayehu Chala

Abstract:

Essential oil is a bio-pesticide plant product used as an alternative to pesticides in managing plant pests, including fungal pathogens. Thus, the current study aims to investigate the chemical composition and antifungal activities of essential oils (EO) extracted from three aromatic plants i.e., Thymus vulgaris, Coriandrum sativum, and Cymbopogon martini. The leaf parts of those selected plants were collected from the Jimma area and their essential oil was extracted by hydro-distillation method in a Clevenger apparatus. The chemical composition of selected plant essential oil was analyzed by using Gas chromatography-mass spectrometry (GC/MS) and their inhibitory effects were tested in vitro on toxigenic fungi isolated from maize kernel. Chemical analysis results revealed the presence of 32 compounds in C. sativum with Hexanedioic acid, bis (2-ethylhexyl) ester (46. 9%), 2-Decenal, (E)- (12.6), and linalool (8.3%) being the dominant ones. T. vulgaris essential oils constituted 25 compounds, of which thymol (34.4%), o-cymene (17.5%), and Gamma-Terpinene (16.8%) were the major components. Twenty-five compounds were detected in C. martinii of which geraniol (51.4%), Geranyl acetate (14.5%), and Trans – ß-Ocimene (11.7%) were dominant. The EOs of the tested plants had very high antifungal activity (up to 100% efficacy) against Aspergillus flavus, Aspergillus niger, Fusarium graminearum and Fusarium verticillioides in vitro and on maize grains. The antifungal activities of these essential oils were dependent on the major components such as thymol, hexanedioic acid, bis (2-ethylhexyl) ester, and geraniol. The study affirmed the potential of these essential oils controlling as bio-fungicides to manage the effects of potentially toxigenic fungi associated with maize under post-harvest stages. This can reduce the consequences of the health impacts of the mold and toxigenic compounds produced in maize.

Keywords: bio-activity, bio-pesticides, maize, mycotoxin

Procedia PDF Downloads 50
30333 The Sustainability of Eco–City Model: Green and Energy Efficiency Technology-Related Framing and Selectivity Issues in Eco–City Projects in Stockholm

Authors: Simon Elias Bibri, Vera Minavere Bardici

Abstract:

In this article, we investigate framing, discursive and material selectivity as important issues that need to be addressed in the planning of eco–city as a model of sustainable urban form. Focusing on the Stockholm region in Sweden, we discuss issues of the contribution of eco–city model to sustainability and examine key themes associated with the construction of the discourse on eco–city projects, namely the integration of environmental, economic, and social sustainability as well as design and technology as solutions in urban projects documents pertaining specifically to Hammarby Sjöstad and Stockholm Royal Seaport. The article is divided into four sections. First, we elucidate the concept and problem of framing and discursive and material selectivity. Second, we briefly discuss the discourse of sustainability, sustainable urban forms, and eco–city, pointing out some key issues that need to be addressed in sustainable urban planning. In the third and main section of the article, we investigate plans and projects for sustainable urban development, focusing on framing and discursive and material selectivity issues in the construction of the discourse on eco–city projects in Stockholm and discussing the findings in terms of the integration of sustainability dimensions, the economic benefits of and the negative environmental effects of energy efficiency and green technology, the shaping influence of cultural frames, the links of eco–city to macro–processes of regulation, the technological orientation of eco–city projects and the associated selectivity aspects. The article concludes with a call for further research for the possibilities for a more environmentally sound and holistic approach to sustainable urban forms.

Keywords: framing, selectivity, sustainability, eco–city, sustainable urban form, design, energy efficiency, green technology, Hammarby Sjöstad, Stockholm Royal Seaport

Procedia PDF Downloads 402
30332 An Integrated Approach to Assessing Urban Nature as an Indicator to Mitigate Urban Heat Island Effect: A Case Study of Lahore, Pakistan

Authors: Muhammad Nasar-u-Minallah, Dagmar Haase, Salman Qureshi

Abstract:

Rapid urbanization significantly change land use, urban nature, land surface vegetation cover, and heat distribution, leading to the formation of urban heat island (UHI) effect and affecting the healthy growth of cities and the comfort of human living style. Past information and present changes in Land Surface Temperature (LST) and urban landscapes could be useful to geographers, environmentalists, and urban planners in an attempt to shape the urban development process and mitigate the effects of urban heat islands (UHI). This study aims at using Satellite Remote Sensing (SRS) and GIS techniques to develop an approach for assessing the urban nature and UHI effects in Lahore, Pakistan. The study employed the Radiative Transfer Method (RTM) in estimating LST to assess the SUHI effect during the interval of 20 years (2000-2020). The assessment was performed by the available Landsat 7/ETM+ and Landsat 8/OIL_TIRs data for the years 2000, 2010, and 2020 respectively. Pearson’s correlation and normalized mutual information were applied to investigate the relationship between green space characteristics and LST. The result of this work revealed that the influence of urban heat island is not always at the city centers but sometimes in the outskirt where a lot of development activities were going on towards the direction of expansion of Lahore, Pakistan. The present study explores the usage of image processing and spatial analysis in the drive towards achieving urban greening of Lahore and a sustainable urban environment in terms of urban planning, policy, and decision making and promoting the healthy and sustainable urban environment of the city.

Keywords: urban nature, urban heat islands, urban green space, land use, Lahore

Procedia PDF Downloads 100
30331 Understanding Governance of Biodiversity-Supporting and Edible Landscapes Using Network Analysis in a Fast Urbanising City of South India

Authors: M. Soubadra Devy, Savitha Swamy, Chethana V. Casiker

Abstract:

Sustainable smart cities are emerging as an important concept in response to the exponential rise in the world’s urbanizing population. While earlier, only technical, economic and governance based solutions were considered, more and more layers are being added in recent times. With the prefix of 'sustainability', solutions which help in judicious use of resources without negatively impacting the environment have become critical. We present a case study of Bangalore city which has transformed from being a garden city and pensioners' paradise to being an IT city with a huge, young population from different regions and diverse cultural backgrounds. This has had a big impact on the green spaces in the city and the biodiversity that they support, as well as on farming/gardening practices. Edible landscapes comprising farms lands, home gardens and neighbourhood parks (NPs henceforth) were examined. The land prices of areas having NPs were higher than those that did not indicate an appreciation of their aesthetic value. NPs were part of old and new residential areas largely managed by the municipality. They comprised manicured gardens which were similar in vegetation structure and composition. Results showed that NPs that occurred in higher density supported reasonable levels of biodiversity. In situations where NPs occurred in lower density, the presence of a larger green space such as a heritage park or botanical garden enhanced the biodiversity of these parks. In contrast, farm lands and home gardens which were common within the city are being lost at an unprecedented scale to developmental projects. However, there is also the emergence of a 'neo-culture' of home-gardening that promotes 'locovory' or consumption of locally grown food as a means to a sustainable living and reduced carbon footprint. This movement overcomes the space constraint by using vertical and terrace gardening techniques. Food that is grown within cities comprises of vegetables and fruits which are largely pollinator dependent. This goes hand in hand with our landscape-level study that has shown that cities support pollinator diversity. Maintaining and improving these man-made ecosystems requires analysing the functioning and characteristics of the existing structures of governance. Social network analysis tool was applied to NPs to examine relationships, between actors and ties. The management structures around NPs, gaps, and means to strengthen the networks from the current state to a near-ideal state were identified for enhanced services. Learnings from NPs were used to build a hypothetical governance structure and functioning of integrated governance of NPs and edible landscapes to enhance ecosystem services such as biodiversity support, food production, and aesthetic value. They also contribute to the sustainability axis of smart cities.

Keywords: biodiversity support, ecosystem services, edible green spaces, neighbourhood parks, sustainable smart city

Procedia PDF Downloads 127
30330 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections

Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh

Abstract:

Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.

Keywords: delay, saturation flow, signalised intersection, vehicle composition

Procedia PDF Downloads 447
30329 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition

Procedia PDF Downloads 436
30328 Experimental Optimization in Diamond Lapping of Plasma Sprayed Ceramic Coatings

Authors: S. Gowri, K. Narayanasamy, R. Krishnamurthy

Abstract:

Plasma spraying, from the point of value engineering, is considered as a cost-effective technique to deposit high performance ceramic coatings on ferrous substrates for use in the aero,automobile,electronics and semiconductor industries. High-performance ceramics such as Alumina, Zirconia, and titania-based ceramics have become a key part of turbine blades,automotive cylinder liners,microelectronic and semiconductor components due to their ability to insulate and distribute heat. However, as the industries continue to advance, improved methods are needed to increase both the flexibility and speed of ceramic processing in these applications. The ceramics mentioned were individually coated on structural steel substrate with NiCr bond coat of 50-70 micron thickness with the final thickness in the range of 150 to 200 microns. Optimal spray parameters were selected based on bond strength and porosity. The 'optimal' processed specimens were super finished by lapping using diamond and green SiC abrasives. Interesting results could be observed as follows: The green SiC could improve the surface finish of lapped surfaces almost as that by diamond in case of alumina and titania based ceramics but the diamond abrasives could improve the surface finish of PSZ better than that by green SiC. The conventional random scratches could be absent in alumina and titania ceramics but in PS those marks were found to be less. However, the flatness accuracy could be improved unto 60 to 85%. The surface finish and geometrical accuracy were measured and modeled. The abrasives in the midrange of their particle size could improve the surface quality faster and better than the particles of size in low and high ranges. From the experimental investigations after lapping process, the optimal lapping time, abrasive size, lapping pressure etc could be evaluated.

Keywords: atmospheric plasma spraying, ceramics, lapping, surface qulaity, optimization

Procedia PDF Downloads 402
30327 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System

Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji

Abstract:

Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.

Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources

Procedia PDF Downloads 119
30326 Sustainability of Green Supply Chain for a Steel Industry Using Mixed Linear Programing Model

Authors: Ameen Alawneh

Abstract:

The cost of material management across the supply chain represents a major contributor to the overall cost of goods in many companies both manufacturing and service sectors. This fact combined with the fierce competition make supply chains more efficient and cost effective. It also requires the companies to improve the quality of the products and services, increase the effectiveness of supply chain operations, focus on customer needs, reduce wastes and costs across the supply chain. As a heavy industry, steel manufacturing companies in particular are nowadays required to be more environmentally conscious due to their contribution to air, soil, and water pollution that results from emissions and wastes across their supply chains. Steel companies are increasingly looking for methods to reduce or cost cut in the operations and provide extra value to their customers to stay competitive under the current low margins. In this research we develop a green framework model for the sustainability of a steel company supply chain using Mixed integer Linear programming.

Keywords: Supply chain, Mixed Integer linear programming, heavy industry, water pollution

Procedia PDF Downloads 434
30325 Re-Use of Waste Marble in Producing Green Concrete

Authors: Hasan Şahan Arel

Abstract:

In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO3 and SiO2 present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO2 emissions by 12% and also lowering the costs from US$40/m3 to US$33/m3.

Keywords: cement production, concrete, CO2 emission, marble, mechanical properties

Procedia PDF Downloads 303
30324 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body

Authors: Rabah Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.

Keywords: hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow

Procedia PDF Downloads 445
30323 Enhancement of Growth and Lipid Accumulation in Microalgae with Aggregation Induced Emission-Based Photosensitiser

Authors: Sharmin Ferdewsi Rakhi, AHM Mohsinul Reza, Brynley Davies, Jianzhong Wang, Youhong Tang, Jian Qin

Abstract:

Mass production of microalgae has become a focus of research owing to their promising aspects for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content with optimum algal biomass is still a challenge that must be resolved for commercial use. This research aims to determine the effects of light spectral shift and reactive oxygen species (ROS) on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. Aggregation Induced Emission (AIE)-based photosensitisers, CN-TPAQ-PF6 ([C₃₂H₂₃N₄]+) with high ROS productivity, was introduced into the algal culture media separately for effective conversion of the green-yellow-light to the red spectra. The intense photon energy and high-photon flux density in the photosystems and ROS supplementation induced photosynthesis and lipid biogenesis. In comparison to the control, maximum algal growth (0.15 g/l) was achieved at 2 µM CN-TPAQ-PF6 exposure. A significant increase in total lipid accumulation (146.87 mg/g dry biomass) with high proportion of 10-Heptadecanoic acid (C17:1) linolenic acid (C18:2), α-linolenic acid (C18:3) was observed. The elevated level of cellular NADP/NADPH triggered the Acetyl-Co-A production in lipid biogenesis cascade. Furthermore, MTT analysis suggested that this nanomaterial is highly biocompatible on HaCat cell lines with 100% cell viability. This study reveals that the AIE-based approach can strongly impact algal biofactory development for sustainable food, healthy lipids and eco-friendly biofuel.

Keywords: microalgae, photosensitiser, lipid, biomass, aggregation-induced-emission, reactive oxygen species

Procedia PDF Downloads 28
30322 The Effect of Pozzolan Addition on the Physico-Chemical and Mechanical Properties of Mortars Based on Cement Resistant to Sulfate (CRS)

Authors: L. Belagraa, A. Belguendouz, Y. Rouabah, A. Bouzid, A. Noui, O. Kessal

Abstract:

The use of cements CRS in aggressive environments showed a lot of benefits as like good mechanical responses and therefore better durability, however, their manufacturing consume a lot of clinker, which leads to the random hazardous deposits, the shortage of natural resources and the gas and the dust emissions mainly; (CO2) with its ecological negative impact on the environment. Technical, economic and environmental benefits by the use of blended cements have been reported and being considered as a research area of great interest. The purpose of this study is to evaluate the influence of the substitution of natural pozzolan on the physico-chemical properties of the new formulated binder and the mechanical behavior of mortar containing this binary cement. Hence, the pozzolan replacement is composed with different proportions (0%, 2.5%, 5%, 7.5% and 10%). The physico-chemical properties of cement resistant to sulfate (CRS) alternative composition were investigated. Further, the behavior of the mortars based on this binder is studied. These characteristics includes chemical composition, density and fineness, consistency, setting time, shrinkage, absorption and the mechanical response. The results obtained showed that the substitution of pozzolan at the optimal ratio of 5% has a positive effect on the resulting cement, greater specific surface area, reduced water demand, accelerating the process of hydration, a better mechanical responses and decreased absorption. Therefore, economic and ecological cement based on mineral addition like pozzolan could be possible as well as advantageous to the formulation of environmental mortars.

Keywords: Cement Resistant to Sulfate (CRS), environmental mortars mechanical response, physico-chemical properties, pozzolan

Procedia PDF Downloads 345
30321 Effect of Organic Manure on Production of Potato (Solanum tuberosum L.)

Authors: R. Behrooz, D. Jahanfar, D. Reza

Abstract:

Organic farming is a fundamental principle in sustainable agriculture. Preventing excessive contamination of water and soil with pesticides and chemical fertilizers is important in order to produce healthy food. For this purpose, two potato cultivars (Sante and Marfona) and seven levels of fertilizer (non-fertilizer, chemical fertilizer, granulated chicken manure, common manure, compost, vermicompost and tea compost) were evaluated by factorial experiment based on randomized complete block design (RCBD) with three replications. According to the results, the effect of different manure was significant on number of tubers per plant, tuber weight per plant and tuber yield. The highest value of these traits was obtained by using of chicken manure which was significantly superior to other treatments. However, there was no significant difference between the two varieties. According to the results, the use of chicken manure has produced the highest potato yield even in comparison with the use of chemical fertilizer.

Keywords: organic farming, organic manure, potato, tuber yield

Procedia PDF Downloads 136
30320 Assessment of Chemical and Physical Properties of Surface Water Resources in Flood Affected Area

Authors: Siti Hajar Ya’acob, Nor Sayzwani Sukri, Farah Khaliz Kedri, Rozidaini Mohd Ghazi, Nik Raihan Nik Yusoff, Aweng A/L Eh Rak

Abstract:

Flood event that occurred in mid-December 2014 in East Coast of Peninsular Malaysia has driven attention from the public nationwide. Apart from loss and damage of properties and belongings, the massive flood event has introduced environmental disturbances on surface water resources in such flood affected area. A study has been conducted to measure the physical and chemical composition of Galas River and Pergau River prior to identification the flood impact towards environmental deterioration in surrounding area. Samples that have been collected were analyzed in-situ using YSI portable instrument and also in the laboratory for acid digestion and heavy metals analysis using Atomic Absorption Spectroscopy (AAS). Results showed that range of temperature (0C), DO (mg/L), Ec (µs/cm), TDS (mg/L), turbidity (NTU), pH, and salinity were 25.05-26.65, 1.51-5.85, 0.032-0.054, 0.022-0.035, 23.2-76.4, 3.46-7.31, and 0.01-0.02 respectively. The results from this study could be used as a primary database to evaluate the status of water quality of the respective river after the massive flood.

Keywords: flood, river, heavy metals, AAS

Procedia PDF Downloads 362
30319 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling

Authors: Moustafa Osman Mohammed

Abstract:

The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.

Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology

Procedia PDF Downloads 41
30318 Synthesis and Characterization of Biodegradable Elastomeric Polyester Amide for Tissue Engineering Applications

Authors: Abdulrahman T. Essa, Ahmed Aied, Omar Hamid, Felicity R. A. J. Rose, Kevin M. Shakesheff

Abstract:

Biodegradable poly(ester amide)s are promising polymers for biomedical applications such as drug delivery and tissue engineering because of their optimized chemical and physical properties. In this study, we developed a biodegradable polyester amide elastomer poly(serinol sebacate) (PSS) composed of crosslinked networks based on serinol and sebacic acid. The synthesized polymers were characterized to evaluate their chemical structures, mechanical properties, degradation behaviors and in vitro cytocompatibility. Analysis of proton nuclear magnetic resonance and Fourier transform infrared spectroscopy revealed the structure of the polymer. The PSS exhibit excellent solubility in a variety of solvents such as methanol, dimethyl sulfoxide and dimethylformamide. More importantly, the mechanical properties of PSS could be tuned by changing the curing conditions. In addition, the 3T3 fibroblast cells cultured on the PSS demonstrated good cell attachment and high viability.

Keywords: biodegradable, biomaterial, elastomer, mechanical properties, poly(serinol sebacate)

Procedia PDF Downloads 341
30317 Coexistence of Superconductivity and Spin Density Wave in Ferropnictide Ba₁₋ₓKₓFe₂As₂

Authors: Tadesse Desta Gidey, Gebregziabher Kahsay, Pooran Singh

Abstract:

This work focuses on the theoretical investigation of the coexistence of superconductivity and Spin Density Wave (SDW)in Ferropnictide Ba₁₋ₓKₓFe₂As₂. By developing a model Hamiltonian for the system and by using quantum field theory Green’s function formalism, we have obtained mathematical expressions for superconducting transition temperature TC), spin density wave transition temperature (Tsdw), superconductivity order parameter (Sc), and spin density wave order parameter (sdw). By employing the experimental and theoretical values of the parameters in the obtained expressions, phase diagrams of superconducting transition temperature (TC) versus superconducting order parameter (Sc) and spin density wave transition temperature (Tsdw), versus spin density wave order parameter (sdw) have been plotted. By combining the two phase diagrams, we have demonstrated the possible coexistence of superconductivity and spin density wave (SDW) in ferropnictide Ba1−xKxFe2As2.

Keywords: Superconductivity, Spin density wave, Coexistence, Green function, Pnictides, Ba₁₋ₓKₓFe₂As₂

Procedia PDF Downloads 154
30316 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)

Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida

Abstract:

Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.

Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction

Procedia PDF Downloads 379
30315 Variation of Biologically Active Compounds and Antioxidancy in the Process of Blueberry Storage

Authors: Meri Khakhutaishvili, Indira Djaparidze, Maia Vanidze, Aleko Kalandia

Abstract:

Cultivation of blueberry in Georgia started in 21st century. There are more than 20 species of blueberry cultivated in this region from all other the world. The species are mostly planted on acidic soil, previously occupied by tea plantations. Many of the plantations have pretty good yield. It is known that changing the location of a plant to a new soil or climate effects chemical compositions of the plant. However, even though these plants are brought from other countries, no research has been conducted to fully examine the blueberry fruit cultivated in Georgia. Shota Rustaveli National Science Foundation Grant FR/335/10-160/14, gave us an opportunity to continue our previous works and conduct research on several berries, among them of course the chemical composition of stored Blueberry. We were able to conduct the first study that included examining qualitative and quantitative features of bioactive compounds in Georgian Blueberry. This experiments were held in the ‘West Georgia Regional Chromatography center’ (Grant AP/96/13) of our university, that is equipped with modern equipment like HPLC UV-Vis, RI-detector, HPLC-conductivity detector, UPLC-MS-detector. Biochemical analysis was conducted using different physico-chemical and instrumental methods. Separation-identification and quantitative analysis were conducted using UPLC-MS (Waters Acquity QDa detector), HPLC (Waters Brceze 1525, UV-Vis 2489 detectors), pH-meters (Mettler Toledo). Refractrometer -Misco , Spectrometer –Cuvette Changer (Mettler Toledo UV5A), C18 Cartridge Solid Phase Extraction (SPE) Waters Sep-Pak C18 (500 mg), Chemicals – stability radical- 2,2-Diphenil-1-picrilhydrazyl (Aldrich-germany), Acetonitrile, Methanol, Acetic Acid (Merck-Germany), AlCl3, Folin Ciocalteu reagent (preparation), Standarts –Callic acid, Quercetin. Carbohydrate HPLC-RI analysis used systems acetonitrile-water (80-20). UPLC-MS analysis used systems- solvent A- Water +1 % acetic acid და solvent -B Methanol +1% acetic acid). It was concluded that the amount of sugars was in range of 5-9 %, mostly glucose and fructose. Also, the amount of organic acids was 0.2-1.2% most of which was malic and citric acid. Anthocians were also present in the sample 200-550mg/100g. We were able to identify up to 15 different compounds, most of which were products of delphinidine and cyanide. All species have high antioxidant level(DPPH). By rapidly freezing the sample and then keeping it in specific conditions allowed us to keep the sample for 12 months.

Keywords: antioxidants, bioactive, blueberry, storage

Procedia PDF Downloads 192