Search results for: fourier transform infrared spectroscopy(ftir)
1087 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm
Procedia PDF Downloads 4401086 System Identification of Building Structures with Continuous Modeling
Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab
Abstract:
This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction
Procedia PDF Downloads 2331085 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region
Authors: Eman Ghoneim
Abstract:
The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula
Procedia PDF Downloads 2471084 Denoising Transient Electromagnetic Data
Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen
Abstract:
Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform
Procedia PDF Downloads 841083 Constructions of Linear and Robust Codes Based on Wavelet Decompositions
Authors: Alla Levina, Sergey Taranov
Abstract:
The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability
Procedia PDF Downloads 4891082 Synthesis of Highly Stable Near-Infrared FAPbI₃ Perovskite Doped with 5-AVA and Its Applications in NIR Light-Emitting Diodes for Bioimaging
Authors: Nasrud Din, Fawad Saeed, Sajid Hussain, Rai Muhammad Dawood Sultan, Premkumar Sellan, Qasim Khan, Wei Lei
Abstract:
The continuously increasing external quantum efficiencies of Perovskite light-emitting diodes (LEDs) have received significant interest in the scientific community. The need for monitoring and medical diagnostics has experienced a steady growth in recent years, primarily caused by older people and an increasing number of heart attacks, tumors, and cancer disorders among patients. The application of Perovskite near-infrared light-emitting diode (PeNIRLEDs) has exhibited considerable efficacy in bioimaging, particularly in the visualization and examination of blood arteries, blood clots, and tumors. PeNIRLEDs exhibit exciting potential in the field of blood vessel imaging because of their advantageous attributes, including improved depth penetration and less scattering in comparison to visible light. In this study, we synthesized FAPbI₃ Perovskite doped with different concentrations of 5-Aminovaleric acid (5-AVA) 1-6 mg. The incorporation of 5-AVA as a dopant during the FAPbI₃ Perovskite formation influences the FAPbI3 Perovskite’s structural and optical properties, improving its stability, photoluminescence efficiency, and charge transport characteristics. We found a resulting PL emission peak wavelength of 850 nm and bandwidth of 44 nm, along with a calculated quantum yield of 75%. The incorporation of 5-AVA-modified FAPbI₃ Perovskite into LEDs will show promising results, enhancing device efficiency, color purity, and stability. Making it suitable for various medical applications, including subcutaneous deep vein imaging, blood flow visualization, and tumor illumination.Keywords: perovskite light-emitting diodes, deep vein imaging, blood flow visualization, tumor illumination
Procedia PDF Downloads 561081 Development of a Humanized Anti-CEA Antibody for the Near Infrared Optical Imaging of Cancer
Authors: Paul J Yazaki, Michael Bouvet, John Shively
Abstract:
Surgery for solid gastrointestinal (GI) cancers such as pancreatic, colorectal, and gastric adenocarcinoma remains the mainstay of curative therapy. Complete resection of the primary tumor with negative margins (R0 resection), its draining lymph nodes, and distant metastases offers the optimal surgical benefit. Real-time fluorescence guided surgery (FGS) promises to improve GI cancer outcomes and is rapidly advancing with tumor-specific antibody conjugated fluorophores that can be imaged using near infrared (NIR) technology. Carcinoembryonic Antigen (CEA) is a non-internalizing tumor antigen validated as a surface tumor marker expressed in >95% of colorectal, 80% of gastric, and 60% of pancreatic adenocarcinomas. Our humanized anti-CEA hT84.66-M5A (M5A) monoclonal antibody (mAb)was conjugated with the NHS-IRDye800CW fluorophore and shown it can rapidly and effectively NIRoptical imageorthotopically implanted human colon and pancreatic cancer in mouse models. A limitation observed is that these NIR-800 dye conjugated mAbs have a rapid clearance from the blood, leading to a narrow timeframe for FGS and requiring high doses for effective optical imaging. We developed a novel antibody-fluorophore conjugate by incorporating a PEGylated sidearm linker to shield or mask the IR800 dye’s hydrophobicity which effectively extended the agent’s blood circulation half-life leading to increased tumor sensitivity and lowered normal hepatic uptake. We hypothesized that our unique anti-CEA linked to the fluorophore, IR800 by PEGylated sidewinder, M5A-SW-IR800 will become the next generation optical imaging agent, safe, effective, and widely applicable for intraoperative image guided surgery in CEA expressing GI cancers.Keywords: optical imaging, anti-CEA, cancer, fluorescence-guided surgery
Procedia PDF Downloads 1471080 Traditional Industries Innovation and Brand Value Analysis in Taiwan: Case Study of a Certain Plastic Company
Authors: Ju Shan Lin
Abstract:
The challenges for traditional industries in Taiwan the past few years are the changes of overall domestic and foreign industry structure, the entrepreneurs not only need to keep on improving their profession skills but also continuously research and develop new products. It is also necessary for the all traditional industries to keep updating the business strategy, let the enterprises continue to progress, and won't be easily replaced by the other industries. The traditional industry in Taiwan attach great importance to the field of enterprises upgrading and innovation in recent years, by the enterprise innovation and transformation can enhance the overall business situation also enable them to obtain more additional profits than in the past. Except the original industry structure's need to transform and upgrade, the brand's business and marketing strategy are also essential. This study will take a certain plastic company as case analysis, for the brand promotion of traditional industries, brand values and business innovation model for further exploration. It will also be mentioned that the other traditional industries cases which were already achieved success on the enterprise's upgrading and innovation, at the same time, the difficulties which they faced with and the way they overcome will be explored as well. This study will use the case study method combined with expert interviews to discuss and analyze this certain plastic company's current business situation, the existing products and the possible trends in the future. Looking forward to providing an innovative business model that will enable this plastic company to upgrade its corporate image and the brand could transform successfully.Keywords: brand marketing strategy, enterprise upgrade, industrial transformation, traditional industry
Procedia PDF Downloads 2391079 Determination of Physical Properties of Crude Oil Distillates by Near-Infrared Spectroscopy and Multivariate Calibration
Authors: Ayten Ekin Meşe, Selahattin Şentürk, Melike Duvanoğlu
Abstract:
Petroleum refineries are a highly complex process industry with continuous production and high operating costs. Physical separation of crude oil starts with the crude oil distillation unit, continues with various conversion and purification units, and passes through many stages until obtaining the final product. To meet the desired product specification, process parameters are strictly followed. To be able to ensure the quality of distillates, routine analyses are performed in quality control laboratories based on appropriate international standards such as American Society for Testing and Materials (ASTM) standard methods and European Standard (EN) methods. The cut point of distillates in the crude distillation unit is very crucial for the efficiency of the upcoming processes. In order to maximize the process efficiency, the determination of the quality of distillates should be as fast as possible, reliable, and cost-effective. In this sense, an alternative study was carried out on the crude oil distillation unit that serves the entire refinery process. In this work, studies were conducted with three different crude oil distillates which are Light Straight Run Naphtha (LSRN), Heavy Straight Run Naphtha (HSRN), and Kerosene. These products are named after separation by the number of carbons it contains. LSRN consists of five to six carbon-containing hydrocarbons, HSRN consist of six to ten, and kerosene consists of sixteen to twenty-two carbon-containing hydrocarbons. Physical properties of three different crude distillation unit products (LSRN, HSRN, and Kerosene) were determined using Near-Infrared Spectroscopy with multivariate calibration. The absorbance spectra of the petroleum samples were obtained in the range from 10000 cm⁻¹ to 4000 cm⁻¹, employing a quartz transmittance flow through cell with a 2 mm light path and a resolution of 2 cm⁻¹. A total of 400 samples were collected for each petroleum sample for almost four years. Several different crude oil grades were processed during sample collection times. Extended Multiplicative Signal Correction (EMSC) and Savitzky-Golay (SG) preprocessing techniques were applied to FT-NIR spectra of samples to eliminate baseline shifts and suppress unwanted variation. Two different multivariate calibration approaches (Partial Least Squares Regression, PLS and Genetic Inverse Least Squares, GILS) and an ensemble model were applied to preprocessed FT-NIR spectra. Predictive performance of each multivariate calibration technique and preprocessing techniques were compared, and the best models were chosen according to the reproducibility of ASTM reference methods. This work demonstrates the developed models can be used for routine analysis instead of conventional analytical methods with over 90% accuracy.Keywords: crude distillation unit, multivariate calibration, near infrared spectroscopy, data preprocessing, refinery
Procedia PDF Downloads 1291078 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1501077 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.Keywords: induction machine, fault, DWT, electric
Procedia PDF Downloads 3501076 Standard Protocol Selection for Acquisition of Breast Thermogram in Perspective of Early Breast Cancer Detection
Authors: Mrinal Kanti Bhowmik, Usha Rani Gogoi Jr., Anjan Kumar Ghosh, Debotosh Bhattacharjee
Abstract:
In the last few decades, breast thermography has achieved an average sensitivity and specificity of 90% for breast tumor detection. Breast thermography is a non-invasive, cost-effective, painless and radiation-free breast imaging modality which makes a significant contribution to the evaluation and diagnosis of patients, suspected of having breast cancer. An abnormal breast thermogram may indicate significant biological risk for the existence or the development of breast tumors. Breast thermography can detect a breast tumor, when the tumor is in its early stage or when the tumor is in a dense breast. The infrared breast thermography is very sensitive to environmental changes for which acquisition of breast thermography should be performed under strictly controlled conditions by undergoing some standard protocols. Several factors like air, temperature, humidity, etc. are there to be considered for characterizing thermal images as an imperative tool for detecting breast cancer. A detailed study of various breast thermogram acquisition protocols adopted by different researchers in their research work is provided here in this paper. After going through a rigorous study of different breast thermogram acquisition protocols, a new standard breast thermography acquisition setup is proposed here in this paper for proper and accurate capturing of the breast thermograms. The proposed breast thermogram acquisition setup is being built in the Radiology Department, Agartala Government Medical College (AGMC), Govt. of Tripura, Tripura, India. The breast thermograms are captured using FLIR T650sc thermal camera with the thermal sensitivity of 20 mK at 30 degree C. The paper is an attempt to highlight the importance of different critical parameters of breast thermography like different thermography views, patient preparation protocols, acquisition room requirements, acquisition system requirements, etc. This paper makes an important contribution by providing a detailed survey and a new efficient approach on breast thermogram capturing.Keywords: acquisition protocol, breast cancer, breast thermography, infrared thermography
Procedia PDF Downloads 3971075 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang
Abstract:
Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI
Procedia PDF Downloads 2681074 Influence of Infrared Radiation on the Growth Rate of Microalgae Chlorella sorokiniana
Authors: Natalia Politaeva, Iuliia Smiatskaia, Iuliia Bazarnova, Iryna Atamaniuk, Kerstin Kuchta
Abstract:
Nowadays, the progressive decrease of primary natural resources and ongoing upward trend in terms of energy demand, have resulted in development of new generation technological processes which are focused on step-wise production and residues utilization. Thus, microalgae-based 3rd generation bioeconomy is considered one of the most promising approaches that allow production of value-added products and sophisticated utilization of residues biomass. In comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, and thus, addressing issues associated with negative social and environmental impacts. However, one of the most challenging tasks is to undergo seasonal variations and to achieve optimal growing conditions for indoor closed systems that can cover further demand for material and energetic utilization of microalgae. For instance, outdoor cultivation in St. Petersburg (Russia) is only suitable within rather narrow time frame (from mid-May to mid-September). At earlier and later periods, insufficient sunlight and heat for the growth of microalgae were detected. On the other hand, without additional physical effects, the biomass increment in summer is 3-5 times per week, depending on the solar radiation and the ambient temperature. In order to increase biomass production, scientists from all over the world have proposed various technical solutions for cultivators and have been studying the influence of various physical factors affecting biomass growth namely: magnetic field, radiation impact, and electric field, etc. In this paper, the influence of infrared radiation (IR) and fluorescent light on the growth rate of microalgae Chlorella sorokiniana has been studied. The cultivation of Chlorella sorokiniana was carried out in 500 ml cylindrical glass vessels, which were constantly aerated. To accelerate the cultivation process, the mixture was stirred for 15 minutes at 500 rpm following 120 minutes of rest time. At the same time, the metabolic needs in nutrients were provided by the addition of micro- and macro-nutrients in the microalgae growing medium. Lighting was provided by fluorescent lamps with the intensity of 2500 ± 300 lx. The influence of IR was determined using IR lamps with a voltage of 220 V, power of 250 W, in order to achieve the intensity of 13 600 ± 500 lx. The obtained results show that under the influence of fluorescent lamps along with the combined effect of active aeration and variable mixing, the biomass increment on the 2nd day was three times, and on the 7th day, it was eight-fold. The growth rate of microalgae under the influence of IR radiation was lower and has reached 22.6·106 cells·mL-1. However, application of IR lamps for the biomass growth allows maintaining the optimal temperature of microalgae suspension at approximately 25-28°C, which might especially be beneficial during the cold season in extreme climate zones.Keywords: biomass, fluorescent lamp, infrared radiation, microalgae
Procedia PDF Downloads 1871073 DWT-SATS Based Detection of Image Region Cloning
Authors: Michael Zimba
Abstract:
A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.Keywords: affine transformation, discrete wavelet transform, radix sort, SATS
Procedia PDF Downloads 2301072 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier
Authors: Saurabh Farkya, Govinda Surampudi
Abstract:
Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)
Procedia PDF Downloads 4991071 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy
Authors: Erick Pruchnicki, Nikhil Padhye
Abstract:
Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials
Procedia PDF Downloads 1111070 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach
Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola
Abstract:
Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy
Procedia PDF Downloads 1181069 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases
Authors: Mohammad A. Bani-Khaled
Abstract:
In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams
Procedia PDF Downloads 4181068 Effects of Polydispersity on the Glass Transition Dynamics of Aqueous Suspensions of Soft Spherical Colloidal Particles
Authors: Sanjay K. Behera, Debasish Saha, Paramesh Gadige, Ranjini Bandyopadhyay
Abstract:
The zero shear viscosity (η₀) of a suspension of hard sphere colloids characterized by a significant polydispersity (≈10%) increases with increase in volume fraction (ϕ) and shows a dramatic increase at ϕ=ϕg with the system entering a colloidal glassy state. Fragility which is the measure of the rapidity of approach of these suspensions towards the glassy state is sensitive to its size polydispersity and stiffness of the particles. Soft poly(N-isopropylacrylamide) (PNIPAM) particles deform in the presence of neighboring particles at volume fraction above the random close packing volume fraction of undeformed monodisperse spheres. Softness, therefore, enhances the packing efficiency of these particles. In this study PNIPAM particles of a nearly constant swelling ratio and with polydispersities varying over a wide range (7.4%-48.9%) are synthesized to study the effects of polydispersity on the dynamics of suspensions of soft PNIPAM colloidal particles. The size and polydispersity of these particles are characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). As these particles are deformable, their packing in aqueous suspensions is quantified in terms of effective volume fraction (ϕeff). The zero shear viscosity (η₀) data of these colloidal suspensions, estimated from rheometric experiments as a function of the effective volume fraction ϕeff of the suspensions, increases with increase in ϕeff and shows a dramatic increase at ϕeff = ϕ₀. The data for η₀ as a function of ϕeff fits well to the Vogel-Fulcher-Tammann equation. It is observed that increasing polydispersity results in increasingly fragile supercooled liquid-like behavior, with the parameter ϕ₀, extracted from the fits to the VFT equation shifting towards higher ϕeff. The observed increase in fragility is attributed to the prevalence of dynamical heterogeneities (DHs) in these polydisperse suspensions, while the simultaneous shift in ϕ₀ is ascribed to the decoupling of the dynamics of the smallest and largest particles. Finally, it is observed that the intrinsic nonlinearity of these suspensions, estimated at the third harmonic near ϕ₀ in Fourier transform oscillatory rheological experiments, increases with increase in polydispersity. These results are in agreement with theoretical predictions and simulation results for polydisperse hard sphere colloidal glasses and clearly demonstrate that jammed suspensions of polydisperse colloidal particles can be effectively fluidized with increasing polydispersity. Suspensions of these particles are therefore excellent candidates for detailed experimental studies of the effects of polydispersity on the dynamics of glass formation.Keywords: dynamical heterogeneity, effective volume fraction, fragility, intrinsic nonlinearity
Procedia PDF Downloads 1641067 A Comparative Study of Linearly Graded and without Graded Photonic Crystal Structure
Authors: Rajeev Kumar, Angad Singh Kushwaha, Amritanshu Pandey, S. K. Srivastava
Abstract:
Photonic crystals (PCs) have attracted much attention due to its electromagnetic properties and potential applications. In PCs, there is certain range of wavelength where electromagnetic waves are not allowed to pass are called photonic band gap (PBG). A localized defect mode will appear within PBG, due to change in the interference behavior of light, when we create a defect in the periodic structure. We can also create different types of defect structures by inserting or removing a layer from the periodic layered structure in two and three-dimensional PCs. We can design microcavity, waveguide, and perfect mirror by creating a point defect, line defect, and palanar defect in two and three- dimensional PC structure. One-dimensional and two-dimensional PCs with defects were reported theoretically and experimentally by Smith et al.. in conventional photonic band gap structure. In the present paper, we have presented the defect mode tunability in tilted non-graded photonic crystal (NGPC) and linearly graded photonic crystal (LGPC) using lead sulphide (PbS) and titanium dioxide (TiO2) in the infrared region. A birefringent defect layer is created in NGPC and LGPC using potassium titany phosphate (KTP). With the help of transfer matrix method, the transmission properties of proposed structure is investigated for transverse electric (TE) and transverse magnetic (TM) polarization. NGPC and LGPC without defect layer is also investigated. We have found that a photonic band gap (PBG) arises in the infrared region. An additional defect layer of KTP is created in NGPC and LGPC structure. We have seen that an additional transmission mode appers in PBG region. It is due to the addition of defect layer. We have also seen the effect, linear gradation in thickness, angle of incidence, tilt angle, and thickness of defect layer, on PBG and additional transmission mode. We have observed that the additional transmission mode and PBG can be tuned by changing the above parameters. The proposed structure may be used as channeled filter, optical switches, monochromator, and broadband optical reflector.Keywords: defect modes, graded photonic crystal, photonic crystal, tilt angle
Procedia PDF Downloads 3761066 Method to Find a ε-Optimal Control of Stochastic Differential Equation Driven by a Brownian Motion
Authors: Francys Souza, Alberto Ohashi, Dorival Leao
Abstract:
We present a general solution for finding the ε-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion, which is a problem recognized as a difficult solution. The contribution appears in the development of mathematical tools to deal with modeling and control of non-Markovian systems, whose applicability in different areas is well known. The methodology used consists to discretize the problem through a random discretization. In this way, we transform an infinite dimensional problem in a finite dimensional, thereafter we use measurable selection arguments, to find a control on an explicit form for the discretized problem. Then, we prove the control found for the discretized problem is a ε-optimal control for the original problem. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs-trading and others. Therefore, our main contribution is the development of a tool to explicitly the ε-optimal control for non-Markovian stochastic systems. The pathwise analysis was made through a random discretization jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent stochastic differential equations, where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method.Keywords: dynamic programming equation, optimal control, stochastic control, stochastic differential equation
Procedia PDF Downloads 1881065 Niftiness of the COLME to Promote Shared Decision-Making in Organizations
Authors: Prakash Singh
Abstract:
The question that arises is whether a theory such as the Collegial Leadership Model of Emancipation (COLME) has the potency to introduce leadership change by empowering and emancipating their employees. It is a fallacy to simply assume that experience alone, in the absence of theory, will contribute to this knowledge base to develop collegial leaders. The focus of this study is to therefore ascertain whether the COLME can serve as a conceptual framework to transform traditional bureaucratic management practices (TBMPs) in order to promote shared decision-making in organizations such as schools. All the respondents in this exploratory qualitative study embraced collegiality to transform TBMPs in their organizations. For the positive effects to be sustained, the collegial practices need to be evolutionary and emancipatory in order to evoke the values of collegial leadership as elucidated by the findings of this study. Interviewees affirmed that the COLME provides an astute framework to develop commendable collegial leadership practices as it clearly outlines procedures to develop and use the leadership potential of all the employees in order to foster joint accountability. They acknowledged that when the principles of collegiality are flexibly applied, they contribute to the creation of a holistic milieu in which all employees are able to express themselves freely, without fear of failure, and thus feel that they are part of the democratic decision-making process. Evidently, a conceptual framework such as the COLME can serve as a benchmark for leadership effectiveness because organizational outcomes need to be measured against standards of excellence in meeting both employee and customer expectations.Keywords: collegial leadership model, employee empowerment, shared decision-making, traditional bureaucratic management practices
Procedia PDF Downloads 4941064 Geological Mapping of Gabel Humr Akarim Area, Southern Eastern Desert, Egypt: Constrain from Remote Sensing Data, Petrographic Description and Field Investigation
Authors: Doaa Hamdi, Ahmed Hashem
Abstract:
The present study aims at integrating the ASTER data and Landsat 8 data to discriminate and map alteration and/or mineralization zones in addition to delineating different lithological units of Humr Akarim Granites area. The study area is located at 24º9' to 24º13' N and 34º1' to 34º2'45"E., covering a total exposed surface area of about 17 km². The area is characterized by rugged topography with low to moderate relief. Geologic fieldwork and petrographic investigations revealed that the basement complex of the study area is composed of metasediments, mafic dikes, older granitoids, and alkali-feldspar granites. Petrographic investigations revealed that the secondary minerals in the study area are mainly represented by chlorite, epidote, clay minerals and iron oxides. These minerals have specific spectral signatures in the region of visible near-infrared and short-wave infrared (0.4 to 2.5 µm). So that the ASTER imagery processing was concentrated on VNIR-SWIR spectrometric data in order to achieve the purposes of this study (geologic mapping of hydrothermal alteration zones and delineate possible radioactive potentialities). Mapping of hydrothermal alterations zones in addition to discriminating the lithological units in the study area are achieved through the utilization of some different image processing, including color band composites (CBC) and data transformation techniques such as band ratios (BR), band ratio codes (BRCs), principal component analysis(PCA), Crosta Technique and minimum noise fraction (MNF). The field verification and petrographic investigation confirm the results of ASTER imagery and Landsat 8 data, proposing a geological map (scale 1:50000).Keywords: remote sensing, petrography, mineralization, alteration detection
Procedia PDF Downloads 1641063 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission
Authors: Tingwei Shu, Dong Zhou, Chengjun Guo
Abstract:
Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.Keywords: semantic communication, transformer, wavelet transform, data processing
Procedia PDF Downloads 781062 Optimal Image Representation for Linear Canonical Transform Multiplexing
Authors: Navdeep Goel, Salvador Gabarda
Abstract:
Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.Keywords: chirp signals, image multiplexing, image transformation, linear canonical transform, polynomial approximation
Procedia PDF Downloads 4121061 Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform
Authors: Saad M. Darwish, Adel A. El-Zoghabi, Moustafa F. Ashry
Abstract:
The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.Keywords: Grid computing, load balancing, fault tolerance, R-tree, heterogeneous systems
Procedia PDF Downloads 4901060 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform
Authors: Omaima N. Ahmad AL-Allaf
Abstract:
Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform
Procedia PDF Downloads 2261059 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules
Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng
Abstract:
The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.Keywords: solar cell, aging, spectral response measurement
Procedia PDF Downloads 1011058 Weyl Type Theorem and the Fuglede Property
Authors: M. H. M. Rashid
Abstract:
Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge transform
Procedia PDF Downloads 128