Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 343

Search results for: conjugate Dirichlet kernel

343 L1-Convergence of Modified Trigonometric Sums

Authors: Sandeep Kaur Chouhan, Jatinderdeep Kaur, S. S. Bhatia


The existence of sine and cosine series as a Fourier series, their L1-convergence seems to be one of the difficult question in theory of convergence of trigonometric series in L1-metric norm. In the literature so far available, various authors have studied the L1-convergence of cosine and sine trigonometric series with special coefficients. In this paper, we present a modified cosine and sine sums and criterion for L1-convergence of these modified sums is obtained. Also, a necessary and sufficient condition for the L1-convergence of the cosine and sine series is deduced as corollaries.

Keywords: conjugate Dirichlet kernel, Dirichlet kernel, L1-convergence, modified sums

Procedia PDF Downloads 261
342 Coefficients of Some Double Trigonometric Cosine and Sine Series

Authors: Jatinderdeep Kaur


In this paper, the results of Kano from one-dimensional cosine and sine series are extended to two-dimensional cosine and sine series. To extend these results, some classes of coefficient sequences such as the class of semi convexity and class R are extended from one dimension to two dimensions. Under these extended classes, I have checked the function f(x,y) is two dimensional Fourier Cosine and Sine series or equivalently it represents an integrable function. Further, some results are obtained which are the generalization of Moricz's results.

Keywords: conjugate dirichlet kernel, conjugate fejer kernel, fourier series, semi-convexity

Procedia PDF Downloads 350
341 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties

Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd


Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas.

Keywords: conjugate gradient method, conjugate gradient coefficient, global convergence

Procedia PDF Downloads 324
340 Global Convergence of a Modified Three-Term Conjugate Gradient Algorithms

Authors: Belloufi Mohammed, Sellami Badreddine


This paper deals with a new nonlinear modified three-term conjugate gradient algorithm for solving large-scale unstrained optimization problems. The search direction of the algorithms from this class has three terms and is computed as modifications of the classical conjugate gradient algorithms to satisfy both the descent and the conjugacy conditions. An example of three-term conjugate gradient algorithm from this class, as modifications of the classical and well known Hestenes and Stiefel or of the CG_DESCENT by Hager and Zhang conjugate gradient algorithms, satisfying both the descent and the conjugacy conditions is presented. Under mild conditions, we prove that the modified three-term conjugate gradient algorithm with Wolfe type line search is globally convergent. Preliminary numerical results show the proposed method is very promising.

Keywords: unconstrained optimization, three-term conjugate gradient, sufficient descent property, line search

Procedia PDF Downloads 287
339 Existence of Positive Solutions to a Dirichlet Second Order Boundary Value Problem

Authors: Muhammad Sufian Jusoh, Mesliza Mohamed


In this paper, we investigate the existence of positive solutions for a Dirichlet second order boundary value problem by applying the Krasnosel'skii fixed point theorem on compression and expansion of cones.

Keywords: Krasnosel'skii fixed point theorem, positive solutions, Dirichlet boundary value problem, Dirichlet second order boundary problem

Procedia PDF Downloads 339
338 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali


This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS

Procedia PDF Downloads 292
337 A New Family of Globally Convergent Conjugate Gradient Methods

Authors: B. Sellami, Y. Laskri, M. Belloufi


Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, a new family of conjugate gradient method is proposed for unconstrained optimization. This method includes the already existing two practical nonlinear conjugate gradient methods, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. The numerical experiments are done to test the efficiency of the new method, which implies the new method is promising. In addition the methods related to this family are uniformly discussed.

Keywords: conjugate gradient method, global convergence, line search, unconstrained optimization

Procedia PDF Downloads 326
336 A New Conjugate Gradient Method with Guaranteed Descent

Authors: B. Sellami, M. Belloufi


Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed.

Keywords: unconstrained optimization, conjugate gradient method, line search, global convergence

Procedia PDF Downloads 358
335 Degree of Approximation of Functions Conjugate to Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means

Authors: Smita Sonker


Various investigators have determined the degree of approximation of conjugate signals (functions) of functions belonging to different classes Lipα, Lip(α,p), Lip(ξ(t),p), W(Lr,ξ(t), (β ≥ 0)) by matrix summability means, lower triangular matrix operator, product means (i.e. (C,1)(E,1), (C,1)(E,q), (E,q)(C,1) (N,p,q)(E,1), and (E,q)(N,pn) of their conjugate trigonometric Fourier series. In this paper, we shall determine the degree of approximation of 2π-periodic function conjugate functions of f belonging to the function classes Lipα and W(Lr; ξ(t); (β ≥ 0)) by (C1.T) -means of their conjugate trigonometric Fourier series. On the other hand, we shall review above-mentioned work in the light of Lenski.

Keywords: signals, trigonometric fourier approximation, class W(L^r, \xi(t), conjugate fourier series

Procedia PDF Downloads 324
334 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden


Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 45
333 A New Class of Conjugate Gradient Methods Based on a Modified Search Direction for Unconstrained Optimization

Authors: Belloufi Mohammed, Sellami Badreddine


Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of conjugate gradient methods which ensures sufficient descent. Moreover, we propose a new search direction with the Wolfe line search technique for solving unconstrained optimization problems, a global convergence result for general functions is established provided that the line search satisfies the Wolfe conditions. Our numerical experiments indicate that our proposed methods are preferable and in general superior to the classical conjugate gradient methods in terms of efficiency and robustness.

Keywords: unconstrained optimization, conjugate gradient method, sufficient descent property, numerical comparisons

Procedia PDF Downloads 308
332 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions

Authors: Khaled Moaddy


In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.

Keywords: standard finite difference schemes, non-standard schemes, Laplace equation, Dirichlet boundary conditions

Procedia PDF Downloads 58
331 Degree of Approximation by the (T.E^1) Means of Conjugate Fourier Series in the Hölder Metric

Authors: Kejal Khatri, Vishnu Narayan Mishra


We compute the degree of approximation of functions\tilde{f}\in H_w, a new Banach space using (T.E^1) summability means of conjugate Fourier series. In this paper, we extend the results of Singh and Mahajan which in turn generalizes the result of Lal and Yadav. Some corollaries have also been deduced from our main theorem and particular cases.

Keywords: conjugate Fourier series, degree of approximation, Hölder metric, matrix summability, product summability

Procedia PDF Downloads 273
330 Extraction and Characterization of Kernel Oil of Acrocomia Totai

Authors: Gredson Keif Souza, Nehemias Curvelo Pereira


Kernel oil from Macaúba is an important source of essential fatty acids. Thus, a new knowledge of the oil of this species could be used in new applications, such as pharmaceutical drugs based in the manufacture of cosmetics, and in various industrial processes. The aim of this study was to characterize the kernel oil of macaúba (Acrocomia Totai) at different times of their maturation. The physico-chemical characteristics were determined in accordance with the official analytical methods of oils and fats. It was determined the content of water and lipids in kernel, saponification value, acid value, water content in the oil, viscosity, density, composition in fatty acids by gas chromatography and molar mass. The results submitted to Tukey test for significant value to 5%. Found for the unripe fruits values superior to unsaturated fatty acids.

Keywords: extraction, characterization, kernel oil, acrocomia totai

Procedia PDF Downloads 233
329 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi


This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 197
328 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations

Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude


In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.

Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm

Procedia PDF Downloads 63
327 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process

Authors: Kai Chen, Shuguang Cui, Feng Yin


Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.

Keywords: Gaussian process, spectral mixture, non-stationary, convolution

Procedia PDF Downloads 73
326 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park


In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 262
325 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects

Authors: Behnam Tavakkol


Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.

Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data

Procedia PDF Downloads 91
324 Steady Conjugate Heat Transfer of Two Connected Thermal Systems

Authors: Mohamed El-Sayed Mosaad


An analytic approach is obtained for the steady heat transfer problem of two fluid systems, in thermal communication via heat conduction across a solid wall separating them. The two free convection layers created on wall sides are assumed to be in parallel flow. Fluid-solid interface temperature on wall sides is not prescribed in analysis in advance; rather, determined from conjugate solution among other unknown parameters. The analysis highlights the main conjugation parameters controlling thermal interaction process of involved heat transfer modes. Heat transfer results of engineering importance are obtained.

Keywords: conjugate heat transfer, boundary layer, convection, thermal systems

Procedia PDF Downloads 280
323 A Conjugate Gradient Method for Large Scale Unconstrained Optimization

Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami


Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.

Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence

Procedia PDF Downloads 316
322 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature

Authors: Ishak Hashim, Ammar Alsabery


The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.

Keywords: conjugate free convection, square cavity, nanofluid, spatial temperature

Procedia PDF Downloads 254
321 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems

Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh


It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.

Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property

Procedia PDF Downloads 102
320 Analysis of the Relationship between the Unitary Impulse Response for the nth-Volterra Kernel of a Duffing Oscillator System

Authors: Guillermo Manuel Flores Figueroa, Juan Alejandro Vazquez Feijoo, Jose Navarro Antonio


A continuous nonlinear system response may be obtained by an infinite sum of the so-called Volterra operators. Each operator is obtained from multidimensional convolution of nth-order between the nth-order Volterra kernel and the system input. These operators can also be obtained from the Associated Linear Equations (ALEs) that are linear models of subsystems which inputs and outputs are of the same nth-order. Each ALEs produces a particular nth-Volterra operator. As linear models a unitary impulse response can be obtained from them. This work shows the relationship between this unitary impulse responses and the corresponding order Volterra kernel.

Keywords: Volterra series, frequency response functions FRF, associated linear equations ALEs, unitary response function, Voterra kernel

Procedia PDF Downloads 535
319 Improving the Quality and Nutrient Content of Palm Kernel Cake through Fermentation with Bacillus subtilis

Authors: Mirnawati, Gita Ciptaan, Ferawati


Background and Objective: Palm kernel cake (PKC) is a waste of the palm oil industry. Indonesia, as the largest palm oil producer in the world, produced 45-46% palm kernel cake. Palm kernel cake can potentially be used as animal ration but its utilization for poultry is limited. Thus, fermentation process was done in order to increase the utilization PKC in poultry ration. An experiment was conducted to study the effect between Inoculum Doses with Bacillus subtilis and fermentation time to improve the quality and nutrient content of fermented Palm Kernel Cake. Material and Methods: 1) Palm kernel cake derived from Palm Kernel Processing Manufacture of Andalas Agro Industry in Pasaman, West Sumatra. 2) Bacillus subtilis obtained from The Research Center of Applied Chemistry LIPI, Bogor. 3) Preparations nutrient agar medium (NA) produced by Difoo - Becton Dickinson. 4) Rice bran 5) Aquades and mineral standard. The experiment used completely randomize design (CRD) with 3 x 3 factorial and 3 replications. The first factors were three doses of inoculum Bacillus subtilis: (3%), (5%), and (7%). The second factor was fermentation time: (1) 2 day, (2) 4 day, and (3) 6 day. The parameters were crude protein, crude fiber, nitrogen retention, and crude fiber digestibility of fermented palm kernel cake (FPKC). Results: The result of the study showed that there was significant interaction (P<0.01) between factor A and factor B and each factor A and B also showed significant effect (P<0.01) on crude protein, crude fiber, nitrogen retention, and crude fiber digestibility. Conclusion: From this study, it can be concluded that fermented PKC with 7% doses of Bacillus subtilis and 6 days fermentation time provides the best result as seen from 24.65% crude protein, 17.35% crude fiber, 68.47% nitrogen retention, 53.25% crude fiber digestibility of fermented palm kernel cake (FPKC).

Keywords: fermentation, Bacillus Subtilis, inoculum, palm kernel cake, quality, nutrient

Procedia PDF Downloads 74
318 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared


In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)

Procedia PDF Downloads 216
317 Methodology of Geometry Simplification for Conjugate Heat Transfer of Electrical Rotating Machines Using Computational Fluid Dynamics

Authors: Sachin Aggarwal, Sarah Kassinger, Nicholas Hoffman


Geometry simplification is a key step in performing conjugate heat transfer analysis using CFD. This paper proposes a standard methodology for the geometry simplification of rotating machines, such as electrical generators and electrical motors (both air and liquid-cooled). These machines are extensively deployed throughout the aerospace and automotive industries, where optimization of weight, volume, and performance is paramount -especially given the current global transition to renewable energy sources and vehicle hybridization and electrification. Conjugate heat transfer analysis is an essential step in optimizing their complex design. This methodology will help in reducing convergence issues due to poor mesh quality, thus decreasing computational cost and overall analysis time.

Keywords: CFD, electrical machines, Geometry simplification, heat transfer

Procedia PDF Downloads 22
316 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sanggoon Kim, Soonyoung Park


We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, importance sampling, approximate posterior distribution, marginal likelihood evidence

Procedia PDF Downloads 353
315 Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri


In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue

Procedia PDF Downloads 352
314 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data

Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro


Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.

Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter

Procedia PDF Downloads 48