Search results for: agricultural water footprint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9990

Search results for: agricultural water footprint

8880 Engaging Citizen, Sustaining Service Delivery of Rural Water Supply in Indonesia

Authors: Rahmi Yetri Kasri, Paulus Wirutomo

Abstract:

Citizen engagement approach has become increasingly important in the rural water sector. However, the question remains as to what exactly is meant by citizen engagement and how this approach can lead to sustainable service delivery. To understand citizen engagement, this paper argues that we need to understand basic elements of social life that consist of social structure, process, and culture within the realm of community’s living environment. Extracting from empirical data from Pamsimas villages in rural West Java, Indonesia, this paper will identify basic elements of social life and environment that influence and form the engagement of citizen and government in delivering and sustaining rural water supply services in Indonesia. Pamsimas or the Water Supply and Sanitation for Low Income Communities project is the biggest rural water program in Indonesia, implemented since 1993 in more than 27,000 villages. The sustainability of this sector is explored through a rural water supply service delivery life-cycle, starts with capital investment, operational and maintenance, asset expansion or renewal, strategic planning for future services and matching cost with financing. Using mixed-method data collection in case study research, this paper argues that increased citizen engagement contributes to a more sustainable rural water service delivery.

Keywords: citizen engagement, rural water supply, sustainability, Indonesia

Procedia PDF Downloads 253
8879 Passive Solar Distiller with Low Cost of Implementation, Operation and Maintenance

Authors: Valentina Alessandra Carvalho do Vale, Elmo Thiago Lins Cöuras Ford, Rudson de Sousa Lima

Abstract:

Around the planet Earth, access to clean water is a problem whose importance has increased due to population growth and its misuse. Thus, projects that seek to transform water sources improper (salty and brackish) in drinking water sources are current issues. However, this transformation generally requires a high cost of implementation, operation and maintenance. In this context, the aim of this work is the development of a passive solar distiller for brackish water, made from recycled and durable materials such as aluminum, cement, glass and PVC basins. The results reveal factors that influence the performance and viability of the expansion project.

Keywords: solar distiller, passive distiller, distiller with pyramidal roof, ecologically correct

Procedia PDF Downloads 393
8878 Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR

Authors: Hyung T. Kwak, Jun Gao, Yao An, Alfred Kleinhammes, Yue Wu

Abstract:

Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.

Keywords: Wettability, NMR, Gas Isotherm, Hydrophilicity, adsorption

Procedia PDF Downloads 165
8877 The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado

Authors: Ana Paula Camelo, Keila Sanches

Abstract:

The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis.

Keywords: deforestation, geographically weighted regression, land use, spatial analysis

Procedia PDF Downloads 346
8876 Improving the Dimensional Stability of Bamboo Woven Strand Board

Authors: Gulelat Gatew

Abstract:

Bamboo Woven Strand Board (WSB) products are manufactured from Ethiopia highland bamboo (Yushania alpina) as a multiple layer mat structure for enhanced mechanical performance. Hence, it shows similar mechanical properties as tropical hardwood products. WSB, therefore, constitutes a sustainable alternative to tropical hardwood products. The resin and wax ratio had a great influence on the determinants properties of the product quality such as internal bonding, water absorption, thickness swelling, bending and stiffness properties. Among these properties, because of the hygroscopic nature of the bamboo, thickness swelling and water absorption are important performances of WSB for using in construction and outdoor facilities. When WSB is exposed to water or moist environment, they tend to swell and absorb water in all directions. The degree of swelling and water absorption depends on the type of resin used, resin formulation, resin ratio, wax type and ratio. The objective of this research is investigating effects of phenol formaldehyde and wax on thickness swelling and water absorption behavior on bamboo WSB for construction and outdoor facilities. The experiments were conducted to measure the effects of wax and phenol-formaldehyde resin content on WSB thickness swelling and water absorption which leads to investigate its effect on dimension stability and mechanical properties. Both experiments were performed with 2–hour and 24-hour water immersion test and a significant set of data regarding the influence of such method parameters is also presented. The addition of up to 2% wax with 10% of phenol formaldehyde significantly reduced thickness swelling and water absorption of WSB which resulted in making it more hydrophobic and less susceptible to the influences of moisture in high humidity conditions compared to the panels without wax.

Keywords: woven strand board (WSB), water absorption, thickness swelling, phenol formaldehyde resin

Procedia PDF Downloads 196
8875 Soil Surface Insect Diversity of Tobacco Agricultural Ecosystem in Imogiri, Bantul District of Yogyakarta Special Region, Indonesia

Authors: Martina Faika Harianja, Zahtamal, Indah Nuraini, Septi Mutia Handayani, R. C. Hidayat Soesilohadi

Abstract:

Tobacco is a valuable commodity that supports economic growth in Indonesia. Soil surface insects are important components that influence productivity of tobacco. Thus, diversity of soil surface insects needs to be studied in order to acquire information about specific roles of each species in ecosystem. This research aimed to study the soil surface insect diversity of tobacco agricultural ecosystem in Imogiri, Bantul District of Yogyakarta Special Region, Indonesia. Samples were collected by pitfall-sugar bait trap in August 2015. Result showed 5 orders, 8 families, and 17 genera of soil surface insects were found. The diversity category of soil surface insects in tobacco agricultural ecosystem was poor. Dominant genus was Monomorium with dominance index score 0.07588. Percentages of insects’ roles were omnivores 43%, detritivores 24%, predators 19%, and herbivores 14%.

Keywords: diversity, Indonesia, soil surface insect, tobacco

Procedia PDF Downloads 323
8874 Design of Low-Cost Water Purification System Using Activated Carbon

Authors: Nayan Kishore Giri, Ramakar Jha

Abstract:

Water is a major element for the life of all the mankind in the earth. India’s surface water flows through fourteen major streams. Indian rivers are the main source of potable water in India. In the eastern part of India many toxic hazardous metals discharged into the river from mining industries, which leads many deadly diseases to human being. So the potable water quality is very significant and vital concern at present as it is related with the present and future health perspective of the human race. Consciousness of health risks linked with unsafe water is still very low among the many rural and urban areas in India. Only about 7% of total Indian people using water purifier. This unhealthy situation of water is not only present in India but also present in many underdeveloped countries. The major reason behind this is the high cost of water purifier. This current study geared towards development of economical and efficient technology for the removal of maximum possible toxic metals and pathogen bacteria. The work involves the design of portable purification system and purifying material. In this design Coconut shell granular activated carbon(GAC) and polypropylene filter cloths were used in this system. The activated carbon is impregnated with Iron(Fe). Iron is used because it enhances the adsorption capacity of activated carbon. The thorough analysis of iron impregnated activated carbon(Fe-AC) is done by Scanning Electron Microscope (SEM), X-ray diffraction (XRD) , BET surface area test were done. Then 10 ppm of each toxic metal were infiltrated through the designed purification system and they were analysed in Atomic absorption spectrum (AAS). The results are very promising and it is low cost. This work will help many people who are in need of potable water. They can be benefited for its affordability. It could be helpful in industries and other domestic usage.

Keywords: potable water, coconut shell GAC, polypropylene filter cloths, SEM, XRD, BET, AAS

Procedia PDF Downloads 367
8873 The Study of Tourists’ Behavior in Water Usage in Hotel Business: Case Study of Phuket Province, Thailand

Authors: A. Pensiri, K. Nantaporn, P. Parichut

Abstract:

Tourism is very important to the economy of many countries due to the large contribution in the areas of employment and income generation. However, the rapid growth of tourism can also be considered as one of the major uses of water user, and therefore also have a significant and detrimental impact on the environment. Guest behavior in water usage can be used to manage water in hotels for sustainable water resources management. This research presents a study of hotel guest water usage behavior at two hotels, namely Hotel A (located in Kathu district) and Hotel B (located in Muang district) in Phuket Province, Thailand, as case studies. Primary and secondary data were collected from the hotel manager through interview and questionnaires. The water flow rate was measured in-situ from each water supply device in the standard room type at each hotel, including hand washing faucets, bathroom faucets, shower and toilet flush. For the interview, the majority of respondents (n = 204 for Hotel A and n = 244 for Hotel B) were aged between 21 years and 30 years (53% for Hotel A and 65% for Hotel B) and the majority were foreign (78% in Hotel A, and 92% in Hotel B) from American, France and Austria for purposes of tourism (63% in Hotel A, and 55% in Hotel B). The data showed that water consumption ranged from 188 litres to 507 liters, and 383 litres to 415 litres per overnight guest in Hotel A and Hotel B (n = 244), respectively. These figures exceed the water efficiency benchmark set for Tropical regions by the International Tourism Partnership (ITP). It is recommended that guest water saving initiatives should be implemented at hotels. Moreover, the results showed that guests have high satisfaction for the hotels, the front office service reveal the top rates of average score of 4.35 in Hotel A and 4.20 in Hotel B, respectively, while the luxury decoration and room cleanliness exhibited the second satisfaction scored by the guests in Hotel A and B, respectively. On the basis of this information, the findings can be very useful to improve customer service satisfaction and pay attention to this particular aspect for better hotel management.

Keywords: hotel, tourism, Phuket, water usage

Procedia PDF Downloads 245
8872 Assessment of Naturally Occurring Radionuclides of the Surface Water in Vaal River, South Africa

Authors: Kgantsi B. T., Ochwelwang A. R., Mathuthu M., Jegede O. A.

Abstract:

Anthropogenic activities near water bodies contribute to poor water quality, which degrades the condition of the biota and elevates the risk to human health. The Vaal River is essential in supplying Gauteng and neighboring regions of South Africa with portable water for a variety of consumers and industries. Consequently, it is necessary to monitor and assess the radioactive risk in relation to the river's water quality. This study used an inductive coupled plasma mass spectrometer (ICPMS) to analyze the radionuclide activity concentration in the Vaal River, South Africa. Along with thorium and potassium, the total uranium concentration was calculated using the isotopic content of uranium. The elemental concentration of ²³⁸U, ²³⁵U, ²³⁴U, ²³²Th, and 40K were translated into activity concentrations. To assess the water safety for all users and consumers, all values were compared to world average activity concentrations 35, 30, and 400 Bqkg⁻¹ for ²³⁸U, ²³⁴Th, and ⁴⁰K, respectively, according to the UNSCEAR report. The results will serve as a database for further monitoring and evaluation of the radionuclide from the river, taking cognisance of potential health hazards.

Keywords: Val Rivers, ICPMS, uranium, risks

Procedia PDF Downloads 151
8871 Experimental Study on the Molecular Spring Isolator

Authors: Muchun Yu, Xue Gao, Qian Chen

Abstract:

As a novel passive vibration isolation technology, molecular spring isolator (MSI) is investigated in this paper. An MSI consists of water and hydrophobic zeolites as working medium. Under periodic excitation, water molecules intrude into hydrophobic pores of zeolites when the pressure rises and water molecules extrude from hydrophobic pores when pressure drops. At the same time, energy is stored, released and dissipated. An MSI of piston-cylinder structure was designed in this work. Experiments were conducted to investigate the stiffness properties of MSI. The results show that MSI exhibits high-static-low dynamic (HSLD) stiffness. Furthermore, factors such as the quantity of zeolites, temperature, and ions in water are proved to have an influence on the stiffness properties of MSI.

Keywords: hydrophobic zeolites, molecular spring, stiffness, vibration isolation

Procedia PDF Downloads 459
8870 Heat Transfer Studies for LNG Vaporization During Underwater LNG Releases

Authors: S. Naveen, V. Sivasubramanian

Abstract:

A modeling theory is proposed to consider the vaporization of LNG during its contact with water following its release from an underwater source. The spillage of LNG underwater can lead to a decrease in the surface temperature of water and subsequent freezing. This can in turn affect the heat flux distribution from the released LNG onto the water surrounding it. The available models predict the rate of vaporization considering the surface of contact as a solid wall, and considering the entire phenomena as a solid-liquid operation. This assumption greatly under-predicted the overall heat transfer on LNG water interface. The vaporization flux would first decrease during the film boiling, followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. A superheat theory is introduced to enhance the accuracy in the prediction of the heat transfer between LNG and water. The work suggests that considering the superheat theory can greatly enhance the prediction of LNG vaporization on underwater releases and also help improve the study of overall thermodynamics.

Keywords: evaporation rate, heat transfer, LNG vaporization, underwater LNG release

Procedia PDF Downloads 422
8869 Hydrologic Balance and Surface Water Resources of the Cheliff-Zahrez Basin

Authors: Mehaiguene Madjid, Touhari Fadhila, Meddi Mohamed

Abstract:

The Cheliff basin offers a good hydrological example for the possibility of studying the problem which elucidated in the future, because of the unclearity in several aspects and hydraulic installation. Thus, our study of the Cheliff basin is divided into two principal parts: The spatial evaluation of the precipitation: also, the understanding of the modes of the reconstitution of the resource in water supposes a good knowledge of the structuring of the precipitation fields in the studied space. In the goal of a good knowledge of revitalizes them in water and their management integrated one judged necessary to establish a precipitation card of the Cheliff basin for a good understanding of the evolution of the resource in water in the basin and that goes will serve as basis for all study of hydraulic planning in the Cheliff basin. Then, the establishment of the precipitation card of the Cheliff basin answered a direct need of setting to the disposition of the researchers for the region and a document of reference that will be completed therefore and actualized. The hydrological study, based on the statistical hydrometric data processing will lead us to specify the hydrological terms of the assessment hydrological and to clarify the fundamental aspects of the annual flow, seasonal, extreme and thus of their variability and resources surface water.

Keywords: hydrological assessment, surface water resources, Cheliff, Algeria

Procedia PDF Downloads 289
8868 Removal of Aromatic Fractions of Natural Organic Matter from Synthetic Water Using Aluminium Based Electrocoagulation

Authors: Tanwi Priya, Brijesh Kumar Mishra

Abstract:

Occurrence of aromatic fractions of Natural Organic Matter (NOM) led to formation of carcinogenic disinfection by products such as trihalomethanes in chlorinated water. In the present study, the efficiency of aluminium based electrocoagulation on the removal of prominent aromatic groups such as phenol, hydrophobic auxochromes, and carboxyl groups from NOM enriched synthetic water has been evaluated using various spectral indices. The effect of electrocoagulation on turbidity has also been discussed. The variation in coagulation performance as a function of pH has been studied. Our result suggests that electrocoagulation can be considered as appropriate remediation approach to reduce trihalomethanes formation in water. It has effectively reduced hydrophobic fractions from NOM enriched low turbid water. The charge neutralization and enmeshment of dispersed colloidal particles inside metallic hydroxides is the possible mechanistic approach in electrocoagulation.

Keywords: aromatic fractions, electrocoagulation, natural organic matter, spectral indices

Procedia PDF Downloads 261
8867 Challenges in the Construction of a 6M Diameter and 1.6km Long Tunnel Under Crossing a Channel in the West of Singapore

Authors: David Loh, Wan Chee Wai, Pei Nan, Chen Zhe

Abstract:

To increase the conveyance capacity to Western Singapore and to meet Singapore’s long-term water needs in a more cost-effective manner, four new transmission pipelines consisting of two 2200 mm diameter water pipes and two 1200mm diameter water pipes will be needed by 2024 to convey water from a Water Reclamation Plant to existing networks in the west region of Singapore. Out of the several possible routes studied, the most cost-effective and technically feasible route was selected to lay the proposed 1.6km-long pipelines that cross a channel via a 6m diameter subsea tunnel. This paper outlines the challenges the team faced throughout the project thus far. It also examined the difficulties such as (1) construction of a 56m-deep launching shaft near a highly sensitive 700mm diameter Gas Transmission Pipeline (GTP) and at a location with high groundwater; (2) manpower and supply disruptions caused by the COVID-19 pandemic situation.

Keywords: underwater tunnel, subsea engineering, subsea tunnel construction, waterpipe construction

Procedia PDF Downloads 7
8866 The Role of Phycoremediation in the Sustainable Management of Aquatic Pollution

Authors: Raymond Ezenweani, Jeffrey Ogbebor

Abstract:

The menace of aquatic pollution has become increasingly of great concern and the effects of this pollution as a result of anthropogenic activities cannot be over emphasized. Phycoremediation is the application of algal remediation technology in the removal of harmful products from the environment. Harmful products also known as pollutants are usually introduced into the environment through variety of processes such as industrial discharge, agricultural runoff, flooding, and acid rain. This work has to do with the capability of algae in the efficient removal of different pollutants, ranging from hydrocarbons, eutrophication, agricultural chemicals and wastes, heavy metals, foul smell from septic tanks or dumps through different processes such as bioconversion, biosorption, bioabsorption and biodecomposition. Algae are capable of bioconversion of environmentally persistent compounds to degradable compounds and also capable of putting harmful bacteria growth into check in waste water remediation. Numerous algal organisms such as Nannochloropsis spp, Chlorella spp, Tetraselmis spp, Shpaerocystics spp, cyanobacteria and different macroalgae have been tested by different researchers in laboratory scale and shown to have 100% efficiency in environmental remediation. Algae as a result of their photosynthetic capacity are also efficient in air cleansing and management of global warming by sequestering carbon iv oxide in air and converting it into organic carbon, thereby making food available for the other organisms in the higher trophic level of the aquatic food chain. Algae play major role in the sustenance of the aquatic ecosystem by their virtue of being photosynthetic. They are the primary producers and their role in environmental sustainability is remarkable.

Keywords: Algae , Pollutant, ., Phycoremediation, Aquatic, Sustainability

Procedia PDF Downloads 108
8865 Synthesis and Applications of Biosorbent from Barley Husk for Adsorption of Heavy Metals and Bacteria from Water

Authors: Sudarshan Kalsulkar, Sunil S. Bhagwat

Abstract:

Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Activated carbons (AC) are one such efficient biosorbents made by utilizing lignocellulosic materials from agricultural waste. Steam activated carbon (AC) was synthesized from Barley husk. Its synthesis parameters of time and temperature were optimized. Its physico-chemical properties like density, surface area, pore volume, Methylene blue and Iodine values were characterized. BET surface area was found to be 42 m²/g. Batch Adsorption tests were carried out to determine the maximum adsorption capacity (qmax) for various metal ions. Cd+2 48.74 mg/g, Pb+2 19.28 mg/g, Hg+2 39.1mg/g were the respective qmax values. pH and time were optimized for adsorption of each ion. Column Adsorptions were carried for each to obtain breakthrough data. Microbial adsorption was carried using E. coli K12 strain. 78% reduction in cell count was observed at operating conditions. Thus the synthesized Barley husk AC can be an economically feasible replacement for commercially available AC prepared from the costlier coconut shells. Breweries and malting industries where barley husk is a primary waste generated on a large scale can be a good source for bulk raw material.

Keywords: activated carbon, Barley husk, biosorption, decontamination, heavy metal removal, water treatment

Procedia PDF Downloads 406
8864 Adaptable Path to Net Zero Carbon: Feasibility Study of Grid-Connected Rooftop Solar PV Systems with Rooftop Rainwater Harvesting to Decrease Urban Flooding in India

Authors: Rajkumar Ghosh, Ananya Mukhopadhyay

Abstract:

India has seen enormous urbanization in recent years, resulting in increased energy consumption and water demand in its metropolitan regions. Adoption of grid-connected solar rooftop systems and rainwater collection has gained significant popularity in urban areas to address these challenges while also boosting sustainability and environmental consciousness. Grid-connected solar rooftop systems offer a long-term solution to India's growing energy needs. Solar panels are erected on the rooftops of residential and commercial buildings to generate power by utilizing the abundant solar energy available across the country. Solar rooftop systems generate clean, renewable electricity, reducing reliance on fossil fuels and lowering greenhouse gas emissions. This is compatible with India's goal of reducing its carbon footprint. Urban residents and companies can save money on electricity by generating their own and possibly selling excess power back to the grid through net metering arrangements. India gives several financial incentives (subsidies 40% for system capacity 1 kW to 3 kW) to stimulate the building of solar rooftop systems, making them an economically viable option for city dwellers. India provides subsidies up to 70% to special states such as Uttarakhand, Sikkim, Himachal Pradesh, Jammu & Kashmir, and Lakshadweep. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating pressure on traditional energy sources and improving air quality. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating demand on existing energy sources and improving power supply reliability. Rainwater harvesting is another key component of India's sustainable urban development. It comprises collecting and storing rainwater for use in non-potable water applications such as irrigation, toilet flushing, and groundwater recharge. Rainwater gathering 2 helps to conserve water resources by lowering the demand for freshwater sources. This technology is crucial in water-stressed areas to ensure a sustainable water supply. Excessive rainwater runoff in metropolitan areas can lead to Urban flooding. Solar PV system with Rooftop Rainwater harvesting systems absorb and channel excess rainwater, which helps to reduce flooding and waterlogging in Smart cities. Rainwater harvesting systems are inexpensive and quick to set up, making them a tempting option for city dwellers and businesses looking to save money on water. Rainwater harvesting systems are now compulsory in several Indian states for specified types of buildings (bye law, Rooftop space ≥ 300 sq. m.), ensuring widespread adoption. Finally, grid-connected solar rooftop systems and rainwater collection are important to India's long-term urban development. They not only reduce the environmental impact of urbanization, but also empower individuals and businesses to control their energy and water requirements. The G20 summit will focus on green financing, fossil fuel phaseout, and renewable energy transition. The G20 Summit in New Delhi reaffirmed India's commitment to battle climate change by doubling renewable energy capacity. To address climate change and mitigate global warming, India intends to attain 280 GW of solar renewable energy by 2030 and Net Zero carbon emissions by 2070. With continued government support and increased awareness, these strategies will help India develop a more resilient and sustainable urban future.

Keywords: grid-connected solar PV system, rooftop rainwater harvesting, urban flood, groundwater, urban flooding, net zero carbon emission

Procedia PDF Downloads 71
8863 Dealing with Neighbors: River Water Sharing between India, Pakistan and Bangladesh

Authors: Ashutosh Pujari

Abstract:

The sharing of natural resources is one of the most important aspects of relations between two neighboring countries, especially when it is a resource that has a presence in both the countries in question. River water is an important resource that is shared between India and its neighbors, namely Pakistan and Bangladesh. India shares Indus, Chenab, and Jhelum rivers with Pakistan, while with Bangladesh, it shares Ganges and Brahmaputra. However, it is interesting to note how does India deals with her sharing of water with these two countries. Although water sharing with both the countries has been dotted by irritants over the years, relations with Bangladesh is undoubtedly better in this respect. Given the common history of the region, this paper analyses the reasons behind this difference in the relationship between India and her neighbors and its implications for the present times. Through critical analysis of literature and the official policy of all the governments involved and the narratives present, this paper tries to present understand how India’s relations with its neighbors are a function of geopolitics, culture, and perceptions on both sides.

Keywords: geopolitics, river water sharing, India-Pakistan relations, India-Bangladesh relations

Procedia PDF Downloads 177
8862 Reorientation of Sustainable Livestock Management: A Case Study Applied to Wastes Management in Faculty of Animal Husbandry, Padjadjaran University, Indonesia

Authors: Raka Rahmatulloh, Mohammad Ilham Nugraha, Muhammad Ifan Fathurrahman

Abstract:

The agricultural sector covers a wide area, one of them is livestock subsector that supply needs of the food source of animal protein. Animal protein is produced by the main livestock production such as meat, milk, eggs, etc. Besides the main production, livestock would produce metabolic residue, so called livestock wastes. Characteristics of livestock wastes can be either solid (feces), liquid (urine), and gas (methane) which turned out to be useful and has economical value when well-processed and well-controlled. Nowadays, this livestock wastes is considered as a source of pollutants, especially water pollution. If the source of pollutants used in an integrated way, it will have a positive impact on organic farming and a healthy environment. Management of livestock wastes can be integrated with the farming sector to the planting and caring that rely on fertilizers. Most Indonesian farmers still use chemical fertilizers, where the use of it in the long term will disturb the ecological balance of the environment. One of the main efforts is to use organic fertilizers instead of chemical fertilizer that conducted by the Faculty of Animal Husbandry, Padjadjaran University. The method is to use the solid waste of livestock and agricultural wastes into liquid organic fertilizer, feed additive, biogas and vermicompost through decomposition. The decomposition takes as long as 14 days including aeration and extraction process using water as a nutrients solvent media which contained in decomposes and disinfection media to release pathogenic microorganisms in decomposes. Liquid organic fertilizer has highly efficient for the farmers to have a ratio of carbon/nitrogen (C/N) 25/1 to 30/1 and neutral pH (6.5-7.5) which is good for plant growth. Feed additive may be given to improve the digestibility of feed so that substances can be easily absorbed by the body for production. Biogas contains methane (CH4), which has a high enough heat to produce electricity. Vermicompost is an overhaul of waste organic material that has excellent structure, porosity, aeration, drainage, and moisture holding capacity. Based on the case study above, an integrated livestock wastes management program strongly supports the Indonesian government in the achievement of sustainable livestock development.

Keywords: integrated, livestock wastes, organic fertilizer, sustainable livestock development

Procedia PDF Downloads 420
8861 Low-carbon Footprint Diluents in Solvent Extraction for Lithium-ion Battery Recycling

Authors: Abdoulaye Maihatchi Ahamed, Zubin Arora, Benjamin Swobada, Jean-yves Lansot, Alexandre Chagnes

Abstract:

Lithium-ion battery (LiB) is the technology of choice in the development of electric vehicles. But there are still many challenges, including the development of positive electrode materials exhibiting high cycle ability, high energy density, and low environmental impact. For this latter, LiBs must be manufactured in a circular approach by developing the appropriate strategies to reuse and recycle them. Presently, the recycling of LiBs is carried out by the pyrometallurgical route, but more and more processes implement or will implement the hydrometallurgical route or a combination of pyrometallurgical and hydrometallurgical operations. After producing the black mass by mineral processing, the hydrometallurgical process consists in leaching the black mass in order to uptake the metals contained in the cathodic material. Then, these metals are extracted selectively by liquid-liquid extraction, solid-liquid extraction, and/or precipitation stages. However, liquid-liquid extraction combined with precipitation/crystallization steps is the most implemented operation in the LiB recycling process to selectively extract copper, aluminum, cobalt, nickel, manganese, and lithium from the leaching solution and precipitate these metals as high-grade sulfate or carbonate salts. Liquid-liquid extraction consists in contacting an organic solvent and an aqueous feed solution containing several metals, including the targeted metal(s) to extract. The organic phase is non-miscible with the aqueous phase. It is composed of an extractant to extract the target metals and a diluent, which is usually aliphatic kerosene produced from the petroleum industry. Sometimes, a phase modifier is added in the formulation of the extraction solvent to avoid the third phase formation. The extraction properties of the diluent do not depend only on the chemical structure of the extractant, but it may also depend on the nature of the diluent. Indeed, the interactions between the diluent can influence more or less the interactions between extractant molecules besides the extractant-diluent interactions. Only a few studies in the literature addressed the influence of the diluent on the extraction properties, while many studies focused on the effect of the extractants. Recently, new low-carbon footprint aliphatic diluents were produced by catalytic dearomatisation and distillation of bio-based oil. This study aims at investigating the influence of the nature of the diluent on the extraction properties of three extractants towards cobalt, nickel, manganese, copper, aluminum, and lithium: Cyanex®272 for nickel-cobalt separation, DEHPA for manganese extraction, and Acorga M5640 for copper extraction. The diluents used in the formulation of the extraction solvents are (i) low-odor aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205, and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). After discussing the effect of the diluents on the extraction properties, this conference will address the development of a low carbon footprint process based on the use of the best bio-sourced diluent for the production of high-grade cobalt sulfate, nickel sulfate, manganese sulfate, and lithium carbonate, as well as metal copper.

Keywords: diluent, hydrometallurgy, lithium-ion battery, recycling

Procedia PDF Downloads 72
8860 Effective Water Purification by Impregnated Carbon Nanotubes

Authors: Raviteja Chintala

Abstract:

Water shortage in many areas of the world have predominantly increased the demand for efficient methods involved in the production of drinking water, So purification of water invoking cost effective and efficient methods is a challenging field of research. In this regard, Reverse osmosis membrane desalination of both seawater and inland brackish water is currently being deployed in various locations around the world. In the present work an attempt is made to integrate these existing technologies with novel method, Wherein carbon nanotubes at the lab scale are prepared which further replace activated carbon tubes being used traditionally. This has proven to enhance the efficiency of the water filter, Effectively neutralising most of the organic impurities. Furthermore, This ensures the reduction in TDS. Carbon nanotubes have wide range in scope of applications such as composite reinforcements, Field emitters, Sensors, Energy storage and energy conversion devices and catalysts support phases, Because of their unusual mechanical, Electrical, Thermal and structural properties. In particular, The large specific surface area, as well as the high chemical and thermal stability, Makes carbon nanotube an attractive adsorbent in waste water treatment. Carbon nanotubes are effective in eliminating these harmful media from water as an adsorbent. In this work, Candle soot method has been incorporated for the preparation of carbon nanotubes and mixed with activated charcoal in different compositions. The effect of composition change is monitored by using TDS measuring meter. As the composition of Nano carbon increases, The TDS of the water gradually decreases. In order to enhance the life time for carbon filter, Nano tubes are provided with larger surface area.

Keywords: TDS (Total Dissolved Solids), carbon nanotubes, water, candle soot

Procedia PDF Downloads 322
8859 Enhanced Water Vapor Flow in Silica Microtubes Explained by Maxwell’s Tangential Momentum Accommodation and Langmuir’s Adsorption

Authors: Wenwen Lei, David R. Mckenzie

Abstract:

Recent findings of anomalously high gas flow rates in carbon nanotubes show smooth hydrophobic walls can increase specular reflection of molecules and reduce the tangential momentum accommodation coefficient (TMAC). Here we report the first measurements of water vapor flows in microtubes over a wide humidity range and show that for hydrophobic silica there is a range of humidity over which an adsorbed water layer reduces TMAC and accelerates flow. Our results show that this association between hydrophobicity and accelerated moisture flow occurs in readily available materials. We develop a hierarchical theory that unifies Maxwell’s ideas on TMAC with Langmuir’s ideas on adsorption. We fit the TMAC data as a function of humidity with the hierarchical theory based on two stages of Langmuir adsorption and derive total adsorption isotherms for water on hydrophobic silica that agree with direct observations. We propose structures for each stage of the water adsorption, the first reducing TMAC by a passivation of adsorptive patches and a smoothing of the surface, the second resembling bulk water with large TMAC. We find that leak testing of moisture barriers with an ideal gas such as helium may not be accurate enough for critical applications and that direct measurements of the water leak rate should be made.

Keywords: water vapor flows, silica microtubes, TMAC, enhanced flow rates

Procedia PDF Downloads 253
8858 Investigation of Effective Parameters on Water Quality of Iranian Rivers Using Hydrochemical and Statistical Methods

Authors: Maryam Sayadi, Rana Sedighpour, Hossein Rezaie

Abstract:

In this study, in order to evaluate water quality of Gamasiab and Gharehsoo rivers located in Kermanshah province, the information of a 5-year statistical period during the years 2014-2018 was used. To evaluate the hydrochemistry of water, first the type and hydrogeochemical facies of river water were determined using Stiff and Piper diagrams. Then, based on Gibbs diagram and combination diagrams, the factors controlling the chemical parameters of the two rivers were identified. Saturation indices were used to predict the possibility of dissolution and deposition of some minerals. Then, in order to classify water in different sections, fourteen water quality indicators for different uses along with WHO standard were used. Finally, factor analysis was used to determine the processes affecting the hydrochemistry of the two rivers. The results of this study showed that in both rivers, the predominant type and facies are bicarbonate of calcite. Also, the main factor in changing the chemical quality of water in both Gamasiab and Gharehsoo rivers is the water-rock reaction. According to the results of factor analysis in both rivers, two factors have the greatest impact on water quality in the region. Among the parameters of Gamasiab river in the first factor, HCO3-, Na+ and Cl-, respectively, had the highest factor loads, and in the second factor, SO42- and Mg2+ were selected as the main parameters. The parameters Ca2+, Cl- and Na have the highest factor loads in the first factor and in the second factor Mg2+ and SO42- have the highest factor loads in Gharehsoo river. The dissolution of carbonate formations due to their abundance and expansion in the two basins has a more significant effect on changing water chemistry. It has saturated the water of rivers with aragonite, calcite and dolomite. Due to the low contribution of the second factor in changing the chemical parameters, the water of both rivers is saturated with respect to evaporative minerals such as gypsum, halite and anhydrite in all stations. Based on Schoeller diagrams, Wilcox and other quality indicators in these two sections, the amount of main physicochemical parameters are in the desired range for drinking and agriculture. The results of Langelier, Ryznar, Larson-Skold and Puckorius indices showed that water is corrosive in industry.

Keywords: factor analysis, hydrochemical, saturation index, surface water quality

Procedia PDF Downloads 112
8857 Quantification of Effect of Linear Anionic Polyacrylamide on Seepage in Irrigation Channels

Authors: Hamil Uribe, Cristian Arancibia

Abstract:

In Chile, the water for irrigation and hydropower generation is delivery essentially through unlined channels on earth, which have high seepage losses. Traditional seepage-abatement technologies are very expensive. The goals of this work were to quantify water loss in unlined channels and select reaches to evaluate the use of linear anionic polyacrylamide (LA-PAM) to reduce seepage losses. The study was carried out in Maule Region, central area of Chile. Water users indicated reaches with potential seepage losses, 45 km of channels in total, whose flow varied between 1.07 and 23.6 m³ s⁻¹. According to seepage measurements, 4 reaches of channels, 4.5 km in total, were selected for LA-PAM application. One to 4 LA-PAM applications were performed at rates of 11 kg ha⁻¹, considering wet perimeter area as basis of calculation. Large channels were used to allow motorboat moving against the current to carry-out LA-PAM application. For applications, a seeder machine was used to evenly distribute granulated polymer on water surface. Water flow was measured (StreamPro ADCP) upstream and downstream in selected reaches, to estimate seepage losses before and after LA-PAM application. Weekly measurements were made to quantify treatment effect and duration. In each case, water turbidity and temperature were measured. Channels showed variable losses up to 13.5%. Channels showing water gains were not treated with PAM. In all cases, LA-PAM effect was positive, achieving average loss reductions of 8% to 3.1%. Water loss was confirmed and it was possible to reduce seepage through LA-PAM applications provided that losses were known and correctly determined when applying the polymer. This could allow increasing irrigation security in critical periods, especially under drought conditions.

Keywords: canal seepage, irrigation, polyacrylamide, water management

Procedia PDF Downloads 164
8856 Consumer Behavior and Knowledge on Organic Products in Thailand

Authors: Warunpun Kongsom, Chaiwat Kongsom

Abstract:

The objective of this study was to investigate the awareness, knowledge and consumer behavior towards organic products in Thailand. For this study, a purposive sampling technique was used to identify a sample group of 2,575 consumers over the age of 20 years who intended or made purchases from 1) green shops; 2) supermarkets with branches; and, 3) green markets. A questionnaire was used for data collection across the country. Descriptive statistics were used for data analysis. The results showed that more than 92% of consumers were aware of organic agriculture, but had less knowledge about it. More than 60% of consumers knew that organic agriculture production and processing did not allow the use of chemicals. And about 40% of consumers were confused between the food safety logo and the certified organic logo, and whether GMO was allowed in organic agriculture practice or not. In addition, most consumers perceived that organic agricultural products, good agricultural practice (GAP) products, agricultural chemicals free products, and hydroponic vegetable products had the same standard. In the view of organic consumers, the organic Thailand label was the most seen and reliable among various organic labels. Less than 3% of consumers thought that the International Federation of Organic Agriculture Movements (IFOAM) Global Organic Mark (GOM) was the most seen and reliable. For the behaviors of organic consumers, they purchased organic products mainly at the supermarket and green shop (55.4%), one to two times per month, and with a total expenditure of about 200 to 400 baht each time. The main reason for buying organic products was safety and free from agricultural chemicals. The considered factors in organic product selection were price (29.5%), convenience (22.4%), and a reliable certification system (21.3%). The demands for organic products were mainly rice, vegetables and fruits. Processed organic products were relatively small in quantity.

Keywords: consumer behavior, consumer knowledge, organic products, Thailand

Procedia PDF Downloads 280
8855 Investigation of Slope Stability in Gravel Soils in Unsaturated State

Authors: Seyyed Abolhasan Naeini, Ehsan Azini

Abstract:

In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software.  we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg’s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground.  Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased.

Keywords: slope stability analysis, factor of safety, matric suction, unsaturated silty gravel soil

Procedia PDF Downloads 158
8854 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 57
8853 Research Trends on Magnetic Graphene for Water Treatment: A Bibliometric Analysis

Authors: J. C. M. Santos, J. C. A. Sousa, A. J. Rubio, L. S. Soletti, F. Gasparotto, N. U. Yamaguchi

Abstract:

Magnetic graphene has received widespread attention for their capability of water and wastewater treatment, which has been attracted many researchers in this field. A bibliometric analysis based on the Web of Science database was employed to analyze the global scientific outputs of magnetic graphene for water treatment until the present time (2012 to 2017), to improve the understanding of the research trends. The publication year, place of publication, institutes, funding agencies, journals, most cited articles, distribution outputs in thematic categories and applications were analyzed. Three major aspects analyzed including type of pollutant, treatment process and composite composition have further contributed to revealing the research trends. The most relevant research aspects of the main technologies using magnetic graphene for water treatment were summarized in this paper. The results showed that research on magnetic graphene for water treatment goes through a period of decline that might be related to a saturated field and a lack of bibliometric studies. Thus, the result of the present work will lead researchers to establish future directions in further studies using magnetic graphene for water treatment.

Keywords: composite, graphene oxide, nanomaterials, scientometrics

Procedia PDF Downloads 234
8852 Urban Waste Water Governance in South Africa: A Case Study of Stellenbosch

Authors: R. Malisa, E. Schwella, K. I. Theletsane

Abstract:

Due to climate change, population growth and rapid urbanization, the demand for water in South Africa is inevitably surpassing supply. To address similar challenges globally, there has been a paradigm shift from conventional urban waste water management “government” to a “governance” paradigm. From the governance paradigm, Integrated Urban Water Management (IUWM) principle emerged. This principle emphasizes efficient urban waste water treatment and production of high-quality recyclable effluent. In so doing mimicking natural water systems, in their processes of recycling water efficiently, and averting depletion of natural water resources.  The objective of this study was to investigate drivers of shifting the current urban waste water management approach from a “government” paradigm towards “governance”. The study was conducted through Interactive Management soft systems research methodology which follows a qualitative research design. A case study methodology was employed, guided by realism research philosophy. Qualitative data gathered were analyzed through interpretative structural modelling using Concept Star for Professionals Decision-Making tools (CSPDM) version 3.64.  The constructed model deduced that the main drivers in shifting the Stellenbosch municipal urban waste water management towards IUWM “governance” principles are mainly social elements characterized by overambitious expectations of the public on municipal water service delivery, mis-interpretation of the constitution on access to adequate clean water and sanitation as a human right and perceptions on recycling water by different communities. Inadequate public participation also emerged as a strong driver. However, disruptive events such as draught may play a positive role in raising an awareness on the value of water, resulting in a shift on the perceptions on recycled water. Once the social elements are addressed, the alignment of governance and administration elements towards IUWM are achievable. Hence, the point of departure for the desired paradigm shift is the change of water service authorities and serviced communities’ perceptions and behaviors towards shifting urban waste water management approaches from “government” to “governance” paradigm.

Keywords: integrated urban water management, urban water system, wastewater governance, wastewater treatment works

Procedia PDF Downloads 138
8851 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 40