Search results for: J-Hook sandwich composite walls
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2786

Search results for: J-Hook sandwich composite walls

1676 Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove

Authors: A. Sharma, S. S. Sandhu, A. Shahi, A. Kumar

Abstract:

The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%.

Keywords: AISI 304 L, Butt joint, distortion, FEM, groove design, SMAW

Procedia PDF Downloads 407
1675 Research Trends on Magnetic Graphene for Water Treatment: A Bibliometric Analysis

Authors: J. C. M. Santos, J. C. A. Sousa, A. J. Rubio, L. S. Soletti, F. Gasparotto, N. U. Yamaguchi

Abstract:

Magnetic graphene has received widespread attention for their capability of water and wastewater treatment, which has been attracted many researchers in this field. A bibliometric analysis based on the Web of Science database was employed to analyze the global scientific outputs of magnetic graphene for water treatment until the present time (2012 to 2017), to improve the understanding of the research trends. The publication year, place of publication, institutes, funding agencies, journals, most cited articles, distribution outputs in thematic categories and applications were analyzed. Three major aspects analyzed including type of pollutant, treatment process and composite composition have further contributed to revealing the research trends. The most relevant research aspects of the main technologies using magnetic graphene for water treatment were summarized in this paper. The results showed that research on magnetic graphene for water treatment goes through a period of decline that might be related to a saturated field and a lack of bibliometric studies. Thus, the result of the present work will lead researchers to establish future directions in further studies using magnetic graphene for water treatment.

Keywords: composite, graphene oxide, nanomaterials, scientometrics

Procedia PDF Downloads 247
1674 Discrete Element Simulations of Composite Ceramic Powders

Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat

Abstract:

Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.

Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography

Procedia PDF Downloads 138
1673 Food Insecurity and Other Correlates of Individual Components of Metabolic Syndrome in Women Living with HIV (WLWH) in the United States

Authors: E. Wairimu Mwangi, Daniel Sarpong

Abstract:

Background: Access to effective antiretroviral therapy in the United States has resulted in the rise in longevity in people living with HIV (PLHIV). Despite the progress, women living with HIV (WLWH) experience increasing rates of cardiometabolic disorders compared with their HIV-negative counterparts. Studies focusing on the predictors of metabolic disorders in this population have largely focused on the composite measure of metabolic syndrome (METs). This study seeks to identify the predictors of composite and individual METs factors in a nationally representative sample of WLWH. In particular, the study also examines the role of food security in predicting METs. Methods: The study comprised 1800 women, a subset of participants from the Women’s Interagency HIV Study (WIHS). The primary exposure variable, food security, was measured using the U.S. 10-item Household Food Security Survey Module. The outcome measures are the five metabolic syndrome indicators (elevated blood pressure [systolic BP > 130 mmHg and diastolic BP ≥ 85 mmHg], elevated fasting glucose [≥ 110 mg/dL], elevated fasting triglyceride [≥ 150 mg/dL], reduced HDL cholesterol [< 50 mg/dL], and waist circumference > 88 cm) and the composite measure - Metabolic Syndrome (METs) Status. Each metabolic syndrome indicator was coded one if yes and 0 otherwise. The values of the five indicators were summed, and participants with a total score of 3 or greater were classified as having metabolic syndrome. Participants classified as having metabolic syndrome were assigned a code of 1 and 0 otherwise for analysis. The covariates accounted for in this study fell into sociodemographic factors and behavioral and health characteristics. Results: The participants' mean (SD) age was 47.1 (9.1) years, with 71.4% Blacks and 10.9% Whites. About a third (33.1%) had less than a high school (HS) diploma, 60.4% were married, 32.8% were employed, and 53.7% were low-income. The prevalence of worst dietary diversity, low, moderate, and high food security were 24.1%, 26.6%, 17.0%, and 56.4%, respectively. The correlate profile of the five individual METs factors plus the composite measure of METs differ significantly, with METs based on HDL having the most correlates (Age, Education, Drinking Status, Low Income, Body Mass Index, and Health Perception). Additionally, metabolic syndrome based on waist circumference was the only metabolic factor where food security was significantly correlated (Food Security, Age, and Body Mass Index). Age was a significant predictor of all five individual METs factors plus the composite METs measure. Except for METs based on Fasting Triglycerides, body mass index (BMI) was a significant correlate of the various measures of metabolic syndrome. Conclusion: High-density Lipoprotein (HDL) cholesterol significantly correlated with most predictors. BMI was a significant predictor of all METs factors except Fasting Triglycerides. Food insecurity, the primary predictor, was only significantly associated with waist circumference.

Keywords: blood pressure, food insecurity, fasting glucose, fasting triglyceride, high-density lipoprotein, metabolic syndrome, waist circumference, women living with HIV

Procedia PDF Downloads 58
1672 Transport Properties of Alkali Nitrites

Authors: Y. Mateyshina, A.Ulihin, N.Uvarov

Abstract:

Electrolytes with different type of charge carrier can find widely application in different using, e.g. sensors, electrochemical equipments, batteries and others. One of important components ensuring stable functioning of the equipment is electrolyte. Electrolyte has to be characterized by high conductivity, thermal stability, and wide electrochemical window. In addition to many advantageous characteristic for liquid electrolytes, the solid state electrolytes have good mechanical stability, wide working range of temperature range. Thus search of new system of solid electrolytes with high conductivity is an actual task of solid state chemistry. Families of alkali perchlorates and nitrates have been investigated by us earlier. In literature data about transport properties of alkali nitrites are absent. Nevertheless, alkali nitrites MeNO2 (Me= Li+, Na+, K+, Rb+ and Cs+), except for the lithium salt, have high-temperature phases with crystal structure of the NaCl-type. High-temperature phases of nitrites are orientationally disordered, i.e. non-spherical anions are reoriented over several equivalents directions in the crystal lattice. Pure lithium nitrite LiNO2 is characterized by ionic conductivity near 10-4 S/cm at 180°C and more stable as compared with lithium nitrate and can be used as a component for synthesis of composite electrolytes. In this work composite solid electrolytes in the binary system LiNO2 - A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) were synthesized and their structural, thermodynamic and electrical properties investigated. Alkali nitrite was obtained by exchange reaction from water solutions of barium nitrite and alkali sulfate. The synthesized salt was characterized by X-ray powder diffraction technique using D8 Advance X-Ray Diffractometer with Cu K radiation. Using thermal analysis, the temperatures of dehydration and thermal decomposition of salt were determined.. The conductivity was measured using a two electrode scheme in a forevacuum (6.7 Pa) with an HP 4284A (Precision LCR meter) in a frequency range 20 Hz < ν < 1 MHz. Solid composite electrolytes LiNO2 - A A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) have been synthesized by mixing of preliminary dehydrated components followed by sintering at 250°C. In the series of nitrite of alkaline metals Li+-Cs+, the conductivity varies not monotonically with increasing radius of cation. The minimum conductivity is observed for KNO2; however, with further increase in the radius of cation in the series, the conductivity tends to increase. The work was supported by the Russian Foundation for Basic research, grant #14-03-31442.

Keywords: conductivity, alkali nitrites, composite electrolytes, transport properties

Procedia PDF Downloads 319
1671 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 155
1670 Electrospinning in situ Synthesis of Graphene-Doped Copper Indium Disulfide Composite Nanofibers for Efficient Counter Electrode in Dye-Sensitized Solar Cells

Authors: Lidan Wang, Shuyuan Zhao, Jianxin He

Abstract:

In this paper, graphene-doped copper indium disulfide (rGO+CuInS2) composite nanofibers were fabricated via electrospinning, in situ synthesis, and carbonization, using polyvinyl pyrrolidone (PVP), copper dichloride (CuCl2), indium trichloride (InCl3), thiourea (C2H5NS) and graphene oxide nanosheets (Go) as the precursor solution for electrospinning. The average diameter of rGO+CuInS2 nanofibers were about 100 nm, and graphene nanosheets anchored with chalcopyrite CuInS2 nanocrystals 8-15 nm in diameter were overlapped and embedded, aligning along the fiber axial direction. The DSSC with a rGO+CuInS2 counter electrode exhibits a power conversion efficiency of 5.93%; better than the corresponding values for a DSSC with a CuInS2 counter electrode, and comparable to that of a reference DSSC with a Pt counter electrode. The excellent photoelectric performance of the rGO+CuInS2 counter electrode was attributed to its high specific surface area, which facilitated permeation of the liquid electrolytes, promoted electron and ion transfer and provided numerous catalytically active sites for the oxidation reaction of the electrolytic (I- /I3-).

Keywords: dye-sensitized solar cells, counter electrode, electrospinning, graphene

Procedia PDF Downloads 457
1669 Moisture Absorption Analysis of LLDPE-NR Nanocomposite for HV Insulation

Authors: M. S. Kamarulzaman, N. A. Muhamad, N. A. M. Jamail, M. A. M. Piah, N. F. Kasri

Abstract:

Insulation for high voltage application that has been service for a very long time is subjected to several types of degradation. The degradation can lead to premature breakdown and definitely will spent highly cost to replace the cable. Thus, there are many research on nano composite material get serious attention attention due to their abilities to enhance electrical performance by addition of nano filler. In this paper, water absorption of Low Linear Density Polyethyelene (LLDPE) with different amount of nano filler added is studied. This study is necessary to be conducted since most of electrical apparatus such as cable insulation are dominant used especially in high voltage application. The cable insulation are continuously exposed in uncontrolled environment may suffer degradation process. Three type of nano fillers, was used in this study are: Silicon dioxide (SiO2), Titanium dioxide (TiO2) and Monmorillonite (MMT). The percentage absorption of water was measured by weighted using high precision scales for absorption process up to 92 days. Experimental result demonstrate that SiO2 absorb less water than other filler while, the MMT has hydrophilic properties which it absorbs more water compare to another sample.

Keywords: nano composite, nano filler, water absorption, hydrophilic properties

Procedia PDF Downloads 356
1668 The Effect of Volume Fraction of Nano-Alumina Strengthening on AC4B Composite Characteristics through the Stir Casting Method as a Material Brake Shoe

Authors: Benny Alexander, Ikhlashia N. Fadhilah, Muhammad R. Pasha, Michelle Julia, Anne Z. Syahrial

Abstract:

Brake shoe is a component that serves to reduce speed or stop the train's speed by utilizing the friction force. Generally, the material used as a brake shoe is cast iron, where cast iron itself is a heavy, expensive, and easily worn material. Aluminum matrix composites are one of candidates for the cast iron replacement material as the basic material for brake shoe. The matrix in the composite used is Aluminum AC4B. Reinforcement used in aluminum matrix composites is nano-alumina, where the use of nano-alumina of 0.25%, 0.3%, 0.35%, 0.4%, and 0.5% volume fraction will be tested. The sample is made using the stir casting method; then, it will be tested mechanically. The use of nano-alumina as a reinforcement will increase the strength of the matrix. SEM (scanning electron microscopy) testing is used to test the distribution of reinforcing particles due to stirring. Therefore, the addition of nano-alumina will improve AC4B aluminum matrix composites.

Keywords: aluminium matrix composites, brake shoe application, stir casting, nano-alumina

Procedia PDF Downloads 132
1667 Polymer Impregnated Sulfonated Carbon Composite as a Solid Acid Catalyst for the Dehydration of Xylose to Furfural

Authors: Praveen K. Khatri, Neha Karanwal, Savita Kaul, Suman L. Jain

Abstract:

Conversion of biomass through green chemical routes is of great industrial importance as biomass is considered to be most widely available inexpensive renewable resource that can be used as a raw material for the production of bio fuel and value-added organic products. In this regard, acid catalyzed dehydration of biomass derived pentose sugar (mainly D-xylose) to furfural is a process of tremendous research interest in current scenario due to the wider industrial applications of furfural. Furfural is an excellent organic solvent for refinement of lubricants and separation of butadiene from butene mixture in synthetic rubber fabrication. In addition it also serve as a promising solvent for many organic materials, such as resins, polymers and also used as a building block for synthesis of various valuable chemicals such as furfuryl alcohol, furan, pharmaceutical, agrochemicals and THF. Here in a sulfonated polymer impregnated carbon composite solid acid catalyst (P-C-SO3H) was prepared by the pyrolysis of a polymer matrix impregnated with glucose followed by its sulfonation and used for the dehydration of xylose to furfural. The developed catalyst exhibited excellent activity and provided almost quantitative conversion of xylose with the selective synthesis of furfural. The higher catalytic activity of P-C-SO3H may be due to the more even distribution of polycyclic aromatic hydrocarbons generated from incomplete carbonization of glucose along the polymer matrix network, leading to more available sites for sulfonation which resulted in greater sulfonic acid density in P-C-SO3H as compared to sulfonated carbon catalyst (C-SO3H). In conclusion, we have demonstrated sulfonated polymer impregnated carbon composite (P-C-SO3H) as an efficient and selective solid acid catalyst for the dehydration of xylose to furfural. After completion of the reaction, the catalyst was easily recovered and reused for several runs without noticeable loss in its activity and selectivity.

Keywords: Solid acid , Biomass conversion, Xylose Dehydration, Heterogeneous catalyst

Procedia PDF Downloads 409
1666 Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites

Authors: Shanawaz Patil, Mohamed Haneef, K. S. Narayanaswamy

Abstract:

In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl  by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 oC for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and  as cast hybrid composites.

Keywords: beryl, graphene, heat treatment, mechanical properties

Procedia PDF Downloads 144
1665 A Novel Dual Band-pass filter Based On Coupling of Composite Right/Left Hand CPW and (CSRRs) Uses Ferrite Components

Authors: Mohammed Berka, Khaled Merit

Abstract:

Recent works on microwave filters show that the constituent materials such filters are very important in the design and realization. Several solutions have been proposed to improve the qualities of filtering. In this paper, we propose a new dual band-pass filter based on the coupling of a composite (CRLH) coplanar waveguide with complementary split ring resonators (CSRRs). The (CRLH) CPW is composed of two resonators, each one has an interdigital capacitor (CID) and two short-circuited stubs parallel to top ground plane. On the lower ground plane, we use defected ground structure technology (DGS) to engrave two (CSRRs) offered with different shapes and dimensions. Between the top ground plane and the substrate, we place a ferrite layer to control the electromagnetic coupling between (CRLH) CPW and (CSRRs). The global filter that has coplanar access will have a dual band-pass behavior around the magnetic resonances of (CSRRs). Since there’s no scientific or experimental result in the literature for this kind of complicated structure, it was necessary to perform simulation using HFSS Ansoft designer.

Keywords: complementary split ring resonators, coplanar waveguide, ferrite, filter, stub.

Procedia PDF Downloads 403
1664 A Full-Scale Test of Coping-Girder Integrated Bridge

Authors: Heeyoung Lee, Woosung Bin, Kangseog Seo, Hyojeong Yun, Zuog An

Abstract:

Recently, a new continuous bridge system has been proposed to increase the space under the bridge and to improve aesthetic aspect of the urban area. The main feature of the proposed bridge is to connect steel I-girders and coping by means of prestressed high-strength steel bars and steel plate. The proposed bridge is able to lower the height of the bridge to ensure the workability and efficiency through a reduction of the cost of road construction. This study presents the experimental result of the full-scale connection between steel I-girders and coping under the negative bending moment. The composite behavior is thoroughly examined and discussed under the specific load levels such as service load, factored load and crack load. Structural response showed full composite action until the final load level because no relative displacement between coping and girder was observed. It was also found prestressing force into high-strength bars was able to control tensile stresses of deck slab. This indicated that cracks in deck slab can be controlled by above-mentioned prestressing force.

Keywords: coping, crack, integrated bridge, full-scale test

Procedia PDF Downloads 440
1663 Pathomorphological Markers of the Explosive Wave Action on Human Brain

Authors: Sergey Kozlov, Juliya Kozlova

Abstract:

Introduction: The increased attention of researchers to an explosive trauma around the world is associated with a constant renewal of military weapons and a significant increase in terrorist activities using explosive devices. Explosive wave is a well known damaging factor of explosion. The most sensitive to the action of explosive wave in the human body are the head brain, lungs, intestines, urine bladder. The severity of damage to these organs depends on the distance from the explosion epicenter to the object, the power of the explosion, presence of barriers, parameters of the body position, and the presence of protective clothing. One of the places where a shock wave acts, in human tissues and organs, is the vascular endothelial barrier, which suffers the greatest damage in the head brain and lungs. The objective of the study was to determine the pathomorphological changes of the head brain followed the action of explosive wave. Materials and methods of research: To achieve the purpose of the study, there have been studied 6 male corpses delivered to the morgue of Municipal Institution "Dnipropetrovsk regional forensic bureau" during 2014-2016 years. The cause of death of those killed was a military explosive injury. After a visual external assessment of the head brain, for histological study there was conducted the 1 x 1 x 1 cm/piece sampling from different parts of the head brain, i.e. the frontal, parietal, temporal, occipital sites, and also from the cerebellum, pons, medulla oblongata, thalamus, walls of the lateral ventricles, the bottom of the 4th ventricle. Pieces of the head brain were immersed in 10% formalin solution for 24 hours. After fixing, the paraffin blocks were made from the material using the standard method. Then, using a microtome, there were made sections of 4-6 micron thickness from paraffin blocks which then were stained with hematoxylin and eosin. Microscopic analysis was performed using a light microscope with x4, x10, x40 lenses. Results of the study: According to the results of our study, injuries of the head brain were divided into macroscopic and microscopic. Macroscopic injuries were marked according to the results of visual assessment of haemorrhages under the membranes and into the substance, their nature, and localisation, areas of softening. In the microscopic study, our attention was drawn to both vascular changes and those of neurons and glial cells. Microscopic qualitative analysis of histological sections of different parts of the head brain revealed a number of structural changes both at the cellular and tissue levels. Typical changes in most of the studied areas of the head brain included damages of the vascular system. The most characteristic microscopic sign was the separation of vascular walls from neuroglia with the formation of perivascular space. Along with this sign, wall fragmentation of these vessels, haemolysis of erythrocytes, formation of haemorrhages in the newly formed perivascular spaces were found. In addition to damages of the cerebrovascular system, destruction of the neurons, presence of oedema of the brain tissue were observed in the histological sections of the brain. On some sections, the head brain had a heterogeneous step-like or wave-like nature. Conclusions: The pathomorphological microscopic changes in the brain, identified in the study on the died of explosive traumas, can be used for diagnostic purposes in conjunction with other characteristic signs of explosive trauma in forensic and pathological studies. The complex of microscopic signs in the head brain, i.e. separation of blood vessel walls from neuroglia with the perivascular space formation, fragmentation of walls of these blood vessels, erythrocyte haemolysis, formation of haemorrhages in the newly formed perivascular spaces is the direct indication of explosive wave action.

Keywords: blast wave, neurotrauma, human, brain

Procedia PDF Downloads 192
1662 Graphene-Based Nanocomposites as Ecofriendly Antifouling Surfaces

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Xiang Chen

Abstract:

After the prohibition of tin-based fouling-prevention coatings in 2003, the researchers were directed toward eco-friendly coatings. Because of their nonstick, environmental, and economic benefits, foul-release nanocoatings have received a lot of attention. They use physical anti-adhesion terminology to deter any fouling attachment.Natural bioinspired surfaces have micro/nano-roughness and low surface free energy features, which may inspire the design of dynamic antifouling coatings. Graphene-based nanocomposite surfaces were designed to combat marine-fouling adhesion with ecological as well as eco-friendly effects rather than biocidal solutions. Polymer–graphenenanofiller hybrids are a novel class of composite materials in fouling-prevention applications. The controlled preparation of nanoscale orientation, arrangement, and direction along the composite building blocks would result in superior fouling prohibition. This work representsfoul-release nanocomposite top coats for marine coating applications with superhydrophobicity, surface inertness against fouling adherence, cost-effectiveness, and increased lifetime.

Keywords: foul-release nanocoatings, graphene-based nanocomposite, polymer, nanofillers

Procedia PDF Downloads 141
1661 Investigation of the Dielectric Response of Ppy/V₂c Mxene-Zns from First Principle Calculation

Authors: Anthony Chidi Ezika, Gbolahan Joseph Adekoya, Emmanuel Rotimi Sadiku, Yskandar Hamam, Suprakas Sinha Ray

Abstract:

High-energy-density polymer/ceramic composites require a high breakdown strength and dielectric constant. Interface polarization and electric percolation are responsible for the high dielectric constant. In order to create composite dielectrics, high conductivity ceramic particles are combined with polymers to increase the dielectric constant. In this study, bonding and the non-uniform distribution of charges in the ceramic/ceramic interface zone are investigated using density functional theory (DFT) modeling. This non-uniform distribution of charges is intended to improve the ceramic/ceramic interface's dipole polarization (dielectric response). The interfacial chemical bond formation can also improve the structural stability of the hybrid filler and, consequently, of the composite films. To comprehend the electron-transfer process, the density of state and electron localization function of the PPy with hybrid fillers are also studied. The polymer nanocomposite is anticipated to provide a suitable dielectric response for energy storage applications.

Keywords: energy storage, V₂C/ ZnS hybrid, polypyrrole, MXene, nanocomposite, dielectric

Procedia PDF Downloads 117
1660 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites

Authors: Min Ye Koo, Gyo Woo Lee

Abstract:

In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.

Keywords: carbon nanotube filler, epoxy composite, ultra-sonication, shear mixer, mechanical property, thermal property

Procedia PDF Downloads 371
1659 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites

Authors: Sarra Haouala, Issam Doghri

Abstract:

In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.

Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization

Procedia PDF Downloads 369
1658 Three Types of Mud-Huts with Courtyards in Composite Climate: Thermal Performance in Summer and Winter

Authors: Janmejoy Gupta, Arnab Paul, Manjari Chakraborty

Abstract:

Jharkhand is a state located in the eastern part of India. The Tropic of Cancer (23.5 degree North latitude line) passes through Ranchi district in Jharkhand. Mud huts with burnt clay tiled roofs in Jharkhand are an integral component of the state’s vernacular architecture. They come in various shapes, with a number of them having a courtyard type of plan. In general, it has been stated that designing dwellings with courtyards in them is a climate-responsive strategy in composite climate. The truth behind this hypothesis is investigated in this paper. In this paper, three types of mud huts with courtyards situated in Ranchi district in Jharkhand are taken as a study and through temperature measurements in the south-side rooms and courtyards, in addition to Autodesk Ecotect (Version 2011) software simulations, their thermal performance throughout the year are observed. Temperature measurements are specifically taken during the peak of summer and winter and the average temperatures in the rooms and courtyards during seven day-periods in peak of summer and peak of winter are plotted graphically. Thereafter, on the basis of the study and software simulations, the hypothesis is verified and the thermally better performing dwelling types in summer and winter identified among the three sub-types studied. Certain recommendations with respect to increasing thermal comfort in courtyard type mud huts in general are also made. It is found that all courtyard type dwellings do not necessarily show better thermal performance in summer and winter in composite climate. The U shaped dwelling with open courtyard on southern side offers maximum amount of thermal-comfort inside the rooms in the hotter part of the year and the square hut with a central courtyard, with the courtyard being closed from all sides, shows superior thermal performance in winter. The courtyards in all the three case-studies are found to get excessively heated up during summer.

Keywords: courtyard, mud huts, simulations, temperature measurements, thermal performance

Procedia PDF Downloads 407
1657 Mechanical Behaviours of Ti/GFRP/Ti Laminates with Different Surface Treatments of Titanium Sheets

Authors: Amit Kumar Haldar, Mark Simms, Ian McDevitt, Anthony Comer

Abstract:

Interface properties of fiber metal laminates (FML) affects the integrity and deformation failure modes. In this paper, the mechanical behaviours of Ti/GFRP/Ti laminates were experimentally investigated through low-velocity impact tests. Two different surface treatments of Titanium (Ti-6Al-4V) alloy sheets were prepared to obtain the composite interface properties based on annealing and sandblast surface treatment processes. The deformation failure modes, impact load sustaining ability and energy absorption capacity of FMLs were analysed. The impact load and modulus were shown to be dependent on the surface treatments of Titanium (Ti-6Al-4V) alloy sheets. It was demonstrated that the impact load performance was enhanced when titanium surfaces were annealed and sandblasted. It has also been shown that the values of the strength and energy absorption were slightly higher when the tests conducted at relatively higher loading rate, as a result of the rate-sensitive effects on the damage resistance of the FML.

Keywords: fiber metal laminates, metal composite interface, indentation, low velocity impact

Procedia PDF Downloads 197
1656 Effect of Alloying Elements on Particle Incorporation of Boron Carbide Reinforced Aluminum Matrix Composites

Authors: Steven Ploetz, Andreas Lohmueller, Robert F. Singer

Abstract:

The outstanding performance of aluminum matrix composites (AMCs) regarding stiffness/weight ratio makes AMCs attractive material for lightweight construction. Low-density boride compounds promise simultaneously an increase in stiffness and decrease in composite density. This is why boron carbide is chosen for composite manufacturing. The composites are fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum is adapted during particle feeding and stirring. Poor wettability of boron carbide with liquid aluminum hinders particle incorporation, but alloying elements such as magnesium and titanium could improve wettability and thus particle incorporation. Next to alloying elements, adapted stirring parameters and impeller geometries improve particle incorporation and enable homogenous particle distribution and high particle volume fractions of boron carbide. AMCs with up to 15 vol.% of boron carbide particles are produced via melt stirring, resulting in an increase in stiffness and strength.

Keywords: aluminum matrix composites, boron carbide, stiffness, stir casting

Procedia PDF Downloads 308
1655 Solitons and Universes with Acceleration Driven by Bulk Particles

Authors: A. C. Amaro de Faria Jr, A. M. Canone

Abstract:

Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.

Keywords: solitons, topological defects, branes, kinks, accelerating universes in brane scenarios

Procedia PDF Downloads 137
1654 Numerical Investigation of Hybrid Ferrofluid Unsteady Flow through Porous Channel

Authors: Wajahat Hussain Khan, M. Zubair Akbar Qureshi

Abstract:

The viscous, two-dimensional, incompressible, and laminar time-dependent heat transfer flow through a ferromagnetic fluid is considered in this paper. Flow takes place in a channel between two porous walls under the influence of the magnetic field located beyond the channel. It is assumed that there are no electric field effects and the variation in the magnetic field vector that could occur within the F

Keywords: hybrid ferrofluid, heat transfer, magnetic field, porous channel

Procedia PDF Downloads 177
1653 Compact 3-D Co-Planar Waveguide Fed Dual-Port Ultrawideband-Multiple-Input and Multiple-Output Antenna with WLAN Band-Notched Characteristics

Authors: Asim Quddus

Abstract:

A miniaturized three dimensional co-planar waveguide (CPW) two-port MIMO antenna, exhibiting high isolation and WLAN band-notched characteristics is presented in this paper for ultrawideband (UWB) communication applications. The microstrip patch antenna operates as a single UWB antenna element. The proposed design is a cuboid-shaped structure having compact size of 35 x 27 x 45 mm³. Radiating as well as decoupling structure is placed around cuboidal polystyrene sheet. The radiators are 27 mm apart, placed Face-to-Face in vertical direction. Decoupling structure is placed on the side walls of polystyrene. The proposed antenna consists of an oval shaped radiating patch. A rectangular structure with fillet edges is placed on ground plan to enhance the bandwidth. The proposed antenna exhibits a good impedance match (S11 ≤ -10 dB) over frequency band of 2 GHz – 10.6 GHz. A circular slotted structure is employed as a decoupling structure on substrate, and it is placed on the side walls of polystyrene to enhance the isolation between antenna elements. Moreover, to achieve immunity from WLAN band distortion, a modified, inverted crescent shaped slotted structure is etched on radiating patches to achieve band-rejection characteristics at WLAN frequency band 4.8 GHz – 5.2 GHz. The suggested decoupling structure provides isolation better than 15 dB over the desired UWB spectrum. The envelope correlation coefficient (ECC) and gain for the MIMO antenna are analyzed as well. Finite Element Method (FEM) simulations are carried out in Ansys High Frequency Structural Simulator (HFSS) for the proposed design. The antenna is realized on a Rogers RT/duroid 5880 with thickness 1 mm, relative permittivity ɛr = 2.2. The proposed antenna achieves a stable omni-directional radiation patterns as well, while providing rejection at desired WLAN band. The S-parameters as well as MIMO parameters like ECC are analyzed and the results show conclusively that the design is suitable for portable MIMO-UWB applications.

Keywords: 3-D antenna, band-notch, MIMO, UWB

Procedia PDF Downloads 296
1652 An Investigation on Hybrid Composite Drive Shaft for Automotive Industry

Authors: Gizem Arslan Özgen, Kutay Yücetürk, Metin Tanoğlu, Engin Aktaş

Abstract:

Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA).

Keywords: composite propeller shaft, hybridization, epoxy matrix, static torque transmission capability, torsional buckling strength, fundamental natural bending frequency.

Procedia PDF Downloads 270
1651 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome

Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco

Abstract:

Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.

Keywords: data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index

Procedia PDF Downloads 135
1650 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels

Authors: Woo Young Jung, Sung Min Park, Ho Young Son, Viriyavudh Sim

Abstract:

This study presents a way to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, high-tech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).

Keywords: aftershock, composite material, GFRP, infill panel

Procedia PDF Downloads 334
1649 Metagenomic Identification of Cave Microorganisms in Lascaux and Other Périgord Caves

Authors: Lise Alonso, Audrey Dubost, Patricia Luis, Thomas Pommier, Yvan Moënne-Loccoz

Abstract:

The Lascaux Cave in South-Est France is an archeological landmark renowned for its Paleolithic paintings dating back c.18.000 years. Extensive touristic frequenting and repeated chemical treatments have resulted in the development of microbial stains on cave walls, which is a major issue in terms of art conservation. Therefore, it is of prime importance to better understand the microbiology specific to the Lascaux Cave, in comparison to regional situations. To this end, we compared the microbial community (i.e. both prokaryotic and eukaryotic microbial populations) of Lascaux Cave with three other anthropized Périgord caves as well as three pristine caves from the same area. We used state-of-the-art metagenomic analyses of cave wall samples to obtain a global view of the composition of the microbial community colonizing cave walls. We measured the relative abundance and diversity of four DNA markers targeting different fractions of the ribosomal genes of bacteria (i.e. eubacteria), archaea (i.e. archeobacteria), fungi and other micro-eukaryotes. All groups were highly abundant and diverse in all Périgord caves, as several hundred genera of microorganisms were identified in each. However, Lascaux Cave displayed a specify microbial community, which differed from those of both pristine and anthropized caves. Comparison of stains versus non-stained samples from the Passage area of the Lascaux Cave indicated that a few taxa (e.g. the Sordiaromycetes amongst fungi) were more prevalent within than outside stains, yet the main difference was in the relative proportion of the different microbial taxonomic groups and genera, which supposedly supports the biological origin of the stains. Overall, metagenomic sequencing of cave wall samples was effective to evidence the large colonization of caves by a diversified range of microorganisms. It also showed that Lascaux Cave represented a very particular situation in comparison with neighboring caves, probably in relation to the extent of disturbance it had undergone. Our results provide key baseline information to guide conservation efforts in anthropized caves such as Lascaux and pave the way to modern monitoring of ornamented caves.

Keywords: cave conservation, Lascaux cave, microbes, paleolithic paintings

Procedia PDF Downloads 244
1648 Mechanism of Performance of Soil-Cement Columns under Shallow Foundations in Liquefiable Soil

Authors: Zaheer Ahmed Almani, Agha Faisal Habib Pathan, Aneel Kumar Hindu

Abstract:

In this study, the effects of ground reinforcement with stiff soil-cement columns on liquefiable ground and on the shallow foundation of structure were investigated. The modelling and analysis of shallow foundation of the structure founded on the composite reinforced ground were carried out with finite difference FLAC commercial software. The results showed that stiff columns were not effective to the redistribute the shear stresses in the composite ground, thus, were not effective to reduce shear stress and shear strain on the soil between the columns. The excessive pore pressure increase which is dependent on volumetric strain (contractive) tendency of loose sand upon shearing, was not reduced to a significant level that liquefaction potential could be remediated. Thus, mechanism of performance with reduction of pore pressure and consequent liquefaction was not predicted in numerical analysis. Nonetheless, the columns were effective to resist the load of structure in compression and reduced the liquefaction-induced large settlements of structure to tolerable limits when provided adjacent and beneath the pad of shallow foundation.

Keywords: earthquake, liquefaction, mechanism, soil-cement columns

Procedia PDF Downloads 151
1647 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC

Authors: Yu-Zhou Zheng, Wen-Wei Wang

Abstract:

In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.

Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening

Procedia PDF Downloads 347