Search results for: sensory processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4103

Search results for: sensory processing

3023 Physico-Chemical Characteristics of Terminalia arjuna Encapsulated Dairy Drink

Authors: Sawale Pravin Digambar, G. R. Patil, Shaik Abdul Hussain

Abstract:

Terminalia arjuna (TA), an important medicinal plant in Indian System of Medicine, is specifically recognized for its recuperative effect on heart ailments. Alcoholic extract of TA (both free and encapsulated) was incorporated into milk to obtain functional dairy beverages. The respective beverages were appropriately flavored and optimized using response surface methodology to improve the sensory appeal. The beverages were evaluated for their compositional, anti-oxidative and various other physico-chemical aspects. Addition of herb (0.3%) extract to flavoured dairy drink (Drink 1) resulted in significantly lowered (p>0.05) HMF content and increased antioxidant activity, total phenol content as compared with control (Control 1). Subsequently, a significant (p>0.05) increase in acidity and sedimentation was also observed. Encapsulated herb (1.8%) incorporated drink (Drink 2) had significantly (P>0.05) enhanced HMF value and decreased antioxidant activity, phenol content as compared to herb added vanilla chocolate dairy drink (Drink 1). It can be concluded that addition of encapsulated TA extract and non-encapsulated TA extract to chocolate dairy drink at 0.3% concentration altered the functional properties vanilla chocolate dairy drink which could be related to the interaction of herb components such as polyphenol with milk protein or maltodextrin/ gum Arabic matrix.

Keywords: Terminalia arjuna, encapsulate, antioxidant activity, physicochemical study

Procedia PDF Downloads 355
3022 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 358
3021 Extended Shelf Life of Chicken Meat Using Carboxymethyl Cellulose Coated Polypropylene Films Containing Zataria multiflora Essential Oil

Authors: Z. Honarvar, M. Farhoodi, M. R. Khani, S. Shojaee-Aliabadi

Abstract:

The purpose of the present study was to evaluate carboxymethyl cellulose (CMC) coated polypropylene (PP) films containing Zataria multiflora (ZEO) essential oils (4%) as an antimicrobial packaging for chicken breast stored at 4 °C. To increase PP film hydrophilicity, it was treated by atmospheric cold plasma prior to coating by CMC. Then, different films including PP, PP/CMC, PP/CMC containing 4% of ZEO were used for the chicken meat packaging in vapor phase. Total viable count and pseudomonads population and oxidative (TBA) changes of the chicken breast were analyzed during shelf life. Results showed that the shelf life of chicken meat kept in films containing ZEO improved from three to nine days compared to the control sample without any direct contact with the film. Study of oxygen barrier properties of bilayer film without essential oils (0.096 cm3 μm/m2 d kPa) in comparison with PP film (416 cm3 μm/m2 d kPa) shows that coating of PP with CMC significantly reduces oxygen permeation of the obtained packaging (P<0.05), which reduced aerobic bacteria growth. Chemical composition of ZEO was also evaluated by gas chromatography–mass spectrometry (GC–MS), and this shows that thymol was the main antimicrobial and antioxidant component of the essential oil. The results revealed that PP/CMC containing ZEO has good potential for application as active food packaging in indirect contact which would also improve sensory properties of product.

Keywords: shelf life, chicken breast, polypropylene, carboxymethyl cellulose, essential oil

Procedia PDF Downloads 221
3020 Product Development of Standard Multi-Layer Sweet (Khanom- Chan) Recipe to Healthy for Thai Dessert

Authors: Tidarat Sanphom

Abstract:

Aim of this research is to development of Standard Layer pudding (Khanom-Chan) recipe to healthy Thai dessert. The objective are to study about standard recipe in multi-layer sweet. It was found that the appropriate recipe in multi-layer sweet, was consisted of rice starch 56 grams, tapioca starch 172 grams, arrowroot flour 98 grams, mung been-flour 16 grams, coconut milk 774 grams, fine sugar 374 grams, pandan leaf juice 47 grams and oil 5 grams.Then the researcher studied about the ratio of rice-berries flour to rice starch in multi-layer sweet at level of 30:70, 50:50, and only rice-berry flour 100 percentage. Result sensory evaluation, it was found the ratio of rice-berry flour to rice starch 30:70 had well score. The result of multi-layer sweet with rice-berry flour reduced sugar 20, 40 and 60 percentage found that 20 percentage had well score. Calculated total calories and calories from fat in Sweet layer cake with rice-berry flour reduced sugar 20 percentage had 250.04 kcal and 65.16 kcal.

Keywords: multi-layer sweet (Khanom-Chan), rice-berry flour, leaf juice, desert

Procedia PDF Downloads 413
3019 Effects of Certain Natural Food Additives (Pectin, Gelatin and Whey Proteins) on the Qualities of Fermented Milk

Authors: Abderrahim Cheriguene, Fatiha Arioui

Abstract:

The experimental study focuses on the extraction of pectin, whey protein and gelatin, and the study of their functional properties. Microbiological, physicochemical and sensory approach integrated has been implanted to study the effect of the incorporation of these natural food additives in the matrix of a fermented milk type set yogurt, to study the stability of the product during the periods of fermentation and post-acidification over a period of 21 days at 4°C. Pectin was extracted in hot HCl solution. Thermo-precipitation was carried out to obtain the whey proteins while the gelatin was extracted by hydrolysis of the collagen from bovine ossein. The fermented milk was prepared by varying the concentration of the incorporated additives. The measures and controls carried performed periodically on fermented milk experimental tests were carried out: pH, acidity, viscosity, the enumeration of Streptococcus thermophilus, cohesiveness, adhesiveness, taste, aftertaste, whey exudation, and odor. It appears that the acidity, viscosity, and number of Streptococcus thermophilus increased with increasing concentration of additive added in the experimental tests. Indeed, it seems clear that the quality of fermented milk and storability is more improved than the incorporation rate is high. The products showed a better test and a firmer texture limiting the whey exudation.

Keywords: fermented milk, pectin, gelatin, whey proteins, functional properties, quality, conservation, valorization

Procedia PDF Downloads 125
3018 Thiosulfate Leaching of the Auriferous Ore from Castromil Deposit: A Case Study

Authors: Rui Sousa, Aurora Futuro, António Fiúza

Abstract:

The exploitation of gold ore deposits is highly dependent on efficient mineral processing methods, although actual perspectives based on life-cycle assessment introduce difficulties that were unforeseen in a very recent past. Cyanidation is the most applied gold processing method, but the potential environmental problems derived from the usage of cyanide as leaching reagent led to a demand for alternative methods. Ammoniacal thiosulfate leaching is one of the most important alternatives to cyanidation. In this article, some experimental studies carried out in order to assess the feasibility of thiosulfate as a leaching agent for the ore from the unexploited Portuguese gold mine of Castromil. It became clear that the process depends on the concentrations of ammonia, thiosulfate and copper. Based on this fact, a few leaching tests were performed in order to assess the best reagent prescription, and also the effects of different combination of these concentrations. Higher thiosulfate concentrations cause the decrease of gold dissolution. Lower concentrations of ammonia require higher thiosulfate concentrations, and higher ammonia concentrations require lower thiosulfate concentrations. The addition of copper increases the gold dissolution ratio. Subsequently, some alternative operatory conditions were tested such as variations in temperature and in the solid/liquid ratio as well as the application of a pre-treatment before the leaching stage. Finally, thiosulfate leaching was compared to cyanidation. Thiosulfate leaching showed to be an important alternative, although a pre-treatment is required to increase the yield of the gold dissolution.

Keywords: gold, leaching, pre-treatment, thiosulfate

Procedia PDF Downloads 296
3017 Production of Date Juice Infused with Natural Antioxidants from Qatari Herbs

Authors: Tahra ElObeid, Noura Al-Wahiemed, Jawaher Al-shammari, Wedad Al-Asmar

Abstract:

The aim of this study is to utilize Qatari raw materials in the production of a date juice high in antioxidants. The antioxidants were extracted from five Qatari herbs: Caspian manna, Tetraena mongolica, Capparis spinosa, Ziziphus Vulgaris and Lycium shawii. The date juice was prepared in the lab and was infused with the polyphenolic extracts from the 5 different Qatari herbs. The date juice was then infused with the antioxidant containing the highest antioxidant activity and was within the acceptable range in sensory evaluation scale. The phenolic content for Lycium shawii, Alhagi maurorum, Ziziphus Vulgaris, Capparis spinosa and Tetraena mongolica was 4294 ppm, 3843 ppm, 804.59 ppm, 189.14 ppm and 226 ppm respectively, whereas their antioxidant capacity of was 6.21 %, 45.27 %, 69.81 %, 2.96 % and 8.63 % respectively. The highest antioxidant capacity was found in Ziziphus Vulgaris 69.8 % and the highest phenolic content was found in Lycium shawii 4294 ppm. Alhagi maurorum, Tetraena mongolica and Lycium shawii showed good results in terms of taste and aroma however Ziziphus Vulgaris exhibited bitter flavor. Alhagi maurorum antioxidant extract was used to be added to the date juice due to its high phenolic content, high antioxidant capacity, good taste and aroma.

Keywords: Qatar, dates, herbs, antioxidants

Procedia PDF Downloads 295
3016 Evaluation of Storage Stability and Quality Parameters in Biscuit Made from Blends of Wheat, Cassava (Manihot esculenta) and Carrot (Daucus carota) Flour

Authors: Aminat. O Adelekan, Olawale T. Gbadebo

Abstract:

Biscuit is one of the most consumed cereal foods in Nigeria and research has shown that locally available tropical crops like cassava, sweet potato can be made into flour and used in the production of biscuits and other pastries. This study investigates some quality parameters in biscuits made from blends of wheat, cassava and carrot flour. The values of result of samples increased with increasing percentage substitution of cassava and carrot flour in some quality parameter like fiber, ash, gluten content, and carbohydrate. The protein content reduced significantly (P < 0.05) with increasing percentage substitution of cassava and carrot flour which ranged from 14.80% to 11.80% compared with the control sample which had 15.60%. There was a recorded significant increase (P < 0.05) in some mineral composition such as calcium, magnesium, sodium, iron, phosphorus, and vitamin A and C composition as the percentage substitution of cassava and carrot flour increased. During storage stability test, samples stored in the fridge and freezer were found to be the best storage location to preserve the sensory attributes and inhibit microbial growth when compared with storage under the sun and on the shelf. Biscuit made with blends of wheat, cassava and carrot flour can therefore serve as an alternative to biscuits made from 100% wheat flour, as they are richer in vitamin A, vitamin C, carbohydrate, dietary fiber and some essential minerals.

Keywords: biscuit, carrot, flour blends, storage

Procedia PDF Downloads 121
3015 Experiences of Students with SLD at University: A Case Study

Authors: Lorna Martha Dreyer

Abstract:

Consistent with the changing paradigm on the rights of people with disabilities and in pursuit of social justice, there is internationally an increase in students with disabilities enrolling at Higher Education Institutions (HEIs). This trend challenges HEI’s to transform and attain Education for All (EFA) as a global imperative. However, while physical and sensory disabilities are observable, students with specific learning disabilities (SLD) do not present with any visible indications and are often referred to as “hidden” or “invisible” disabilities. This qualitative case study aimed to illuminate the experiences of students with SLDs at a South African university. The research was, therefore, guided by Vygotsky’s social-cultural theory (SCT). This research was conducted within a basic qualitative research methodology embedded in an interpretive paradigm. Data was collected through an online background survey and semi-structured interviews. Thematic qualitative content analysis was used to analyse the collected data systematically. From a social justice perspective, the major findings suggest that there are several factors that impede equal education for students with SLDs at university. Most participants in this small-scale study experienced a lack of acknowledgment and support from lecturers. They reported valuing the support of family and friends more than that of lecturers. It is concluded that lecturers need to be reflective of their pedagogical practices if authentic inclusion is to be realised.

Keywords: higher education, inclusive education, pedagogy, social-cultural theory, specific learning disabilities

Procedia PDF Downloads 130
3014 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 37
3013 Geospatial Land Suitability Modeling for Biofuel Crop Using AHP

Authors: Naruemon Phongaksorn

Abstract:

The biofuel consumption has increased significantly over the decade resulting in the increasing request on agricultural land for biofuel feedstocks. However, the biofuel feedstocks are already stressed of having low productivity owing to inappropriate agricultural practices without considering suitability of crop land. This research evaluates the land suitability using GIS-integrated Analytic Hierarchy Processing (AHP) of biofuel crops: cassava, at Chachoengsao province, in Thailand. AHP method that has been widely accepted for land use planning. The objective of this study is compared between AHP method and the most limiting group of land characteristics method (classical approach). The reliable results of the land evaluation were tested against the crop performance assessed by the field investigation in 2015. In addition to the socio-economic land suitability, the expected availability of raw materials for biofuel production to meet the local biofuel demand, are also estimated. The results showed that the AHP could classify and map the physical land suitability with 10% higher overall accuracy than the classical approach. The Chachoengsao province showed high and moderate socio-economic land suitability for cassava. Conditions in the Chachoengsao province were also favorable for cassava plantation, as the expected raw material needed to support ethanol production matched that of ethanol plant capacity of this province. The GIS integrated AHP for biofuel crops land suitability evaluation appears to be a practical way of sustainably meeting biofuel production demand.

Keywords: Analytic Hierarchy Processing (AHP), Cassava, Geographic Information Systems, Land suitability

Procedia PDF Downloads 182
3012 Exploring the Impact of Eye Movement Desensitization and Reprocessing (EMDR) And Mindfulness for Processing Trauma and Facilitating Healing During Ayahuasca Ceremonies

Authors: J. Hash, J. Converse, L. Gibson

Abstract:

Plant medicines are of growing interest for addressing mental health concerns. Ayahuasca, a traditional plant-based medicine, has established itself as a powerful way of processing trauma and precipitating healing and mood stabilization. Eye Movement Desensitization and Reprocessing (EMDR) is another treatment modality that aids in the rapid processing and resolution of trauma. We investigated group EMDR therapy, G-TEP, as a preparatory practice before Ayahuasca ceremonies to determine if the combination of these modalities supports participants in their journeys of letting go of past experiences negatively impacting mental health, thereby accentuating the healing of the plant medicine. We surveyed 96 participants (51 experimental G-TEP, 45 control grounding prior to their ceremony; age M=38.6, SD=9.1; F=57, M=34; white=39, Hispanic/Latinx=23, multiracial=11, Asian/Pacific Islander=10, other=7) in a pre-post, mixed methods design. Participants were surveyed for demographic characteristics, symptoms of PTSD and cPTSD (International Trauma Questionnaire (ITQ), depression (Beck Depression Inventory, BDI), and stress (Perceived Stress Scale, PSS) before the ceremony and at the end of the ceremony weekend. Open-ended questions also inquired about their expectations of the ceremony and results at the end. No baseline differences existed between the control and experimental participants. Overall, participants reported a decrease in meeting the threshold for PTSD symptoms (p<0.01); surprisingly, the control group reported significantly fewer thresholds met for symptoms of affective dysregulation, 2(1)=6.776, p<.01, negative self-concept, 2 (1)=7.122, p<.01, and disturbance in relationships, 2 (1)=9.804, p<.01, on subscales of the ITQ as compared to the experimental group. All participants also experienced a significant decrease in scores on the BDI, t(94)=8.995, p<.001, and PSS, t(91)=6.892, p<.001. Similar to patterns of PTSD symptoms, the control group reported significantly lower scores on the BDI, t(65.115)=-2.587, p<.01, and a trend toward lower PSS, t(90)=-1.775, p=.079 (this was significant with a one-sided test at p<.05), compared to the experimental group following the ceremony. Qualitative interviews among participants revealed a potential explanation for these relatively higher levels of depression and stress in the experimental group following the ceremony. Many participants reported needing more time to process their experience to gain an understanding of the effects of the Ayahuasca medicine. Others reported a sense of hopefulness and understanding of the sources of their trauma and the necessary steps to heal moving forward. This suggests increased introspection and openness to processing trauma, therefore making them more receptive to their emotions. The integration process of an Ayahuasca ceremony is a week- to months-long process that was not accessible in this stage of research, yet it is an integral process to understanding the full effects of the Ayahuasca medicine following the closure of a ceremony. Our future research aims to assess participants weeks into their integration process to determine the effectiveness of EMDR, and if the higher levels of depression and stress indicate the initial reaction to greater awareness of trauma and receptivity to healing.

Keywords: ayahuasca, EMDR, PTSD, mental health

Procedia PDF Downloads 46
3011 Texturing of Tool Insert Using Femtosecond Laser

Authors: Ashfaq Khan, Aftab Khan, Mushtaq Khan, Sarem Sattar, Mohammad A Sheikh, Lin Li

Abstract:

Chip removal processes are one of key processes of the manufacturing industry where chip removal is conducted by tool inserts of exceptionally hard materials. Tungsten carbide has been extensively used as tool insert for machining processes involving chip removal processes. These hard materials are generally fabricated by single step sintering process as further modification after fabrication in these materials cannot be done easily. Advances in tool surface modification have revealed that advantages such as improved tribological properties and extended tool life can be harnessed from the same tool by texturing the tool rake surface. Moreover, it has been observed that the shape and location of the texture also influences the behavior. Although texturing offers plentiful advantages the challenge lies in the generation of textures on the tool surface. Extremely hard material such as diamond is required to process tungsten carbide. Laser is unique processing tool that does not have a physical contact with the material and thus does not wear. In this research the potential of utilizing laser for texturing of tungsten carbide to develop custom features would be studied. A parametric study of texturing of Tungsten Carbide with a femtosecond laser would be conducted to investigate the process parameters and establish the feasible processing window. The effect of fluence, scan speed and number of repetition would be viewed in detail. Moreover, the mechanism for the generation of features would also be reviewed.

Keywords: laser, texturing, femtosecond, tungsten carbide

Procedia PDF Downloads 637
3010 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms

Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson

Abstract:

This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.

Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection

Procedia PDF Downloads 453
3009 Kinesio Taping in Treatment Patients with Intermittent Claudication

Authors: Izabela Zielinska

Abstract:

Kinesio Taping is classified as physiotherapy method supporting rehabilitation and modulating some physiological processes. It is commonly used in sports medicine and orthopedics. This sensory method has influence on muscle function, pain sensation, intensifies lymphatic system as well as improves microcirculation. The aim of this study was to assess the effect of Kinesio Taping in patients with ongoing treatment of peripheral artery disease (PAD). The study group comprised 60 patients (stadium II B at Fontain's scale). All patients were divided into two groups (30 person/each), where 12 weeks long treadmill training was administrated. In the second group, the Kinesio Taping was applied to support the function of the gastrocnemius muscle. The measurements of distance and time until claudication pain, blood flow of arteries in lower limbs and ankle brachial index were taken under evaluation. Examination performed after Kinesio Taping therapy showed statistically significant increase in gait parameters and muscle strength in patients with intermittent claudication. The Kinesio Taping method has clinically significant effects on enhancement of pain-free distance and time until claudication pain in patients with peripheral artery disease. Kinesio Taping application can be used to support non-invasive treatment in patients with intermittent claudication. Kinesio Taping can be employed as an alternative way of therapy for patients with orthopedic or cardiac contraindications to be treated with treadmill training.

Keywords: intermittent claudication, kinesiotaping, peripheral artery disease, treadmill training

Procedia PDF Downloads 191
3008 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser

Authors: Guanqiao Wang, Hongyang Yu

Abstract:

There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.

Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing

Procedia PDF Downloads 129
3007 Application of Active Chitosan Coating Incorporated with Spirulina Extract as a Potential Food Packaging Material for Enhancing Quality and Shelf Life of Shrimp

Authors: Rafik Balti, Nourhene Zayoud, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse

Abstract:

Application of edible films and coatings with natural active compounds for enhancing storage stability of food products is a promising active packaging approach. Shrimp are generally known as valuable seafood products around the world because of their delicacy and good nutritional. However, shrimp is highly vulnerable to quality deterioration associated with biochemical, microbiological or physical changes during postmortem storage, which results in the limited shelf life of the product. Chitosan is considered as a functional packaging component for maintaining the quality and increasing the shelf life of perishable foods. The present study was conducted to evaluate edible coating of crab chitosan containing variable levels of ethanolic extract of Spirulina on microbiological (mesophilic aerobic, psychrotrophic, lactic acid bacteria, and enterobacteriacea), chemical (pH, TVB-N, TMA-N, PV, TBARS) and sensory (odor, color, texture, taste, and overall acceptance) properties of shrimp during refrigerated storage. Also, textural and color characteristics of coated shrimp were performed. According to the obtained results, crab chitosan in combination with Spirulina extract was very effective in order to extend the shelf life of shrimp during storage in refrigerated condition.

Keywords: food packaging, chitosan, spirulina extract, white shrimp, shelf life

Procedia PDF Downloads 194
3006 Vitrification and Devitrification of Chromium Containing Tannery Ash

Authors: Savvas Varitis, Panagiotis Kavouras, George Kaimakamis, Eleni Pavlidou, George Vourlias, Konstantinos Chrysafis, Philomela Komninou, Theodoros Karakostas

Abstract:

Tannery industry produces high quantities of chromium containing waste which also have high organic content. Processing of this waste is important since the organic content is above the disposal limits and the containing trivalent chromium could be potentially oxidized to hexavalent in the environment. This work aims to fabricate new vitreous and glass ceramic materials which could incorporate the tannery waste in stabilized form either for safe disposal or for the production of useful materials. Tannery waste was incinerated at 500oC in anoxic conditions so most of the organic content would be removed and the chromium remained trivalent. Glass forming agents SiO2, Na2O and CaO were mixed with the resulting ash in different proportions with decreasing ash content. Considering the low solubility of Cr in silicate melts, the mixtures were melted at 1400oC and/or 1500oC for 2h and then casted on a refractory steel plate. The resulting vitreous products were characterized by X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), Scanning and Transmission Electron Microscopy (SEM and TEM). XRD reveals the existence of Cr2O3 (eskolaite) crystallites embedded in a glassy amorphous matrix. Such crystallites are not formed under a certain proportion of the waste in the ash-vitrified material. Reduction of the ash proportion increases chromium content in the silicate matrix. From these glassy products, glass-ceramics were produced via different regimes of thermal treatment.

Keywords: chromium containing tannery ash, glass ceramic materials, thermal processing, vitrification

Procedia PDF Downloads 352
3005 The Effect of High-Pressure Processing on the Inactivation of Saccharomyces cerevisiae in Different Concentration of Manuka Honey and Its Relation with ° Brix

Authors: Noor Akhmazillah Fauzi, Mohammed Mehdi Farid, Filipa V. Silva

Abstract:

The aim of this paper is to investigate if different concentration of Manuka honey (as a model food) has a major influence on the inactivation of Saccharomyces cerevisiae (as the testing microorganism) after subjecting it to HPP. Honey samples with different sugar concentrations (20, 30, 40, 50, 60 and 70 °Brix) were prepared aseptically using sterilized distilled water. No dilution of honey was made for the 80 °Brix sample. For the 0 °Brix sample (control), sterilized distilled water was used. Thermal treatment at 55 °C for 10 min (conventionally applied in honey pasteurisation in industry) was carried out for comparison purpose. S. cerevisiae cell numbers in honey samples were established before and after each HPP and thermal treatment. The number of surviving cells was determined after a proper dilution of the untreated and treated samples by the viable plate count method. S. cerevisiae cells, in different honey concentrations (0 to 80 °Brix), subjected to 600 MPa (at ambient temperature) showed an increasing resistance to inactivation with °Brix. A significant correlation (p < 0.05) between cell reduction and °Brix was found. Cell reduction in high pressure-treated samples varied linearly with °Brix (R2 > 0.9), confirming that the baroprotective effect of the food is due to sugar content. This study has practical implications in establishing efficient process design for commercial manufacturing of high sugar food products and on the potential use of HPP for such products.

Keywords: high pressure processing, honey, Saccharomyces cerevisiae, °Brix

Procedia PDF Downloads 340
3004 Coarse-Grained Computational Fluid Dynamics-Discrete Element Method Modelling of the Multiphase Flow in Hydrocyclones

Authors: Li Ji, Kaiwei Chu, Shibo Kuang, Aibing Yu

Abstract:

Hydrocyclones are widely used to classify particles by size in industries such as mineral processing and chemical processing. The particles to be handled usually have a broad range of size distributions and sometimes density distributions, which has to be properly considered, causing challenges in the modelling of hydrocyclone. The combined approach of Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) offers convenience to model particle size/density distribution. However, its direct application to hydrocyclones is computationally prohibitive because there are billions of particles involved. In this work, a CFD-DEM model with the concept of the coarse-grained (CG) model is developed to model the solid-fluid flow in a hydrocyclone. The DEM is used to model the motion of discrete particles by applying Newton’s laws of motion. Here, a particle assembly containing a certain number of particles with same properties is treated as one CG particle. The CFD is used to model the liquid flow by numerically solving the local-averaged Navier-Stokes equations facilitated with the Volume of Fluid (VOF) model to capture air-core. The results are analyzed in terms of fluid and solid flow structures, and particle-fluid, particle-particle and particle-wall interaction forces. Furthermore, the calculated separation performance is compared with the measurements. The results obtained from the present study indicate that this approach can offer an alternative way to examine the flow and performance of hydrocyclones

Keywords: computational fluid dynamics, discrete element method, hydrocyclone, multiphase flow

Procedia PDF Downloads 392
3003 Relationship between Personality Traits and Postural Stability among Czech Military Combat Troops

Authors: K. Rusnakova, D. Gerych, M. Stehlik

Abstract:

Postural stability is a complex process involving actions of biomechanical, motor, sensory and central nervous system components. Numerous joint systems, muscles involved, the complexity of sporting movements and situations require perfect coordination of the body's movement patterns. To adapt to a constantly changing situation in such a dynamic environment as physical performance, optimal input of information from visual, vestibular and somatosensory sensors are needed. Combat soldiers are required to perform physically and mentally demanding tasks in adverse conditions, and poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The aim of this study is to investigate whether some personality traits are related to the performance of static postural stability among soldiers of combat troops. NEO personality inventory (NEO-PI-R) was used to identify personality traits and the Nintendo Wii Balance Board was used to assess static postural stability of soldiers. Postural stability performance was assessed by changes in center of pressure (CoP) and center of gravity (CoG). A posturographic test was performed for 60 s with eyes opened during quiet upright standing. The results showed that facets of neuroticism and conscientiousness personality traits were significantly correlated with measured parameters of CoP and CoG. This study can help for better understanding the relationship between personality traits and static postural stability. The results can be used to optimize the training process at the individual level.

Keywords: neuroticism, conscientiousness, postural stability, combat troops

Procedia PDF Downloads 123
3002 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 249
3001 Trust: The Enabler of Knowledge-Sharing Culture in an Informal Setting

Authors: Emmanuel Ukpe, S. M. F. D. Syed Mustapha

Abstract:

Trust in an organization has been perceived as one of the key factors behind knowledge sharing, mainly in an unstructured work environment. In an informal working environment, to instill trust among individuals is a challenge and even more in the virtual environment. The study has contributed in developing the framework for building trust in an unstructured organization in performing knowledge sharing in a virtual environment. The artifact called KAPE (Knowledge Acquisition, Processing, and Exchange) was developed for knowledge sharing for the informal organization where the framework was incorporated. It applies to Cassava farmers to facilitate knowledge sharing using web-based platform. A survey was conducted; data were collected from 382 farmers from 21 farm communities. Multiple regression technique, Cronbach’s Alpha reliability test; Tukey’s Honestly significant difference (HSD) analysis; one way Analysis of Variance (ANOVA), and all trust acceptable measures (TAM) were used to test the hypothesis and to determine noteworthy relationships. The results show a significant difference when there is a trust in knowledge sharing between farmers, the ones who have high in trust acceptable factors found in the model (M = 3.66 SD = .93) and the ones who have low on trust acceptable factors (M = 2.08 SD = .28), (t (48) = 5.69, p = .00). Furthermore, when applying Cognitive Expectancy Theory, the farmers with cognitive-consonance show higher level of trust and satisfaction with knowledge and information from KAPE, as compared with a low level of cognitive-dissonance. These results imply that the adopted trust model KAPE positively improved knowledge sharing activities in an informal environment amongst rural farmers.

Keywords: trust, knowledge, sharing, knowledge acquisition, processing and exchange, KAPE

Procedia PDF Downloads 101
3000 Modern Agriculture and Industrialization Nexus in the Nigerian Context

Authors: Ese Urhie, Olabisi Popoola, Obindah Gershon, Olabanji Ewetan

Abstract:

Modern agriculture involves the use of improved tools and equipment (instead of crude and ineffective tools) like tractors, hand operated planters, hand operated fertilizer drills and combined harvesters - which increase agricultural productivity. Farmers in Nigeria still have huge potentials to enhance their productivity. The study argues that the increase in agricultural output due to increased productivity, orchestrated by modern agriculture will promote forward linkages and opportunities in the processing sub-sector; both the manufacturing of machines and the processing of raw materials. Depending on existing incentives, foreign investment could be attracted to augment local investment in the sector. The availability of raw materials in large quantity – which prices are competitive – will attract investment in other industries. In addition, potentials for backward linkages will also be created. In a nutshell, adopting the unbalanced growth theory in favour of the agricultural sector could engender industrialization in a country with untapped potentials. The paper highlights the numerous potentials of modern agriculture that are yet to be tapped in Nigeria and also provides a theoretical analysis of how the realization of such potentials could promote industrialization in the country. The study adopts the Lewis’ theory of structural–change model and Hirschman’s theory of unbalanced growth in the design of the analytical framework. The framework will be useful in empirical studies that will guide policy formulation.

Keywords: modern agriculture, industrialization, structural change model, unbalanced growth

Procedia PDF Downloads 276
2999 Hot Deformation Behavior and Recrystallization of Inconel 718 Superalloy under Double Cone Compression

Authors: Wang Jianguo, Ding Xiao, Liu Dong, Wang Haiping, Yang Yanhui, Hu Yang

Abstract:

The hot deformation behavior of Inconel 718 alloy was studied by uniaxial compression tests under the deformation temperature of 940~1040℃ and strain rate of 0.001-10s⁻¹. The double cone compression (DCC) tests develop strains range from 30% to the 79% strain including all intermediate values of stains at different temperature (960~1040℃). DCC tests were simulated by finite element software which shown the strain and strain rates distribution. The result shows that the peak stress level of the alloy decreased with increasing deformation temperature and decreasing strain rate, which could be characterized by a Zener-Hollomon parameter in the hyperbolic-sine equation. The characterization method of hot processing window containing recrystallization volume fraction and average grain size was proposed for double cone compression test of uniform coarse grain, mixed crystal and uniform fine grain double conical specimen in hydraulic press and screw press. The results show that uniform microstructures can be obtained by low temperature with high deformation followed by high temperature with small deformation on the hydraulic press and low temperature, medium deformation, multi-pass on the screw press. The two methods were applied in industrial forgings process, and the forgings with uniform microstructure were obtained successfully.

Keywords: inconel 718 superalloy, hot processing windows, double cone compression, uniform microstructure

Procedia PDF Downloads 204
2998 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications

Authors: K. Uyanga, W. Daoud

Abstract:

Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.

Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate

Procedia PDF Downloads 127
2997 The Effects of Blanching, Boiling and Steaming on Ascorbic Acid Content, Total Phenolic Content, and Colour in Cauliflowers (Brassica oleracea var. Botrytis)

Authors: Huei Lin Lee, Wee Sim Choo

Abstract:

The effects of blanching, boiling and steaming on the ascorbic acid content, total phenolic content and colour in cauliflower (Brassica oleraceavar. Botrytis) was investigated. It was found that blanching was the best thermal processing to be applied on cauliflower compared to boiling and steaming processes. Blanching and steaming processes on cauliflower retained most of the ascorbic acid content (AAC) compared to those of boiling. As for the total phenolic content (TPC), blanching process retained a higher TPC in cauliflower compared to those of boiling and steaming processes. There were no significant differences between the TPC of boiled and steamed cauliflowers. As for the colour measurement, there were no significant differences in the colour of the cauliflower at different lead time (after processing to the point of consumption) of 30 minutes interval up to 3 hours but there were slight variations in L*, a*, and b* values among the thermal processed cauliflowers (blanched, boiled and steamed). The cauliflowers in this study were found to give a desirable white colour (L* value in the range of 77-83) in all the three thermal processes (blanching, boiling and steaming). There was no significant difference on the effect of lead time (30-minutes interval up to 3 hours) in raw and all the three thermal processed (blanched, boiled and steamed) cauliflowers.

Keywords: ascorbic acid, cauliflower, colour, phenolics

Procedia PDF Downloads 302
2996 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing

Procedia PDF Downloads 407
2995 Progress in Combining Image Captioning and Visual Question Answering Tasks

Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima

Abstract:

Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.

Keywords: image captioning, visual question answering, deep learning, natural language processing

Procedia PDF Downloads 59
2994 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior

Authors: Nazli Uren, Ayse Okur

Abstract:

Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.

Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort

Procedia PDF Downloads 285