Search results for: maturity classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2475

Search results for: maturity classification

1395 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 296
1394 Cycas beddomei Dyer: An Endemic and Endangered Indian Medicinal Plant

Authors: Ayyavu Brama Dhayala Selvam

Abstract:

Herbal medicines are gaining importance due to holistic nature and lesser side effects. Cycas beddomei Dyer is one of the highly exploited medicinal plants in India. Due to over-exploitation of male and female cones, young leaves and starch-bearing pithy stems for edible, medicinal and socio-cultural practices by the locals, tribals and traders, the plant population has drastically declined in its natural habitats. Cycas beddomei is an endemic to India. The current IUCN status of this plant species in the wild is endangered. Perhaps, it is the only species of Cycas enlisted in Appendix I of CITES (Convention on International Trade in Endangered Species of wild fauna and flora). Endorsing the CITES decisions, the Government of India has placed C. beddomei in the “Negative List of Exports” during 1998. Though this plant has been banned legally, but illegally, it is highly exploited by different means. Therefore, conservation of this species is an urgent need of the hour. The present paper highlights unique morphological and anatomical characters of C. beddomei, along with its present status, major threats and conservation measures. Cycas beddomei can easily be identified by some of the distinguishing morphological and anatomical characters, viz., 2–4 mm wide leaflets with revolute margins; the apices of microsporophylls from the middle to apex of the pollen cones turn downwards on maturity; mucilage canal cells are seen in the midrib region of the leaflets; stomatal frequency is about 18 numbers at 250x; pollen grains are monocolpate and their diameter ranging from 22.5 to 30 µm.

Keywords: CITES, Cycas beddomei, endangered, endemic

Procedia PDF Downloads 293
1393 A Comparative Study of Resilience in Third Culture Kids and Non Third Culture Kids

Authors: Shahanaz Aboobacker Ahmed, P. Ajilal

Abstract:

We live in the ‘age of migration’ where global migration and repatriation is the stark reality of human lives in the contemporary world. With increasing number of people migrating and repatriating for education, work, or crisis situations, there is an ever-growing need for active research into the effects of repatriation and migration on the psychological well-being of the migrants and expatriates. Moving across borders has resulted in individual developing a third culture and hence such individual are known as Third Culture Kids (TCKs). The aim of the study was to understand the difference in the resilience between Third Culture Kids and Non- Third Culture Kids and gain an insight into how resilience is shaped by migratory experience. The sample comprised of 200 participants that included 100 TCKs and 100 Non-TCKs. The participants were in the age range group of 17-26 years and were pursuing their college education in various parts of the world. The variable of Resilience was measured using the Resilience scale developed and standardized on TCK population which included subtests; Emotional Regulation, Impulse Control, Causal Analysis, Self Efficacy, Realistic Optimism, Empathy and Reaching Out. The data was obtained from in-person sessions and over Skype. The data was analyzed using independent sample t-tests. Results indicated that there is a significant difference between TCKs and Non-TCKs on Impulse Control, Causal Analysis, Realistic Optimism, Empathy and Reaching Out. However, no significant difference was found on the sub-variables of Self Efficacy and Emotional Regulation.

Keywords: third culture kids, resilience, immigration, cross-cultural psychology, repatriation, emotional maturity, emotional regulation, impulse control, causal analysis, self-efficacy, realistic optimism, empathy, reaching out

Procedia PDF Downloads 171
1392 The Effect of Gender Differences on Mate Selection in Private University

Authors: Hui Min Kong, Rajalakshmi A/P Ganesan

Abstract:

The present study was conducted to investigate the effect of gender differences in mate selection in a private university. Mate selection is an important process and decision to the people around the world, especially for single people. The future partner we have chosen could be our lifetime friend, supporter, and lover. Mate selection is important to us, but we have never fully understood the evolution of gender differences in mate selection. Besides, there was an insufficient empirical finding of gender differences in mate selection in Malaysia. Hence, the research would allow us to understand our feelings and thoughts about our future partners. The research null hypotheses have stated that there was no significant difference on 18 mate selections characteristics between males and females. A quantitative method was performed to test the hypotheses through independent t-test. There was a total of 373 heterosexual participants with the age range of 18 to 35 in the study. The instrument used was Factors in choosing a mate developed by Buss and Barnes (1986). Results indicated that females (M= 26.69) were found to be highly valued on refinement and neatness, good financial prospect, dependable character, emotional stability and maturity, desire for home and children, favorable social status or rating, similar religious background, ambition and industriousness, mutual attraction, good health and education and intelligence than males (M= 23.25). These results demonstrated that there were 61.11% significant gender differences in mate selections characteristics. Findings of this research have highlighted the importance of human mate selections in Malaysia. Further research is needed to identify the factors that could have a possible moderating effect of gender differences in mate selection.

Keywords: gender differences, mate selections, evolution, future partner

Procedia PDF Downloads 111
1391 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
1390 African Culture and Youth Morality: A Critique of the On-Going Transitional Rites in Thulamela Municipality, South Africa

Authors: Bassey Rofem Inyang, Matshidze Pfarelo, Mabale Dolphin

Abstract:

Using a qualitative descriptive design, this study established the consequences of the on-going transitional rites on youth morality in the Thulamela Local Municipality, South Africa. The participants were sampled using a non-random sampling procedure, specifically, a purposive sampling technique and a snowball sampling technique. A semi-structured interview guide was recruited to collect data from the Indigenous Knowledge (IK) custodians, the parents of the youths and the youths until the point of saturation. The analysis was performed using a thematic content method. With the emergence of themes and sub-themes, broad categories were generated to differentiate and explain the thoughts expressed by the various respondents and the observations made in the field. The study findings suggest that the on-going transitional rites are depicted by weekend social activities with the practice of substance use and abuse among the youths at recreational spots. The transitional rites are structured under the guise of “freaks” as an evolving culture among the youths. The freaks culture is a counterculture of the usual initiation schools for transitional rites of passage which is believed to instill morality among youths. The findings comprehensively show that the on-going transitional rites influence inappropriate youth morality. This study concluded that the on-going transitional rites activities and practices evolved as a current socialization standard for quick maturity status; as a result, it will be challenging to provide a complete turnaround of this evolving culture. The study, however, recommends building on the exciting transitional rites of passage to moderate appropriate youths’ morality in Thulamela communities.

Keywords: morality, transitional rites, youths, behaviour

Procedia PDF Downloads 93
1389 A Kruskal Based Heuxistic for the Application of Spanning Tree

Authors: Anjan Naidu

Abstract:

In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree.

Keywords: Minimum Spanning tree, algorithm, Heuxistic, application, classification of Sub 97K90

Procedia PDF Downloads 444
1388 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 324
1387 Corporate Governance of Enterprise IT: Research Study on IT Governance Maturity

Authors: Mario Spremic

Abstract:

Despite the financial crisis and ongoing need for cost cutting, companies all around the world heavily invest in information systems (IS) and underlying information technology (IT). Information systems (IS) play very important role in modern business organizations supporting its organizational efficiency or, under certain circumstances, fostering business model innovation and change. IS can influence organization competitiveness in two ways: supporting operational efficiency (IS as a main infrastructure for the current business), or differentiating business through business model innovation and business process change. In either way, IS becomes very important to the business and needs to be aligned with strategic objectives in order to justify massive investments. A number of studies showed that investments in IS and underlying IT resulted in added business value if they are truly connected with strategic business objectives. In that sense proliferation of governance of enterprise IT helps companies manage, or rather, governs IS as a primary business function with executive management involved in making a decision about IS and IT. The quality of IT governance is rising with the large number of decisions about IS made by executive management, not IT departments. The more executive management is engaged in making a decision about IS and IT, the IT governance is of better quality. In this paper, the practice of governing the enterprise IT will be investigated on a sample of the largest 100 Croatian companies. Research questions posed here will reveal if there are some formal IT governance mechanisms, are there any differences in perceived role of IS and IT between CIOs (Chief Information Officers) and CEOs (Chief Executive Officers) of the sampled companies and what are the mechanisms to govern massive investment in enterprise IT.

Keywords: IT governance, governance of enterprise IT, information system auditing, operational efficiency

Procedia PDF Downloads 304
1386 Human Gait Recognition Using Moment with Fuzzy

Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain

Abstract:

A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.

Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments

Procedia PDF Downloads 757
1385 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies

Authors: Elżbieta Turska

Abstract:

Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.

Keywords: mood disorders, adolescents, family, artificial intelligence

Procedia PDF Downloads 101
1384 Detecting Covid-19 Fake News Using Deep Learning Technique

Authors: AnjalI A. Prasad

Abstract:

Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.

Keywords: BERT, CNN, LSTM, RNN

Procedia PDF Downloads 205
1383 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware

Authors: Subham Ghosh, Banani Basu, Marami Das

Abstract:

Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.

Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease

Procedia PDF Downloads 7
1382 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections

Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández

Abstract:

Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.

Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control

Procedia PDF Downloads 22
1381 Assessing the Utility of Unmanned Aerial Vehicle-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping

Authors: Qiaosi Li, Frankie Kwan Kit Wong, Tung Fung

Abstract:

Lightweight unmanned aerial vehicle (UAV) loading with novel sensors offers a low cost approach for data acquisition in complex environment. This study established a framework for applying UAV system in complex environment quick mapping and assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area Mai Po Inner Deep Bay Ramsar Site, Hong Kong. The study area was part of shallow bay with flat terrain and the major species including reedbed and four mangroves: Kandelia obovata, Aegiceras corniculatum, Acrostichum auerum and Acanthus ilicifolius. Other species involved in various graminaceous plants, tarbor, shrub and invasive species Mikania micrantha. In particular, invasive species climbed up to the mangrove canopy caused damage and morphology change which might increase species distinguishing difficulty. Hyperspectral images were acquired by Headwall Nano sensor with spectral range from 400nm to 1000nm and 0.06m spatial resolution image. A sequence of multi-view RGB images was captured with 0.02m spatial resolution and 75% overlap. Hyperspectral image was corrected for radiative and geometric distortion while high resolution RGB images were matched to generate maximum dense point clouds. Furtherly, a 5 cm grid digital surface model (DSM) was derived from dense point clouds. Multiple feature reduction methods were compared to identify the efficient method and to explore the significant spectral bands in distinguishing different species. Examined methods including stepwise discriminant analysis (DA), support vector machine (SVM) and minimum noise fraction (MNF) transformation. Subsequently, spectral subsets composed of the first 20 most importance bands extracted by SVM, DA and MNF, and multi-source subsets adding extra DSM to 20 spectrum bands were served as input in maximum likelihood classifier (MLC) and SVM classifier to compare the classification result. Classification results showed that feature reduction methods from best to worst are MNF transformation, DA and SVM. MNF transformation accuracy was even higher than all bands input result. Selected bands frequently laid along the green peak, red edge and near infrared. Additionally, DA found that chlorophyll absorption red band and yellow band were also important for species classification. In terms of 3D data, DSM enhanced the discriminant capacity among low plants, arbor and mangrove. Meanwhile, DSM largely reduced misclassification due to the shadow effect and morphological variation of inter-species. In respect to classifier, nonparametric SVM outperformed than MLC for high dimension and multi-source data in this study. SVM classifier tended to produce higher overall accuracy and reduce scattered patches although it costs more time than MLC. The best result was obtained by combining MNF components and DSM in SVM classifier. This study offered a precision species distribution survey solution for inaccessible wetland area with low cost of time and labour. In addition, findings relevant to the positive effect of DSM as well as spectral feature identification indicated that the utility of UAV-borne hyperspectral and photogrammetry deriving 3D data is promising in further research on wetland species such as bio-parameters modelling and biological invasion monitoring.

Keywords: digital surface model (DSM), feature reduction, hyperspectral, photogrammetric point cloud, species mapping, unmanned aerial vehicle (UAV)

Procedia PDF Downloads 257
1380 Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities

Authors: Claire Biasco, Thaier Hayajneh

Abstract:

A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity.

Keywords: blockchain, IoT, smart city, DAO

Procedia PDF Downloads 121
1379 Flood Hazard Assessment and Land Cover Dynamics of the Orai Khola Watershed, Bardiya, Nepal

Authors: Loonibha Manandhar, Rajendra Bhandari, Kumud Raj Kafle

Abstract:

Nepal’s Terai region is a part of the Ganges river basin which is one of the most disaster-prone areas of the world, with recurrent monsoon flooding causing millions in damage and the death and displacement of hundreds of people and households every year. The vulnerability of human settlements to natural disasters such as floods is increasing, and mapping changes in land use practices and hydro-geological parameters is essential in developing resilient communities and strong disaster management policies. The objective of this study was to develop a flood hazard zonation map of Orai Khola watershed and map the decadal land use/land cover dynamics of the watershed. The watershed area was delineated using SRTM DEM, and LANDSAT images were classified into five land use classes (forest, grassland, sediment and bare land, settlement area and cropland, and water body) using pixel-based semi-automated supervised maximum likelihood classification. Decadal changes in each class were then quantified using spatial modelling. Flood hazard mapping was performed by assigning weights to factors slope, rainfall distribution, distance from the river and land use/land cover on the basis of their estimated influence in causing flood hazard and performing weighed overlay analysis to identify areas that are highly vulnerable. The forest and grassland coverage increased by 11.53 km² (3.8%) and 1.43 km² (0.47%) from 1996 to 2016. The sediment and bare land areas decreased by 12.45 km² (4.12%) from 1996 to 2016 whereas settlement and cropland areas showed a consistent increase to 14.22 km² (4.7%). Waterbody coverage also increased to 0.3 km² (0.09%) from 1996-2016. 1.27% (3.65 km²) of total watershed area was categorized into very low hazard zone, 20.94% (60.31 km²) area into low hazard zone, 37.59% (108.3 km²) area into moderate hazard zone, 29.25% (84.27 km²) area into high hazard zone and 31 villages which comprised 10.95% (31.55 km²) were categorized into high hazard zone area.

Keywords: flood hazard, land use/land cover, Orai river, supervised maximum likelihood classification, weighed overlay analysis

Procedia PDF Downloads 352
1378 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube

Authors: Dan Kanmegne

Abstract:

Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.

Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification

Procedia PDF Downloads 145
1377 Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO

Authors: Ouahab Kadri, Leila Hayet Mouss

Abstract:

In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system.

Keywords: ant colony algorithms, complex and dynamic systems, diagnosis, classification, optimization

Procedia PDF Downloads 298
1376 Vertical and Horizantal Distribution Patterns of Major and Trace Elements: Surface and Subsurface Sediments of Endhorheic Lake Acigol Basin, Denizli Turkey

Authors: M. Budakoglu, M. Karaman

Abstract:

Lake Acıgöl is located in area with limited influences from urban and industrial pollution sources, there is nevertheless a need to understand all potential lithological and anthropogenic sources of priority contaminants in this closed basin. This study discusses vertical and horizontal distribution pattern of major, trace elements of recent lake sediments to better understand their current geochemical analog with lithological units in the Lake Acıgöl basin. This study also provides reliable background levels for the region by the detailed surfaced lithological units data. The detail results of surface, subsurface and shallow core sediments from these relatively unperturbed ecosystems, highlight its importance as conservation area, despite the high-scale industrial salt production activity. While P2O5/TiO2 versus MgO/CaO classification diagram indicate magmatic and sedimentary origin of lake sediment, Log(SiO2/Al2O3) versus Log(Na2O/K2O) classification diagrams express lithological assemblages of shale, iron-shale, vacke and arkose. The plot between TiO2 vs. SiO2 and P2O5/TiO2 vs. MgO/CaO also supports the origin of the primary magma source. The average compositions of the 20 different lithological units used as a proxy for geochemical background in the study area. As expected from weathered rock materials, there is a large variation in the major element content for all analyzed lake samples. The A-CN-K and A-CNK-FM ternary diagrams were used to deduce weathering trends. Surface and subsurface sediments display an intense weathering history according to these ternary diagrams. The most of the sediments samples plot around UCC and TTG, suggesting a low to moderate weathering history for the provenance. The sediments plot in a region clearly suggesting relative similar contents in Al2O3, CaO, Na2O, and K2O from those of lithological samples.

Keywords: Lake Acıgöl, recent lake sediment, geochemical speciation of major and trace elements, heavy metals, Denizli, Turkey

Procedia PDF Downloads 411
1375 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce

Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.

Abstract:

One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.

Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies

Procedia PDF Downloads 27
1374 Digital Twin Smart Hospital: A Guide for Implementation and Improvements

Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar

Abstract:

This study investigates the application of Digital Twins (DT) in Smart Hospital Environments (SHE), through a bibliometric study and literature review, including comparison with the principles of Industry 4.0. It aims to analyze the current state of the implementation of digital twins in clinical and non-clinical operations in healthcare settings, identifying trends and challenges, comparing these practices with Industry 4.0 concepts and technologies, in order to present a basic framework including stages and maturity levels. The bibliometric methodology will allow mapping the existing scientific production on the theme, while the literature review will synthesize and critically analyze the relevant studies, highlighting pertinent methodologies and results, additionally the comparison with Industry 4.0 will provide insights on how the principles of automation, interconnectivity and digitalization can be applied in healthcare environments/operations, aiming at improvements in operational efficiency and quality of care. The results of this study will contribute to a deeper understanding of the potential of Digital Twins in Smart Hospitals, in addition to the future potential from the effective integration of Industry 4.0 concepts in this specific environment, presented through the practical framework, after all, the urgent need for changes addressed in this article is undeniable, as well as all their value contribution to human sustainability, designed in SDG3 – Health and well-being: ensuring that all citizens have a healthy life and well-being, at all ages and in all situations. We know that the validity of these relationships will be constantly discussed, and technology can always change the rules of the game.

Keywords: digital twin, smart hospital, healthcare operations, industry 4.0, SDG3, technology

Procedia PDF Downloads 53
1373 Spatial Patterns of Urban Expansion in Kuwait City between 1989 and 2001

Authors: Saad Algharib, Jay Lee

Abstract:

Urbanization is a complex phenomenon that occurs during the city’s development from one form to another. In other words, it is the process when the activities in the land use/land cover change from rural to urban. Since the oil exploration, Kuwait City has been growing rapidly due to its urbanization and population growth by both natural growth and inward immigration. The main objective of this study is to detect changes in urban land use/land cover and to examine the changing spatial patterns of urban growth in and around Kuwait City between 1989 and 2001. In addition, this study also evaluates the spatial patterns of the changes detected and how they can be related to the spatial configuration of the city. Recently, the use of remote sensing and geographic information systems became very useful and important tools in urban studies because of the integration of them can allow and provide the analysts and planners to detect, monitor and analyze the urban growth in a region effectively. Moreover, both planners and users can predict the trends of the growth in urban areas in the future with remotely sensed and GIS data because they can be effectively updated with required precision levels. In order to identify the new urban areas between 1989 and 2001, the study uses satellite images of the study area and remote sensing technology for classifying these images. Unsupervised classification method was applied to classify images to land use and land cover data layers. After finishing the unsupervised classification method, GIS overlay function was applied to the classified images for detecting the locations and patterns of the new urban areas that developed during the study period. GIS was also utilized to evaluate the distribution of the spatial patterns. For example, Moran’s index was applied for all data inputs to examine the urban growth distribution. Furthermore, this study assesses if the spatial patterns and process of these changes take place in a random fashion or with certain identifiable trends. During the study period, the result of this study indicates that the urban growth has occurred and expanded 10% from 32.4% in 1989 to 42.4% in 2001. Also, the results revealed that the largest increase of the urban area occurred between the major highways after the forth ring road from the center of Kuwait City. Moreover, the spatial distribution of urban growth occurred in cluster manners.

Keywords: geographic information systems, remote sensing, urbanization, urban growth

Procedia PDF Downloads 171
1372 Normalized Compression Distance Based Scene Alteration Analysis of a Video

Authors: Lakshay Kharbanda, Aabhas Chauhan

Abstract:

In this paper, an application of Normalized Compression Distance (NCD) to detect notable scene alterations occurring in videos is presented. Several research groups have been developing methods to perform image classification using NCD, a computable approximation to Normalized Information Distance (NID) by studying the degree of similarity in images. The timeframes where significant aberrations between the frames of a video have occurred have been identified by obtaining a threshold NCD value, using two compressors: LZMA and BZIP2 and defining scene alterations using Pixel Difference Percentage metrics.

Keywords: image compression, Kolmogorov complexity, normalized compression distance, root mean square error

Procedia PDF Downloads 340
1371 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN

Procedia PDF Downloads 334
1370 Seed Quality Aspects of Nightshade (Solanum Nigrum) as Influenced by Gibberellins (GA3) on Seed

Authors: Muga Moses

Abstract:

Plant growth regulators are actively involved in the growth and yield of plants. However, limited information is available on the combined effect of gibberellic acid (GA3) on growth attributes and yield of African nightshade. This experiment will be designed to fill this gap by studying the performance of African nightshade under the application of hormones. Gibberellic acid is a plant growth hormone that promotes cell expansion and division. A greenhouse and laboratory experiment will be conducted at the University of Sussex biotechnology greenhouse and Agriculture laboratory using a growth chamber to study the effect of GA3 on the growth and development attributes of African nightshade. The experiment consists of three replications and 5 treatments and is laid out in a randomized complete block design consisting of various concentrations of GA3. 0ppm, 50ppm, 100ppm, 150ppm and 200ppm. local farmer seed was grown in plastic pots, 6 seeds then hardening off to remain with four plants per pot at the greenhouse to attain purity of germplasm, proper management until maturity of berries then harvesting and squeezing to get seeds, paper dry on the sun for 7 days. In a laboratory, place 5 Whatman filter paper on glass petri-dish subject to different concentrations of stock solution, count 50 certified and clean, healthy seeds, then arrange on the moist filter paper and mark respectively. Spray with the stock solution twice a day and protrusion of radicle termed as germination count and discard to increase the accuracy of precision. Data will be collected on the application of GA3 to compare synergistic effects on the growth, yield, and nutrient contents on African nightshade.

Keywords: African nightshade, growth, yield, shoot, gibberellins

Procedia PDF Downloads 88
1369 Effect of a Single Injection of hCG on Testosterone Concentration in Male Alpacas

Authors: A. ElZawam, D. McLean, A. Tibary

Abstract:

In alpaca, age at puberty is variable and the factors regulating the pattern of puberty and sexual maturation are a subject of controversy. Plasma testosterone level is often used as an indicator of sexual maturity. Our hypothesis is that hCG treatment will cause an increase in testosterone level that is correlated with animal age. The specific aim was to investigate the testicular tissue response to a single hCG injection by monitoring the serum testosterone concentration. Eighty four (n=84) males ranging in age from 6 to 60 months were used. Alpacas were grouped based on their ages into 15 groups. Each group had three to five male animals. Blood samples were collected from the jugular vein before treatment with hCG and 2 hours after intravenous administration of 3000 IU of hCG (Chorulon®). The serum was harvested and stored at -20ºC until the analysis. The effect of age on basal testosterone level and response to hCG treatment was evaluated by Analysis of Variance. As a result, basal serum testosterone concentrations were very low (<0.1ng/ml) until 9 months of age. Although basal serum testosterone concentrations increased steadily with age there was a significant variation amongst males within the same age group. Administration of 3000 IU of hCG, resulted in an average increase of 50% (P<0.05) in serum testosterone concentration after 2 hours. The percentage increase in serum testosterone in response to hCG stimulation varied from 51 to 81%. There was no correlation between the degree of response and age. However, the response to hCG injection presented two modes of increase depending on the age of animals. The first mode occurred at ages 9 to 14 months and the second mode was observed between 22 and 36 months. In conclusion, our results suggest that testicular growth and sensitivity to LH stimulation may be bimodal in the male alpaca with a rapid increase in growth and sensitivity between 9 and 14 months of age and a second phase of increased responsiveness after 21 months of ages.

Keywords: alpaca, testosterone, hCG, animal science

Procedia PDF Downloads 570
1368 Effect of Spontaneous Ripening and Drying Techniques on the Bioactive Activities Peel of Plantain (Musa paradisiaca) Fruit

Authors: Famuwagun A. A., Abiona O. O., Gbadamosi S.O., Adeboye O. A., Adebooye O. C.

Abstract:

The need to provide more information on the perceived bioactive status of the peel of plantain fruit informed the design of this research. Matured Plantain fruits were harvested, and fruits were allowed to ripen spontaneously. Samples of plantain fruit were taken every fortnight, and the peels were removed. The peels were dried using two different drying techniques (Oven drying and sun drying) and milled into powdery forms. Other samples were picked and processed in a similar manner on the first, third, seventh and tenth day until the peels of the fruits were fully ripped, resulting in eight different samples. The anti-oxidative properties of the samples using different assays (DPPH, FRAP, MCA, HRSA, SRSA, ABTS, ORAC), inhibitory activities against enzymes related to diabetes (alpha-amylase and glucosidase) and inhibition against angiotensin-converting enzymes (ACE) were evaluated. The result showed that peels of plantain fruits on the 7th day of ripening and sundried exhibited greater inhibitions against free radicals, which enhanced its antioxidant activities, resulting in greater inhibitions against alpha-amylase and alpha-glucosidase enzymes. Also, oven oven-dried sample of the peel of plantain fruit on the 7th day of ripening had greater phenolic contents than the other samples, which also resulted in higher inhibition against angiotensin converting enzymes when compared with other samples. The results showed that even though the unripe peel of plantain fruit is assumed to contain excellent bioactive activities, consumption of the peel should be allowed to ripen for seven days after maturity and harvesting so as to derive maximum benefit from the peel.

Keywords: functional ingredient, diabetics, hypertension, functional foods

Procedia PDF Downloads 51
1367 Classification of Sturm-Liouville Problems at Infinity

Authors: Kishor J. shinde

Abstract:

We determine the values of k and p such that the Sturm-Liouville differential operator τu=-(d^2 u)/(dx^2) + kx^p u is in limit point case or limit circle case at infinity. In particular it is shown that τ is in the limit point case when (i) for p=2 and ∀k, (ii) for ∀p and k=0, (iii) for all p and k>0, (iv) for 0≤p≤2 and k<0, (v) for p<0 and k<0. τ is in the limit circle case when (i) for p>2 and k<0.

Keywords: limit point case, limit circle case, Sturm-Liouville, infinity

Procedia PDF Downloads 367
1366 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values

Authors: Burçin Saltık, Levent Genç

Abstract:

In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.

Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice

Procedia PDF Downloads 228