Search results for: low and high velocity impact
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28893

Search results for: low and high velocity impact

27813 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool

Authors: M. S. Said, J. A. Ghani, C. H. Che Hassan, N. N. Wan, M. A. Selamat, R. Othman

Abstract:

Metal Matrix Composite (MMCs) have attracted considerable attention as a result of their ability to provide high strength, high modulus, high toughness, high impact properties, improved wear resistance and good corrosion resistance than unreinforced alloy. Aluminium Silicon (Al/Si) alloys Metal Matrix composite (MMC) has been widely used in various industrial sectors such as transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is MMC reinforced with aluminium nitride (AlN) particle and becomes a new generation material for automotive and aerospace applications. The AlN material is one of the advanced materials with light weight, high strength, high hardness and stiffness qualities which have good future prospects. However, the high degree of ceramic particles reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density, is the main problem that leads to the machining difficulties. This paper examines tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 coated carbide cutting tool. The volume of the AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were the cutting speed of (230 m/min, feed rate 0.4mm tooth, DOC 0.5mm, 300 m/min, feed rate 0.8mm/tooth, DOC 0.5mm and 370 m/min, feed rate 0.8, DOC 0.4m). The Sometech SV-35 video microscope system was used for tool wear measurements respectively. The results have revealed that the tool life increases with the cutting speed (370 m/min, feed rate 0.8 mm/tooth and depth of cut 0.4mm) constituted the optimum condition for longer tool life which is 123.2 min. While at medium cutting speed, it is found that the cutting speed of 300m/min, feed rate 0.8 mm/tooth and depth of cut 0.5mm only 119.86 min for tool wear mean while the low cutting speed give 119.66 min. The high cutting speed gives the best parameter for cutting AlSi/AlN MMCs materials. The result will help manufacture to machining the AlSi/AlN MMCs materials.

Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated carbide tool, manufacturing engineering

Procedia PDF Downloads 417
27812 Real Estate Rigidities: The Effect of Cash Transactions and the Impact of Demonetisation on Them

Authors: Dishant Shahi, Aradhya Shandilya, Nand Kumar

Abstract:

We study here the impact of the black component referred to as X component in the text on Real estate transactions. The X component involved not only acts as friction in transaction but also leads to dysfunctionality in the capital market of real estate. The effect of the component is presented by using a model of economy which seeks resemblance with that of India involving property deals. The rigidities which hinder smooth transactions in property or land deals are depicted and their impact on the economy as a whole has been modelled. The effect of subprime crisis (2007) on Indian housing capital market and the role which the X component played during it, is also included in one of the sections. In the entire text, we have utilised 4 Quadrant graphs to study supply and demand causalities involved in commercial real estate. At the end we have included the impact of demonetisation as a move to counter the problem of overvaluation in the property assets arising due to the X component. The case of Demonetisation which has been the latest move by the Indian Government to control huge amount of black money in circulation has been included along with its impact on the housing and rent as well as the capital market.

Keywords: X-component, 4Q graph, real estate, capital markets, demonetisation, consumer sentiments

Procedia PDF Downloads 357
27811 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant

Procedia PDF Downloads 290
27810 Gethuk Marillo: The New Product Development of Anti-Cancer Snacks Utilizing Xanthones and Anthocyanin in Mangosteen Pericarp and Tamarillo Fruit

Authors: Desi Meriyanti, Delina Puspa Rosana Firdaus, Ristia Rinati

Abstract:

Nowadays, the presence of free radicals become a big concern due to its negative impact to the body, which can triggers the formation of degenerative diseases such as cancer, heart disease cardiovascular, diabetic mellitus and others. Free radical oxidation can be prevented by the presence of antioxidants. Naturally, the human body produces its own antioxidants. Because of the free radicals exposure are so intense, especially from the environment, it is necessary to supply antioxidants needed from outside, through the consumption of functional foods with high antioxidant content. Gethuk is one of the traditional snacks in Indonesia. Gethuk is made from cassava with minimal processing such as boiling, destructing, and forming. Gethuk is classified as a familiar snack in the community, so it has a potential for developing, especially into a functional food. The low content of antioxidants in gethuk can be overcome with the development of a product called Gethuk Marillo. Gethuk Marillo is gethuk with the addition of natural antioxidants from mangosteen pericarp extract which has a high content of xanthones, these compounds are classified into flavonoids and act as antioxidants in the body. Gethuk Marillo served along with tamarillo fruit sauce which is also high in antioxidants such as anthocyanin. The combination between 300 grams gethuk Marillo and sauce contain flavonoid about 31% of human antioxidant needs per day. Gethuk Marillo called as a functional food because of high flavonoids content which can prevent degenerative diseases namely cancer, as many studies that the xanthone and anthocyanins compounds can effectively prevent the formation of cancer cells in human body.

Keywords: Gethuk marillo, xanthones, anthocyanin, high antioxidants, anti-cancer

Procedia PDF Downloads 648
27809 A Simulation-Based Investigation of the Smooth-Wall, Radial Gravity Problem of Granular Flow through a Wedge-Shaped Hopper

Authors: A. F. Momin, D. V. Khakhar

Abstract:

Granular materials consist of particulate particles found in nature and various industries that, due to gravity flow, behave macroscopically like liquids. A fundamental industrial unit operation is a hopper with inclined walls or a converging channel in which material flows downward under gravity and exits the storage bin through the bottom outlet. The simplest form of the flow corresponds to a wedge-shaped, quasi-two-dimensional geometry with smooth walls and radially directed gravitational force toward the apex of the wedge. These flows were examined using the Mohr-Coulomb criterion in the classic work of Savage (1965), while Ravi Prakash and Rao used the critical state theory (1988). The smooth-wall radial gravity (SWRG) wedge-shaped hopper is simulated using the discrete element method (DEM) to test existing theories. DEM simulations involve the solution of Newton's equations, taking particle-particle interactions into account to compute stress and velocity fields for the flow in the SWRG system. Our computational results are consistent with the predictions of Savage (1965) and Ravi Prakash and Rao (1988), except for the region near the exit, where both viscous and frictional effects are present. To further comprehend this behaviour, a parametric analysis is carried out to analyze the rheology of wedge-shaped hoppers by varying the orifice diameter, wedge angle, friction coefficient, and stiffness. The conclusion is that velocity increases as the flow rate increases but decreases as the wedge angle and friction coefficient increase. We observed no substantial changes in velocity due to varying stiffness. It is anticipated that stresses at the exit result from the transfer of momentum during particle collisions; for this reason, relationships between viscosity and shear rate are shown, and all data are collapsed into a single curve. In addition, it is demonstrated that viscosity and volume fraction exhibit power law correlations with the inertial number and that all the data collapse into a single curve. A continuum model for determining granular flows is presented using empirical correlations.

Keywords: discrete element method, gravity flow, smooth-wall, wedge-shaped hoppers

Procedia PDF Downloads 76
27808 Evaluation of Fluidized Bed Bioreactor Process for Mmabatho Waste Water Treatment Plant

Authors: Shohreh Azizi, Wag Nel

Abstract:

The rapid population growth in South Africa has increased the requirement of waste water treatment facilities. The aim of this study is to assess the potential use of Fluidized bed Bio Reactor for Mmabatho sewage treatment plant. The samples were collected from the Inlet and Outlet of reactor daily to analysis the pH, Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS) as per standard method APHA 2005. The studies were undertaken on a continue laboratory scale, and analytical data was collected before and after treatment. The reduction of 87.22 % COD, 89.80 BOD % was achieved. Fluidized Bed Bio Reactor remove Bod/COD removal as well as nutrient removal. The efforts also made to study the impact of the biological system if the domestic wastewater gets contaminated with any industrial contamination and the result shows that the biological system can tolerate high Total dissolved solids up to 6000 mg/L as well as high heavy metal concentration up to 4 mg/L. The data obtained through the experimental research are demonstrated that the FBBR may be used (<3 h total Hydraulic Retention Time) for secondary treatment in Mmabatho wastewater treatment plant.

Keywords: fluidized bed bioreactor, wastewater treatment plant, biological system, high TDS, heavy metal

Procedia PDF Downloads 156
27807 Impact of Material Chemistry and Morphology on Attrition Behavior of Excipients during Blending

Authors: Sri Sharath Kulkarni, Pauline Janssen, Alberto Berardi, Bastiaan Dickhoff, Sander van Gessel

Abstract:

Blending is a common process in the production of pharmaceutical dosage forms where the high shear is used to obtain a homogenous dosage. The shear required can lead to uncontrolled attrition of excipients and affect API’s. This has an impact on the performance of the formulation as this can alter the structure of the mixture. Therefore, it is important to understand the driving mechanisms for attrition. The aim of this study was to increase the fundamental understanding of the attrition behavior of excipients. Attrition behavior of the excipients was evaluated using a high shear blender (Procept Form-8, Zele, Belgium). Twelve pure excipients are tested, with morphologies varying from crystalline (sieved), granulated to spray dried (round to fibrous). Furthermore, materials include lactose, microcrystalline cellulose (MCC), di-calcium phosphate (DCP), and mannitol. The rotational speed of the blender was set at 1370 rpm to have the highest shear with a Froude (Fr) number 9. Varying blending times of 2-10 min were used. Subsequently, after blending, the excipients were analyzed for changes in particle size distribution (PSD). This was determined (n = 3) by dry laser diffraction (Helos/KR, Sympatec, Germany). Attrition was found to be a surface phenomenon which occurs in the first minutes of the high shear blending process. An increase of blending time above 2 mins showed no change in particle size distribution. Material chemistry was identified as a key driver for differences in the attrition behavior between different excipients. This is mainly related to the proneness to fragmentation, which is known to be higher for materials such as DCP and mannitol compared to lactose and MCC. Secondly, morphology also was identified as a driver of the degree of attrition. Granular products consisting of irregular surfaces showed the highest reduction in particle size. This is due to the weak solid bonds created between the primary particles during the granulation process. Granular DCP and mannitol show a reduction of 80-90% in x10(µm) compared to a 20-30% drop for granular lactose (monohydrate and anhydrous). Apart from the granular lactose, all the remaining morphologies of lactose (spray dried-round, sieved-tomahawk, milled) show little change in particle size. Similar observations have been made for spray-dried fibrous MCC. All these morphologies have little irregular or sharp surfaces and thereby are less prone to fragmentation. Therefore, products containing brittle materials such as mannitol and DCP are more prone to fragmentation when exposed to shear. Granular products with irregular surfaces lead to an increase in attrition. While spherical, crystalline, or fibrous morphologies show reduced impact during high shear blending. These changes in size will affect the functionality attributes of the formulation, such as flow, API homogeneity, tableting, formation of dust, etc. Hence it is important for formulators to fully understand the excipients to make the right choices.

Keywords: attrition, blending, continuous manufacturing, excipients, lactose, microcrystalline cellulose, shear

Procedia PDF Downloads 105
27806 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul

Abstract:

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Keywords: aluminum foam, composite panel, flexure, transport application

Procedia PDF Downloads 322
27805 Revisiting the Impact of Oil Price on Trade Deficit of Pakistan: Evidence from Nonlinear Auto-Regressive Distributed Lag Model and Asymmetric Multipliers

Authors: Qaiser Munir, Hamid Hussain

Abstract:

Oil prices are believed to have a major impact on several economic indicators, leading to several instances where a comparison between oil prices and a trade deficit of oil-importing countries have been carried out. Building upon the narrative, this paper sheds light on the ongoing debate by inquiring upon the possibility of asymmetric linkages between oil prices, industrial production, exchange rate, whole price index, and trade deficit. The analytical tool used to further understand the complexities of a recent approach called nonlinear auto-regressive distributed lag model (NARDL) is utilised. Our results suggest that there are significant asymmetric effects among the main variables of interest. Further, our findings indicate that any variation in oil prices, industrial production, exchange rate, and whole price index on trade deficit tend to fluctuate in the long run. Moreover, the long-run picture denotes that increased oil price leads to a negative impact on the trade deficit, which, in its true essence, is a disproportionate impact. In addition to this, the Wald test simultaneously conducted concludes the absence of any significant evidence of the asymmetry in the oil prices impact on the trade balance in the short-run.

Keywords: trade deficit, oil prices, developing economy, NARDL

Procedia PDF Downloads 127
27804 Peer-Mediated Intervention for Social Communication Difficulties in Adolescents with Autism: Literature Review and Research Recommendations

Authors: Christine L. Cole

Abstract:

Adolescents with Autism Spectrum Disorders (ASD) often experience social-communication difficulties that negatively impact their social interactions with typical peers. However, unlike other age and disability groups, there is little intervention research to inform best practice for these students. One evidence-based strategy for younger students with ASD is peer-mediated intervention (PMI). PMI may be particularly promising for use with adolescents, as peers are readily available and natural experts for encouraging authentic high school conversations. This paper provides a review of previous research that evaluated the use of PMI to improve the social-communication skills of students with ASD. Specific intervention features associated with positive student outcomes are identified and recommendations for future research are provided. Adolescents with ASD are targeted due to the critical importance of social conversation at the high school level.

Keywords: autism, peer-mediation, social communication, adolescents

Procedia PDF Downloads 465
27803 The Impact of Plants on Relaxation of Patients in Hospitals, Case Study: District 6th, Tehran

Authors: Hashem Hashemnejad, Abbas Yazdanfar, Mahzad Mohandes Tarighi, Denial Sadighi

Abstract:

One of the factors that can have a positive influence on the mental health is the presence of trees and flowers. Research shows that even a glance at nature can evoke positive feelings in the person and reduce his tension and stress. According to the historical, cultural, religious, and individual background in each geographical district, the relaxing or spiritual impact of certain kinds of flowers can be evaluated. In this paper, using a questionnaire, the amount of relaxing impact of prevalent trees and flowers of the district on the patients was examined. The results showed that cedar and pomegranate trees and jasmine and rose in flowers, respectively, relax the patients.

Keywords: plants, patients, mental health, relaxing

Procedia PDF Downloads 507
27802 Environmental Degradation and Globalization with Special Reference to Developing Economics

Authors: Indira Sinha

Abstract:

According to the Oxford Advanced Learner's English Dictionary of Current English, environment is the complex of physical, chemical and biotic factors that act upon an organism or an ecological community and ultimately determines its form and survival. It is defined as conditions and circumstances which are affecting people's lives. The meaning of environmental degradation is the degradation of the environment through depletion of resources such as air, water and soil and the destruction of ecosystems and extinction of wildlife. Globalization is a significant feature of recent world history. The aim of this phenomenon is to integrate societies, economies and cultures through a common link of trading policies, technology and communication. Undoubtedly it has opened up the world economy at a very high speed but at the same time it has an adverse impact on the environment. The purpose of the present study is to investigate the impact of globalization on the environmental conditions. An overview of what the forces of globalization have in store for the environment with constructing large number of industries and destroying large forests lands will be given in this paper. The forces of globalization have created many serious environmental problems like high temperature, extinction of many species of plant and animal and outlet of poisonous chemicals from industries. The revelation of this study is that in case of developing economics these problems are more critical. In developing countries like India many factories are built with less environmental regulations, while developed economies maintain positive environmental practices. The present study is a micro level study which aims to employ a combination of theoretical, descriptive, empirical and analytical approach in addition to the time tested case method.

Keywords: globalization, trade policies, environmental degradation, developing economies, large industries

Procedia PDF Downloads 232
27801 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance

Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow

Abstract:

This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.

Keywords: cable direct driven robot, haptics, parallel plates, bone drilling

Procedia PDF Downloads 253
27800 Seepage Modelling of Jatigede Dam Towards Cisampih Village Based on Analysis Soil Characteristic Using Method Soil Reaction to Water, West Java Indonesia

Authors: Diemas Purnama Muhammad Firman Pratama, Denny Maulana Malik

Abstract:

Development of Jatigede Dam that was the mega project in Indonesia, since 1963. Area of around Jatigede Dam is complex, it has structural geology active fault, and as possible can occur landslide. This research focus on soil test. The purpose of this research to know soil quality Jatigede Dam which caused by water seepage of Jatigede Dam, then can be made seepage modelling around Jatigede Dam including Cisampih Village. Method of this research is SRW (Soil Reaction to Water). There are three samples are taken nearby Jatigede Dam. Four paramaters to determine water seepage such as : V ( velocity of soil to release water), Dl (Ability of soil to release water), Ds (Ability of soil to absorb water), Dt (Ability of soil to hold water). meanwhile, another proscess of interaction beetween water and soil are produced angle, which is made of water flow and vertikal line. Called name SIAT. SIAT has two type is na1 and na2. Each samples has a value from the first sample is 280,333(degree), the second 270 (degree) and the third 270 (degree). The difference na1 is, water interaction towards Dt value angle, while na2 is water interaction towards Dl and Ds value angle. Result of calculating SRW method, first till third sample has a value 7, 11,5 and 9. Based on data, interpreted in around teritory of Jatigede Dam, will get easier impact from water seepage because, condition soil reaction too bad so, it can not hold water.

Keywords: Jatigede Dam, Cisampih village, water seepage, soil quality

Procedia PDF Downloads 368
27799 Two-Dimensional CFD Simulation of the Behaviors of Ferromagnetic Nanoparticles in Channel

Authors: Farhad Aalizadeh, Ali Moosavi

Abstract:

This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, particle tracking. The purpose of this paper is applied magnetic field effect on Magnetic Nanoparticles velocities distribution. It is shown that the permeability of the particles determines the effect of the magnetic field on the deposition of the particles and the deposition of the particles is inversely proportional to the Reynolds number. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form. we consider a channel 2D geometry and solve for the resulting spatial distribution of particles. According to obtained results when only magnetic fields are applied perpendicular to the flow, local particles velocity is decreased due to the direct effect of the magnetic field return the system to its original fom. In the method first, in order to avoid mixing with blood, the ferromagnetic particles are covered with a gel-like chemical composition and are injected into the blood vessels. Then, a magnetic field source with a specified distance from the vessel is used and the particles are guided to the affected area. This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, laminar flow of an incompressible magnetorheological (MR) fluid between two fixed parallel plates in the presence of a uniform magnetic field. The purpose of this study is to develop a numerical tool that is able to simulate MR fluids flow in valve mode and determineB0, applied magnetic field effect on flow velocities and pressure distributions.

Keywords: MHD, channel clots, magnetic nanoparticles, simulations

Procedia PDF Downloads 359
27798 The Impact of Women on Urban Sustainability (Case Study: Three Districts of Tehran)

Authors: Reza Mokhtari Malekabadi, Leila Jalalabadi, Zahra Kiyani Ghaleh No

Abstract:

Today, systems of management and urban planning, attempt to reach more sustainable development through monitoring developments, urban development and development plans. Monitoring of changes in the urban places and sustainable urban development accounted a base for the realization of worthy goals urban sustainable development. The importance of women in environmental protection programs is high enough that in 21 agenda has been requested from all countries to allocate more shares to women in their policies. On the other hand, urban waste landfill has become one of the environmental concerns in modern cities. This research assumes that the impact of women on recycling, reduction and proper waste landfill is much more than men. For this reason, three districts; Yousef Abad, Heshmatieh and Nezam Abad are gauged through questionnaire and using the analytical research hypothesis model. This research will be categorized as functional research. The results have shown that noticing the power of women, their participation towards realization of the development objectives and programs can be used in solving their problems.

Keywords: citizens, urban, environmental, sustainability, solid waste, Tehran

Procedia PDF Downloads 355
27797 Recommendations for Data Quality Filtering of Opportunistic Species Occurrence Data

Authors: Camille Van Eupen, Dirk Maes, Marc Herremans, Kristijn R. R. Swinnen, Ben Somers, Stijn Luca

Abstract:

In ecology, species distribution models are commonly implemented to study species-environment relationships. These models increasingly rely on opportunistic citizen science data when high-quality species records collected through standardized recording protocols are unavailable. While these opportunistic data are abundant, uncertainty is usually high, e.g., due to observer effects or a lack of metadata. Data quality filtering is often used to reduce these types of uncertainty in an attempt to increase the value of studies relying on opportunistic data. However, filtering should not be performed blindly. In this study, recommendations are built for data quality filtering of opportunistic species occurrence data that are used as input for species distribution models. Using an extensive database of 5.7 million citizen science records from 255 species in Flanders, the impact on model performance was quantified by applying three data quality filters, and these results were linked to species traits. More specifically, presence records were filtered based on record attributes that provide information on the observation process or post-entry data validation, and changes in the area under the receiver operating characteristic (AUC), sensitivity, and specificity were analyzed using the Maxent algorithm with and without filtering. Controlling for sample size enabled us to study the combined impact of data quality filtering, i.e., the simultaneous impact of an increase in data quality and a decrease in sample size. Further, the variation among species in their response to data quality filtering was explored by clustering species based on four traits often related to data quality: commonness, popularity, difficulty, and body size. Findings show that model performance is affected by i) the quality of the filtered data, ii) the proportional reduction in sample size caused by filtering and the remaining absolute sample size, and iii) a species ‘quality profile’, resulting from a species classification based on the four traits related to data quality. The findings resulted in recommendations on when and how to filter volunteer generated and opportunistically collected data. This study confirms that correctly processed citizen science data can make a valuable contribution to ecological research and species conservation.

Keywords: citizen science, data quality filtering, species distribution models, trait profiles

Procedia PDF Downloads 189
27796 Value Creation of Public Financial Management Reforms through Their Long-Term Impacts

Authors: Christoph Schuler, Oriana Ponta

Abstract:

Public Financial Management (PFM) reforms are promoted by various international organizations such as the International Monetary Fund (IMF) or the World Bank, local development banks and the donor country community to strengthen governance and accountability in developing countries across the world. Reform efforts undertaken are often systematically measured against international best practice by the application of standardized analytical instruments such as the Public Expenditure and Financial Accountability Framework (PEFA) or the Poverty Reduction Action Plan (PARP). While those instruments analyze direct achievements of PFM reforms, the long-term benefits of such reforms for society remain untapped. This gives rise to the question why the concept of impact evaluation with its experimental or quasi-experimental settings in the form of randomized control trials has rarely been applied in the context of PFM reforms. To close this gap, this study provides examples where the concept of impact evaluation can be applied to PFM reforms and thereby shifting the focus from outcome towards a long-term impact. As it is a new approach, this study does not attempt to conduct a fully flagged impact evaluation of a certain PFM reform. However, it will outline, as a form of pre-test the applicability of the impact evaluation methodology in this context, for example, by more closely analyzing the commonly used indicators (for example within PEFA or PARP). This would mean to scrutinize these indicators as to how they were designed and how they are related to the long-term impact, they should be producing. The analysis of PFM reform indicators and their relation to long-term impacts should provide practitioners and scholars alike with new insights on how to strengthen the accountability of public service delivery through successful and sustainable PFM reforms.

Keywords: accountability, impact evaluation, PFM reforms, public financial management

Procedia PDF Downloads 311
27795 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD

Procedia PDF Downloads 193
27794 Environmental Life Cycle Assessment of Circular, Bio-Based and Industrialized Building Envelope Systems

Authors: N. Cihan KayaçEtin, Stijn Verdoodt, Alexis Versele

Abstract:

The construction industry is accounted for one-third of all waste generated in the European Union (EU) countries. The Circular Economy Action Plan of the EU aims to tackle this issue and aspires to enhance the sustainability of the construction industry by adopting more circular principles and bio-based material use. The Interreg Circular Bio-Based Construction Industry (CBCI) project was conceived to research how this adoption can be facilitated. For this purpose, an approach is developed that integrates technical, legal and social aspects and provides business models for circular designing and building with bio-based materials. In the scope of the project, the research outputs are to be displayed in a real-life setting by constructing a demo terraced single-family house, the living lab (LL) located in Ghent (Belgium). The realization of the LL is conducted in a step-wise approach that includes iterative processes for design, description, criteria definition and multi-criteria assessment of building components. The essence of the research lies within the exploratory approach to the state-of-art building envelope and technical systems options for achieving an optimum combination for a circular and bio-based construction. For this purpose, nine preliminary designs (PD) for building envelope are generated, which consist of three basic construction methods: masonry, lightweight steel construction and wood framing construction supplemented with bio-based construction methods like cross-laminated timber (CLT) and massive wood framing. A comparative analysis on the PDs was conducted by utilizing several complementary tools to assess the circularity. This paper focuses on the life cycle assessment (LCA) approach for evaluating the environmental impact of the LL Ghent. The adoption of an LCA methodology was considered critical for providing a comprehensive set of environmental indicators. The PDs were developed at the component level, in particular for the (i) inclined roof, (ii-iii) front and side façade, (iv) internal walls and (v-vi) floors. The assessment was conducted on two levels; component and building level. The options for each component were compared at the first iteration and then, the PDs as an assembly of components were further analyzed. The LCA was based on a functional unit of one square meter of each component and CEN indicators were utilized for impact assessment for a reference study period of 60 years. A total of 54 building components that are composed of 31 distinct materials were evaluated in the study. The results indicate that wood framing construction supplemented with bio-based construction methods performs environmentally better than the masonry or steel-construction options. An analysis on the correlation between the total weight of components and environmental impact was also conducted. It was seen that masonry structures display a high environmental impact and weight, steel structures display low weight but relatively high environmental impact and wooden framing construction display low weight and environmental impact. The study provided valuable outputs in two levels: (i) several improvement options at component level with substitution of materials with critical weight and/or impact per unit, (ii) feedback on environmental performance for the decision-making process during the design phase of a circular single family house.

Keywords: circular and bio-based materials, comparative analysis, life cycle assessment (LCA), living lab

Procedia PDF Downloads 175
27793 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region

Authors: Pratibha, Jyoti Kori

Abstract:

Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.

Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor

Procedia PDF Downloads 168
27792 Impact of Individual and Neighborhood Social Capital on the Health Status of the Pregnant Women in Riyadh City, Saudi Arabia

Authors: Abrar Almutairi, Alyaa Farouk, Amal Gouda

Abstract:

Background: Social capital is a factor that helps in bonding in a social network. The individual and the neighborhood social capital affect the health status of members of a particular society. In addition, to the influence of social health on the health of the population, social health has a significant effect on women, especially those with pregnancy. Study objective was to assess the impact of the social capital on the health status of pregnant women Design: A descriptive crosssectional correlational design was utilized in this study. Methods: A convenient sample of 210 pregnant women who attended the outpatient antenatal clinicsfor follow-up in King Fahad hospital (Ministry of National Guard Health Affairs/Riyadh) and King Abdullah bin Abdelaziz University Hospital (KAAUH, Ministry of Education /Riyadh) were included in the study. Data was collected using a self-administered questionnaire that was developed by the researchers based on the “World Bank Social Capital Assessment Tool” and SF-36 questionnaire (Short Form Health Survey). The questionnaire consists of 4 parts to collect information regarding socio-demographic data, obstetric and gynecological history, general scale of health status and social activity during pregnancy and the social capital of the study participants, with different types of questions such as multiple-choice questions, polar questions, and Likert scales. Data analysis was carried out by using Statistical Package for the Social Sciences version 23. Descriptive statistic as frequency, percentage, mean, and standard deviation was used to describe the sample characteristics, and the simple linear regression test was used to assess the relationship between the different variables, with level of significance P≤0.005. Result: This study revealed that only 31.1% of the study participants perceived that they have good general health status. About two thirds (62.8%) of the participants have moderate social capital, more than one ten (11.2٪) have high social capital and more than a quarter (26%) of them have low social capital. All dimensions of social capital except for empowerment and political action had positive significant correlations with the health status of pregnant women with P value ranging from 0.001 to 0.010in all dimensions. In general, the social capital showed high statistically significant association with the health status of the pregnant (P=0.002). Conclusion: Less than one third of the study participants had good perceived health status, and the majority of the study participants have moderate social capital, with only about one ten of them perceived that they have high social capital. Finally, neighborhood residency area, family size, sufficiency of income, past medical and surgical history and parity of the study participants were all significantly impacting the assessed health domains of the pregnant women.

Keywords: impact, social capital, health status, pregnant women

Procedia PDF Downloads 48
27791 The Impact of Developing Tourism on the Spatial Pattern in Jordan

Authors: Khries Sawsan

Abstract:

the phenomenon of urbanization is considered as one of the most important tourism resources that differ from one country to another and from one region to another in the same country. Our concern in tourism accommodation is explained by the fact that their location is directly related to the movement to tourist sites .Besides, these constructions comport security considered as the most important motivation for tourists in their choice of any destination. Hotels are the most representative expression of tourism. This is due to their physical prominence in the landscape and being the sole urban component totally unique to tourism. This study sheds light on the impact of tourism development on the spatial pattern in Jordan. It describes the linkages between existing tourism development policies and the spatial development patterns that have occurred as a result throughout Jordan, particularly looking at the impact that tourism has had on the physical environment of major tourism destinations. It puts an illustrative plan of the impact of the augmentation of tourism accommodations in Jordan in the past 40 years ago. The findings of this study help us to understand better the operation of Jordan’ dynamic changes in the location An intensive analysis is then applied on a representative case study in three regions: Amman, Petra and Aqaba. The study proceeds from an historical perspective to, show the evolution of the current development patterns an increase of tourism’s impact on spatial, in the presence of factors as political and economic stability, is expected.

Keywords: spatial patterns, urbanisation, spatial transformations, tourism planning, Jordan

Procedia PDF Downloads 537
27790 The Effect of Size, Thickness, and Type of the Bonding Interlayer on Bullet Proof Glass as per EN 1063

Authors: Rabinder Singh Bharj, Sandeep Kumar

Abstract:

This investigation presents preparation of sample and analysis of results of ballistic impact test as per EN 1063 on the size, thickness, number, position, and type of the bonding interlayer Polyvinyl Butyral, Poly Carbonate and Poly Urethane on bullet proof glass. It was observed that impact energy absorbed by bullet proof glass increases with the increase of the total thickness from 33mm to 42mm to 51mm for all the three samples respectively. Absorption impact energy is greater for samples with more number of bonding interlayers than with the number of glass layers for uniform increase in total sample thickness. There is no effect on the absorption impact energy with the change in position of the bonding interlayer.

Keywords: absorbed energy, bullet proof glass, laminated glass, safety glass

Procedia PDF Downloads 383
27789 Rheological and Computational Analysis of Crude Oil Transportation

Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh

Abstract:

Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.

Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity

Procedia PDF Downloads 429
27788 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump

Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir

Abstract:

The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.

Keywords: bubble pump, drift flow model, instability, simulation

Procedia PDF Downloads 256
27787 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 63
27786 An Inquiry of the Impact of Flood Risk on Housing Market with Enhanced Geographically Weighted Regression

Authors: Lin-Han Chiang Hsieh, Hsiao-Yi Lin

Abstract:

This study aims to determine the impact of the disclosure of flood potential map on housing prices. The disclosure is supposed to mitigate the market failure by reducing information asymmetry. On the other hand, opponents argue that the official disclosure of simulated results will only create unnecessary disturbances on the housing market. This study identifies the impact of the disclosure of the flood potential map by comparing the hedonic price of flood potential before and after the disclosure. The flood potential map used in this study is published by Taipei municipal government in 2015, which is a result of a comprehensive simulation based on geographical, hydrological, and meteorological factors. The residential property sales data of 2013 to 2016 is used in this study, which is collected from the actual sales price registration system by the Department of Land Administration (DLA). The result shows that the impact of flood potential on residential real estate market is statistically significant both before and after the disclosure. But the trend is clearer after the disclosure, suggesting that the disclosure does have an impact on the market. Also, the result shows that the impact of flood potential differs by the severity and frequency of precipitation. The negative impact for a relatively mild, high frequency flood potential is stronger than that for a heavy, low possibility flood potential. The result indicates that home buyers are of more concern to the frequency, than the intensity of flood. Another contribution of this study is in the methodological perspective. The classic hedonic price analysis with OLS regression suffers from two spatial problems: the endogeneity problem caused by omitted spatial-related variables, and the heterogeneity concern to the presumption that regression coefficients are spatially constant. These two problems are seldom considered in a single model. This study tries to deal with the endogeneity and heterogeneity problem together by combining the spatial fixed-effect model and geographically weighted regression (GWR). A series of literature indicates that the hedonic price of certain environmental assets varies spatially by applying GWR. Since the endogeneity problem is usually not considered in typical GWR models, it is arguable that the omitted spatial-related variables might bias the result of GWR models. By combing the spatial fixed-effect model and GWR, this study concludes that the effect of flood potential map is highly sensitive by location, even after controlling for the spatial autocorrelation at the same time. The main policy application of this result is that it is improper to determine the potential benefit of flood prevention policy by simply multiplying the hedonic price of flood risk by the number of houses. The effect of flood prevention might vary dramatically by location.

Keywords: flood potential, hedonic price analysis, endogeneity, heterogeneity, geographically-weighted regression

Procedia PDF Downloads 285
27785 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 166
27784 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 472