Search results for: demand elasticity
2519 Developing Location-allocation Models in the Three Echelon Supply Chain
Authors: Mehdi Seifbarghy, Zahra Mansouri
Abstract:
In this paper a few location-allocation models are developed in a multi-echelon supply chain including suppliers, manufacturers, distributors and retailers. The objectives are maximizing demand coverage, minimizing the total distance of distributors from suppliers, minimizing some facility establishment costs and minimizing the environmental effects. Since nature of the given models is multi-objective, we suggest a number of goal-based solution techniques such L-P metric, goal programming, multi-choice goal programming and goal attainment in order to solve the problems.Keywords: location, multi-echelon supply chain, covering, goal programming
Procedia PDF Downloads 5592518 Research Progress on Patient Perception Assessment Tools for Patient Safety
Authors: Yirui Wang
Abstract:
In the past few decades, patient safety has been the focus of much attention in the global medical and health field. As medical standards continue to improve and develop, the demand for patient safety is also growing. As one of the important dimensions in assessing patient safety, the Patient Perception Patient Safety Assessment Tool provides unique and valuable information from the patient's own perspective and plays an important role in promoting patient safety. This article aims to summarize and analyze the assessment content, assessment methods and applications of currently commonly used patient-perceived patient safety assessment tools at home and abroad, with a view to providing a reference for medical staff to select appropriate patient-perceived patient safety assessment tools.Keywords: patients, patient safety, perception, assessment tools, review
Procedia PDF Downloads 882517 Resilience of the American Agriculture Sector
Authors: Dipak Subedi, Anil Giri, Christine Whitt, Tia McDonald
Abstract:
This study aims to understand the impact of the pandemic on the overall economic well-being of the agricultural sector of the United States. The two key metrics used to examine the economic well-being are the bankruptcy rate of the U.S. farm operations and the operating profit margin. One of the primary reasons for farm operations (in the U.S.) to file for bankruptcy is continuous negative profit or a significant decrease in profit. The pandemic caused significant supply and demand shocks in the domestic market. Furthermore, the ongoing trade disruptions, especially with China, also impacted the prices of agricultural commodities. The significantly reduced demand for ethanol and closure of meat processing plants affected both livestock and crop producers. This study uses data from courts to examine the bankruptcy rate over time of U.S. farm operations. Preliminary results suggest there wasn’t an increase in farm operations filing for bankruptcy in 2020. This was most likely because of record high Government payments to producers in 2020. The Federal Government made direct payments of more than $45 billion in 2020. One commonly used economic metric to measure farm profitability is the operating profit margin (OPM). Operating profit margin measures profitability as a share of the total value of production and government payments. The Economic Research Service of the United States Department of Agriculture defines a farm operation to be in a) a high-risk zone if the OPM is less than 10 percent and b) a low-risk zone if the OPM is higher than 25 percent. For this study, OPM was calculated for small, medium, and large-scale farm operations using the data from the Agriculture Resource Management Survey (OPM). Results show that except for small family farms, the share of farms in high-risk zone decreased in 2020 compared to the most recent non-pandemic year, 2019. This was most likely due to higher commodity prices at the end of 2020 and record-high government payments. Further investigation suggests a lower share of smaller farm operations receiving lower average government payments resulting in a large share (over 70 percent) being in the critical zone. This study should be of interest to multiple stakeholders, including policymakers across the globe, as it shows the resilience of the U.S. agricultural system as well as (some) impact of government payments.Keywords: U.S. farm sector, COVID-19, operating profit margin, farm bankruptcy, ag finance, government payments to the farm sector
Procedia PDF Downloads 892516 The Role of Cryptocurrency in Cross-Border Payments: A Case Study of Bangladesh
Authors: Mohammad Abdul Matin
Abstract:
This research paper aims to investigate the use of cryptocurrency in facilitating cross-border payments, with a specific focus on the case of Bangladesh. With thousands of Bangladeshi living abroad, the demand for efficient and cost-effective remittance channels is high. This paper will examine the current challenges in cross-border payments for Bangladeshi expatriates and explore the potential benefits and barriers to the adoption of cryptocurrency as a solution. Through a combination of literature review, qualitative interviews, and data analysis, the research will provide valuable insights into the opportunities and risks associated with using cryptocurrency for cross-border payments in Bangladesh.Keywords: cryptocurrency, cross-border payments, Bangladesh, remittance, expatriates
Procedia PDF Downloads 332515 Decision Support Tool for Water Re-used Systems
Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz
Abstract:
The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.Keywords: circular economy, digital tool, geo-visualization, wastewater re-use
Procedia PDF Downloads 562514 Simulation of Elastic Bodies through Discrete Element Method, Coupled with a Nested Overlapping Grid Fluid Flow Solver
Authors: Paolo Sassi, Jorge Freiria, Gabriel Usera
Abstract:
In this work, a finite volume fluid flow solver is coupled with a discrete element method module for the simulation of the dynamics of free and elastic bodies in interaction with the fluid and between themselves. The open source fluid flow solver, caffa3d.MBRi, includes the capability to work with nested overlapping grids in order to easily refine the grid in the region where the bodies are moving. To do so, it is necessary to implement a recognition function able to identify the specific mesh block in which the device is moving in. The set of overlapping finer grids might be displaced along with the set of bodies being simulated. The interaction between the bodies and the fluid is computed through a two-way coupling. The velocity field of the fluid is first interpolated to determine the drag force on each object. After solving the objects displacements, subject to the elastic bonding among them, the force is applied back onto the fluid through a Gaussian smoothing considering the cells near the position of each object. The fishnet is represented as lumped masses connected by elastic lines. The internal forces are derived from the elasticity of these lines, and the external forces are due to drag, gravity, buoyancy and the load acting on each element of the system. When solving the ordinary differential equations system, that represents the motion of the elastic and flexible bodies, it was found that the Runge Kutta solver of fourth order is the best tool in terms of performance, but requires a finer grid than the fluid solver to make the system converge, which demands greater computing power. The coupled solver is demonstrated by simulating the interaction between the fluid, an elastic fishnet and a set of free bodies being captured by the net as they are dragged by the fluid. The deformation of the net, as well as the wake produced in the fluid stream are well captured by the method, without requiring the fluid solver mesh to adapt for the evolving geometry. Application of the same strategy to the simulation of elastic structures subject to the action of wind is also possible with the method presented, and one such application is currently under development.Keywords: computational fluid dynamics, discrete element method, fishnets, nested overlapping grids
Procedia PDF Downloads 4162513 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 2922512 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants
Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver
Abstract:
This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants
Procedia PDF Downloads 3522511 Relationship between Functional Properties and Supramolecular Structure of the Poly(Trimethylene 2,5-Furanoate) Based Multiblock Copolymers with Aliphatic Polyethers or Aliphatic Polyesters
Authors: S. Paszkiewicz, A. Zubkiewicz, A. Szymczyk, D. Pawlikowska, I. Irska, E. Piesowicz, A. Linares, T. A. Ezquerra
Abstract:
Over the last century, the world has become increasingly dependent on oil as its main source of chemicals and energy. Driven largely by the strong economic growth of India and China, demand for oil is expected to increase significantly in the coming years. This growth in demand, combined with diminishing reserves, will require the development of new, sustainable sources for fuels and bulk chemicals. Biomass is an attractive alternative feedstock, as it is widely available carbon source apart from oil and coal. Nowadays, academic and industrial research in the field of polymer materials is strongly oriented towards bio-based alternatives to petroleum-derived plastics with enhanced properties for advanced applications. In this context, 2,5-furandicarboxylic acid (FDCA), a biomass-based chemical product derived from lignocellulose, is one of the most high-potential biobased building blocks for polymers and the first candidate to replace the petro-derived terephthalic acid. FDCA has been identified as one of the top 12 chemicals in the future, which may be used as a platform chemical for the synthesis of biomass-based polyester. The aim of this study is to synthesize and characterize the multiblock copolymers containing rigid segments of poly(trimethylene 2,5-furanoate) (PTF) and soft segments of poly(tetramethylene oxide) (PTMO) with excellent elastic properties or aliphatic polyesters of polycaprolactone (PCL). Two series of PTF based copolymers, i.e., PTF-block-PTMO-T and PTF-block-PCL-T, with different content of flexible segments were synthesized by means of a two-step melt polycondensation process and characterized by various methods. The rigid segments of PTF, as well as the flexible PTMO/or PCL ones, were randomly distributed along the chain. On the basis of 1H NMR, SAXS and WAXS, DSC an DMTA results, one can conclude that both phases were thermodynamically immiscible and the values of phase transition temperatures varied with the composition of the copolymer. The copolymers containing 25, 35 and 45wt.% of flexible segments (PTMO) exhibited elastomeric property characteristics. Moreover, with respect to the flexible segments content, the temperatures corresponding to 5%, 25%, 50% and 90% mass loss as well as the values of tensile modulus decrease with the increasing content of aliphatic polyether or aliphatic polyester in the composition.Keywords: furan based polymers, multiblock copolymers, supramolecular structure, functional properties
Procedia PDF Downloads 1292510 Contributions of Natural and Human Activities to Urban Surface Runoff with Different Hydrological Scenarios (Orléans, France)
Authors: Al-Juhaishi Mohammed, Mikael Motelica-Heino, Fabrice Muller, Audrey Guirimand-Dufour, Christian Défarge
Abstract:
This study aims at improving the urban hydrological cycle of the Orléans agglomeration (France) and understanding the relationship between physical and chemical parameters of urban surface runoff and the hydrological conditions. In particular water quality parameters such as pH, conductivity, total dissolved solids, major dissolved cations and anions, and chemical and biological oxygen demands were monitored for three types of urban water discharges (wastewater treatment plant output (WWTP), storm overflow and stormwater outfall) under two hydrologic scenarii (dry and wet weather). The first results were obtained over a period of five months.Each investigated (Ormes and l’Egoutier) outfall represents an urban runoff source that receives water from runoff roads, gutters, the irrigation of gardens and other sources of flow over the Earth’s surface that drains in its catchments and carries it to the Loire River. In wet weather conditions there is rain water runoff and an additional input from the roof gutters that have entered the stormwater system during rainfall. For the comparison the results La Chilesse is a storm overflow that was selected in our study as a potential source of waste water which is located before the (WWTP).The comparison of the physical-chemical parameters (total dissolved solids, turbidity, pH, conductivity, dissolved organic carbon (DOC), concentration of major cations and anions) together with the chemical oxygen demand (COD) and biological oxygen demand (BOD) helped to characterize sources of runoff waters in the different watersheds. It also helped to highlight the infiltration of wastewater in some stormwater systems that reject directly in the Loire River. The values of the conductivity measured in the outflow of Ormes were always higher than those measured in the other two outlets. The results showed a temporal variation for the Ormes outfall of conductivity from 1465 µS cm-1 in the dry weather flow to 650 µS cm-1 in the wet weather flow and also a spatial variation in the wet weather flow from 650 µS cm-1 in the Ormes outfall to 281 μS cm-1 in L’Egouttier outfall. The ultimate BOD (BOD28) showed a significant decrease in La Corne outfall from 210 mg L-1 in the wet weather flow to 75 mg L-1 in the dry weather flow because of the nutrient load that was transported by the runoff.Keywords: BOD, COD, the Loire River, urban hydrology, urban dry and wet weather discharges, macronutrients
Procedia PDF Downloads 2662509 Ensuring Continuity in Subcutaneous Depot Medroxy Progesterone Acetate (DMPA-SC) Contraception Service Provision Using Effective Commodity Management Practices
Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu
Abstract:
Background: The Delivering Innovations in Selfcare (DISC) project aims to increase access to self-care options for women of reproductive age, starting with self-inject subcutaneous depot medroxyprogesterone acetate (DMPA-SC) contraception services. However, the project has faced challenges in ensuring the continuous availability of the commodity in health facilities. Although most states in the country rely on the federal ministry of Health for supplies, some are gradually funding the procurement of Family Planning (FP) commodities. This attempt is, however, often accompanied by procurement delays and purchases inadequate to meet demand. This dilemma was further exacerbated by the commencement of demand generation activities by the project in supported states which geometrically increased commodity utilization rates and resulted in receding stock and occasional service disruptions. Strategies: The project deployed various strategies were implemented to ensure the continuous availability of commodities. These include facilitating inter-facility transfer, monthly tracking of commodity utilization, and alerting relevant authorities when stock levels reach a minimum. And supporting state-level procurement of DMPA-SC commodities through catalytic interventions. Results: Effective monitoring of commodity inventory at the facility level and strategic engagement with federal and state-level logistics units have proven successful in mitigating stock-out of commodities. It has helped secure up to 13,000 units of DMPA-SC commodities from federal logistics units and enabled state units to prioritize supported sites. This has ensured the continuity of DMPA-SC services and an increasing trend in the practice of self-injection. Conclusion: A functional supply chain is crucial to achieving commodity security, and without it, health programs cannot succeed. Stakeholder engagement, stock management and catalytic interventions have provided both short- and long-term measures to mitigate stock-outs and ensured a consistent supply of commodities to clients.Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, commodities, stock-out
Procedia PDF Downloads 892508 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry
Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista
Abstract:
The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests
Procedia PDF Downloads 612507 Considering Uncertainties of Input Parameters on Energy, Environmental Impacts and Life Cycle Costing by Monte Carlo Simulation in the Decision Making Process
Authors: Johannes Gantner, Michael Held, Matthias Fischer
Abstract:
The refurbishment of the building stock in terms of energy supply and efficiency is one of the major challenges of the German turnaround in energy policy. As the building sector accounts for 40% of Germany’s total energy demand, additional insulation is key for energy efficient refurbished buildings. Nevertheless the energetic benefits often the environmental and economic performances of insulation materials are questioned. The methods Life Cycle Assessment (LCA) as well as Life Cycle Costing (LCC) can form the standardized basis for answering this doubts and more and more become important for material producers due efforts such as Product Environmental Footprint (PEF) or Environmental Product Declarations (EPD). Due to increasing use of LCA and LCC information for decision support the robustness and resilience of the results become crucial especially for support of decision and policy makers. LCA and LCC results are based on respective models which depend on technical parameters like efficiencies, material and energy demand, product output, etc.. Nevertheless, the influence of parameter uncertainties on lifecycle results are usually not considered or just studied superficially. Anyhow the effect of parameter uncertainties cannot be neglected. Based on the example of an exterior wall the overall lifecycle results are varying by a magnitude of more than three. As a result simple best case worst case analyses used in practice are not sufficient. These analyses allow for a first rude view on the results but are not taking effects into account such as error propagation. Thereby LCA practitioners cannot provide further guidance for decision makers. Probabilistic analyses enable LCA practitioners to gain deeper understanding of the LCA and LCC results and provide a better decision support. Within this study, the environmental and economic impacts of an exterior wall system over its whole lifecycle are illustrated, and the effect of different uncertainty analysis on the interpretation in terms of resilience and robustness are shown. Hereby the approaches of error propagation and Monte Carlo Simulations are applied and combined with statistical methods in order to allow for a deeper understanding and interpretation. All in all this study emphasis the need for a deeper and more detailed probabilistic evaluation based on statistical methods. Just by this, misleading interpretations can be avoided, and the results can be used for resilient and robust decisions.Keywords: uncertainty, life cycle assessment, life cycle costing, Monte Carlo simulation
Procedia PDF Downloads 2862506 Interpreter Scholarship Program That Improves Language Services in New South Wales: A Participatory Action Research Approach
Authors: Carly Copolov, Rema Nazha, Sahba C. Delshad, George Bisas
Abstract:
In New South Wales (NSW), Australia, we speak more than 275 languages and dialects. Interpreters play an indispensable role in our multicultural society by ensuring the people of NSW all enjoy the same opportunities. The NSW Government offers scholarships to enable people who speak in-demand and high priority languages to become eligible to be practicing interpreters. The NSW Interpreter Scholarship Program was launched in January 2019, targeting priority languages from new and emerging, as well as existing language communities. The program offers fully-funded scholarships to study at Technical and Further Education (TAFE), receive National Accreditation Authority for Translators and Interpreters (NAATI) certification, and be mentored and gain employment with the interpreter panel of Multicultural NSW. A Participatory Action Research approach was engaged to challenge the current system for people to become practicing interpreters in NSW. There were over 800 metro Sydney applications and close to 200 regional applications. Three courses were run through TAFE NSW (2 in metro Sydney and 1 in regional NSW). Thirty-nine students graduated from the program in 2019. The first metro Sydney location had 18 graduates complete the course in Assyrian, Burmese, Chaldean, Kurdish-Kurmanji, Nepali, and Tibetan. The second metro Sydney location had 9 graduates complete the course in Tongan, Kirundi, Mongolian and Italian. The regional location had 12 graduates who complete the course from new emerging language communities such as Kurdish-Kurmanji, Burmese, Zomi Chin, Hakha Chin, and Tigrinya. The findings showed that students were very positive about the program as the large majority said they were satisfied with the course content, they felt prepared for the NAATI test at the conclusion of the course, and they would definitely recommend the program to their friends. Also, 18 students from the 2019 cohort signed up to receive further mentoring by experienced interpreters. In 2020 it is anticipated that 3 courses will be run through TAFE NSW (2 in regional NSW and 1 in metro Sydney) to reflect the needs of new emerging language communities settling in regional areas. In conclusion, it has been demonstrated that the NSW Interpreter Scholarship Program improves the supply, quality, and use of language services in NSW, Australia, so that people who speak in-demand and high priority languages are ensured better access to crucial government servicesKeywords: interpreting, emerging communities, scholarship program, Sydney
Procedia PDF Downloads 1462505 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances
Authors: P. Mounnarath, U. Schmitz, Ch. Zhang
Abstract:
Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.Keywords: expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis
Procedia PDF Downloads 4352504 Reduction Shrinkage of Concrete without Use Reinforcement
Authors: Martin Tazky, Rudolf Hela, Lucia Osuska, Petr Novosad
Abstract:
Concrete’s volumetric changes are natural process caused by silicate minerals’ hydration. These changes can lead to cracking and subsequent destruction of cementitious material’s matrix. In most cases, cracks can be assessed as a negative effect of hydration, and in all cases, they lead to an acceleration of degradation processes. Preventing the formation of these cracks is, therefore, the main effort. Once of the possibility how to eliminate this natural concrete shrinkage process is by using different types of dispersed reinforcement. For this application of concrete shrinking, steel and polymer reinforcement are preferably used. Despite ordinarily used reinforcement in concrete to eliminate shrinkage it is possible to look at this specific problematic from the beginning by itself concrete mix composition. There are many secondary raw materials, which are helpful in reduction of hydration heat and also with shrinkage of concrete during curing. The new science shows the possibilities of shrinkage reduction also by the controlled formation of hydration products, which could act by itself morphology as a traditionally used dispersed reinforcement. This contribution deals with the possibility of controlled formation of mono- and tri-sulfate which are considered like degradation minerals. Mono- and tri- sulfate's controlled formation in a cementitious composite can be classified as a self-healing ability. Its crystal’s growth acts directly against the shrinking tension – this reduces the risk of cracks development. Controlled formation means that these crystals start to grow in the fresh state of the material (e.g. concrete) but stop right before it could cause any damage to the hardened material. Waste materials with the suitable chemical composition are very attractive precursors because of their added value in the form of landscape pollution’s reduction and, of course, low cost. In this experiment, the possibilities of using the fly ash from fluidized bed combustion as a mono- and tri-sulphate formation additive were investigated. The experiment itself was conducted on cement paste and concrete and specimens were subjected to a thorough analysis of physicomechanical properties as well as microstructure from the moment of mixing up to 180 days. In cement composites, were monitored the process of hydration and shrinkage. In a mixture with the used admixture of fluidized bed combustion fly ash, possible failures were specified by electronic microscopy and dynamic modulus of elasticity. The results of experiments show the possibility of shrinkage concrete reduction without using traditionally dispersed reinforcement.Keywords: shrinkage, monosulphates, trisulphates, self-healing, fluidized fly ash
Procedia PDF Downloads 1862503 The Strategies to Improve the Pedestrian System in the Context of Old Aging
Authors: Yuxiao Jiang, Dong Ma, Mengyu Zhan, Yingxia Yun
Abstract:
China now is entering the phase of old aging and the aging speed is on acceleration. The proportion of the aged citizens in the urban areas is getting larger. Traveling on foot is one of the main travel methods for the old, but the bad walking environment and unsystematic pedestrian system cause inconvenience to the old who travel on foot. The paper analyzes the behavioral characteristics and the spatial preferences of the elderly group as well as the new traffic demands of them, finding out that some problems exist in the current pedestrian system. Thus, the paper proposes strategies in the areas of planning and design, and engineering technology so as to promote the traffic environment and perfect the pedestrian system for the old people.Keywords: old aging, pedestrian system, perfection strategies, travel characteristics, future demand
Procedia PDF Downloads 3942502 Development of Biodegradable Wound Healing Patch of Curcumin
Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari
Abstract:
The objective of the present research work is to develop a topical biodegradable dermal patch based formulation to aid accelerated wound healing. It is always better for patient compliance to be able to reduce the frequency of dressings with improved drug delivery and overall therapeutic efficacy. In present study optimized formulation using biodegradable components was obtained evaluating polymers and excipients (HPMC K4M, Ethylcellulose, Povidone, Polyethylene glycol and Gelatin) to impart significant folding endurance, elasticity, and strength. Molten gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in acidic medium was mixed with stirring to Gelatin mixture. With continued stirring to the mixture Curcumin was added with the aid of DCM and Methanol in an optimized ratio of 60:40 to get homogenous dispersion. Polymers were dispersed with stirring in the final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23°C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2°C) and at room temperature (23 ± 2°C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2°C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as tested in vivo with correlation factor R2>0.9. In in vivo study administration of one dose in equivalent quantity per 2 days was applied topically. The data demonstrated a significant improvement with percentage wound contraction in contrast to control and plain drug respectively in given period. The film based formulation developed shows promising results in terms of stability and in vivo performance.Keywords: wound healing, biodegradable, polymers, patch
Procedia PDF Downloads 4812501 Active Packaging Films Based on Chitosan Incorporated with Thyme Essential Oil and Cross Linkers and Its Effect on the Quality Shelf Life of Food
Authors: Aiman Zehra, Sajad Mohd Wani
Abstract:
Packaging has a vital role as it contains and protects the food that moves from the supply chain to the consumer. Chitosan (CH) has been extensively used in food packaging applications among the plentiful natural macromolecules, including all the polysaccharide class, owing to its easy film-forming capacity, biodegradability, better oxygen and water vapour barrier ability and good mechanical strength. Compared to synthetic films, the films produced from chitosan present poor barrier and mechanical properties. To overcome its deficient qualities, a number of modification procedures are required to enhance the mechanical and physical properties. Various additives such as plasticizers (e.g., glycerol and sorbitol), crosslinkers (e.g.,CaCl₂, ZnO), fillers (nanoclay), and antimicrobial agents (e.g. thyme essential oil) have been used to improve the mechanical, thermal, morphological, antimicrobial properties and emulsifying agents for the stability and elasticity of chitosan-based biodegradable films. Different novel biocomposite films based on chitosan incorporated with thyme essential oil and different additives (ZnO, CaCl₂, NC, and PEG) were successfully prepared and used as packaging material for carrot candy. The chitosan film incorporated with crosslinkers was capable of forming a protective barrier on the surface of the candy to maintain moisture content, water activity, TSS, total sugars, and titratable acidity. ZnO +PEG +NC +CaCl₂ remarkably promotes a synergistic effect on the barrier properties of the film. The combined use of ZnO +PEG +NC +CaCl₂ in CH-TO films was more effective in preventing the moisture gain in candies. The lowest a𝓌 (0.624) was also observed for the candies stored in treatment. The color values L*, a*, b* of the candies were also retained in the film containing all the additives during the 6th month of storage. The value for L*, a*, and b* observed for T was 42.72, 9.89, and 10.84, respectively. The candies packaged in film retained TSS and acidity. The packaging film significantly p≤0.05 conserved sensory qualities and inhibited microbial activity during storage. Carrot candy was found microbiologically safe for human consumption even after six months of storage in all the packaging materials.Keywords: chitosan, biodegradable films, antimicrobial activity, thyme essential oil, crosslinkers
Procedia PDF Downloads 952500 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source
Authors: M. Khaing, A. V. Tkacheva
Abstract:
The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.Keywords: temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli
Procedia PDF Downloads 1422499 Scope of Heavy Oil as a Fuel of the Future
Authors: Kiran P. Chadayamuri, Saransh Bagdi
Abstract:
Increasing imbalance between energy supply and demand has made nations and companies involved in the energy sector to boost up their research and find suitable solutions. With the high rates at which conventional oil and gas resources are depleting, efficient exploration and exploitation of heavy oil could just be the answer. Heavy oil may be defined as crude oil having API gravity value of less than 20⁰. They are highly viscous, have low hydrogen to carbon ratios and are known to produce high carbon residues. They have high contents of asphaltenes, heavy metals, sulphur and nitrogen in them. Due to these properties extraction, transportation and refining of crude oil have its share of challenges. Lack of suitable technology has hindered its production in the past, but now things are going in a more positive direction. The aim of this paper is to study the various advantages of heavy oil, associated limitations and its feasibility as a fuel of the future.Keywords: energy, heavy oil, fuel, future
Procedia PDF Downloads 2852498 DSPIC30F6010A Control for 12/8 Switched Reluctance Motor
Authors: Yang Zhou, Chen Hao, Ma Xiaoping
Abstract:
This paper briefly mentions the micro controller unit, and then goes into details about the exact regulations for SRM. Firstly, it proposes the main driving state control for motor and the importance of the motor position sensor. For different speed, the controller will choice various styles such as voltage chopper control, angle position control and current chopper control for which owns its advantages and disadvantages. Combining the strengths of the three discrepant methods, the main control chip will intelligently select the best performing control depending on the load and speed demand. Then the exact flow diagram is showed in paper. At last, an experimental platform is established to verify the correctness of the proposed theory.Keywords: switched reluctance motor, dspic microcontroller, current chopper
Procedia PDF Downloads 4252497 Challenges in Multi-Cloud Storage Systems for Mobile Devices
Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta
Abstract:
The demand for cloud storage is increasing because users want continuous access their data. Cloud Storage revolutionized the way how users access their data. A lot of cloud storage service providers are available as DropBox, G Drive, and providing limited free storage and for extra storage; users have to pay money, which will act as a burden on users. To avoid the issue of limited free storage, the concept of Multi Cloud Storage introduced. In this paper, we will discuss the limitations of existing Multi Cloud Storage systems for mobile devices.Keywords: cloud storage, data privacy, data security, multi cloud storage, mobile devices
Procedia PDF Downloads 6992496 Energy Efficiency Measures in Canada’s Iron and Steel Industry
Authors: A. Talaei, M. Ahiduzzaman, A. Kumar
Abstract:
In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation
Procedia PDF Downloads 3962495 Evaluating the Effects of Weather and Climate Change to Risks in Crop Production
Authors: Marcus Bellett-Travers
Abstract:
Different modelling approaches have been used to determine or predict yield of crops in different geographies. Central to the methodologies are the presumption that it is the absolute yield of the crop in a given location that is of the highest priority to those requiring information on crop productivity. Most individuals, companies and organisations within the agri-food sector need to be able to balance the supply of crops with the demand for them. Different modelling approaches have been used to determine and predict crop yield. The growing need to ensure certainty of supply and stability of prices requires an approach that describes the risk in producing a crop. A review of current methodologies to evaluate the risk to food production from changes in the weather and climate is presented.Keywords: crop production, risk, climate, modelling
Procedia PDF Downloads 3862494 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki
Abstract:
Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control
Procedia PDF Downloads 1532493 Food Foam Characterization: Rheology, Texture and Microstructure Studies
Authors: Rutuja Upadhyay, Anurag Mehra
Abstract:
Solid food foams/cellular foods are colloidal systems which impart structure, texture and mouthfeel to many food products such as bread, cakes, ice-cream, meringues, etc. Their heterogeneous morphology makes the quantification of structure/mechanical relationships complex. The porous structure of solid food foams is highly influenced by the processing conditions, ingredient composition, and their interactions. Sensory perceptions of food foams are dependent on bubble size, shape, orientation, quantity and distribution and determines the texture of foamed foods. The state and structure of the solid matrix control the deformation behavior of the food, such as elasticity/plasticity or fracture, which in turn has an effect on the force-deformation curves. The obvious step in obtaining the relationship between the mechanical properties and the porous structure is to quantify them simultaneously. Here, we attempt to research food foams such as bread dough, baked bread and steamed rice cakes to determine the link between ingredients and the corresponding effect of each of them on the rheology, microstructure, bubble size and texture of the final product. Dynamic rheometry (SAOS), confocal laser scanning microscopy, flatbed scanning, image analysis and texture profile analysis (TPA) has been used to characterize the foods studied. In all the above systems, there was a common observation that when the mean bubble diameter is smaller, the product becomes harder as evidenced by the increase in storage and loss modulus (G′, G″), whereas when the mean bubble diameter is large the product is softer with decrease in moduli values (G′, G″). Also, the bubble size distribution affects texture of foods. It was found that bread doughs with hydrocolloids (xanthan gum, alginate) aid a more uniform bubble size distribution. Bread baking experiments were done to study the rheological changes and mechanisms involved in the structural transition of dough to crumb. Steamed rice cakes with xanthan gum (XG) addition at 0.1% concentration resulted in lower hardness with a narrower pore size distribution and larger mean pore diameter. Thus, control of bubble size could be an important parameter defining final food texture.Keywords: food foams, rheology, microstructure, texture
Procedia PDF Downloads 3342492 Utilization of Bio-Glycerol to Synthesize Fuel Additive in Presence of Modified Mesoporous Heterogeneous Catalysts
Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Sandeep K. Saxena
Abstract:
The fast growth rate of energy consumption along with world population expected to demand 50% more energy by 2030 than nowadays. At present, the energy demand is mostly provided by limited fossil fuel sources such as oil, natural gas, and coal that are resulting in dramatic increase in CO2 emissions from combustion of fossil fuels. The growth of the biodiesel industry over the last decade has resulted in a price drop because glycerol is obtained as a by-product during transesterification of vegetable oil or animal fats, which accounts for one tenth of every gallon of biodiesel produced. The production of oxygenates from glycerol gains much importance due to the excellent diesel-blending property of the oxygenates that not only improve the quality of the fuel but also increases the overall yield of the biodiesel in helping to meet the target for energy production from renewable sources for transport in the energy utilization directives. The reaction of bio-glycerol with bio-acetone was carried out in a magnetically stirred two necked round bottom flaskS. Condensation of bio-glycerol with acetone in the presence of various modified forms of beta zeolite has been done for synthesizing solketal (AB-2 modified with nitric acid, AB-3 modified with oxalic acid). Among all modified forms of beta zeolite, AB-2 showed the best performance for maximum glycerol conversion 94.26 % with 94.21 % solketal selectivity and minimum acetal formation 0.05 %. The physiochemical properties of parent beta zeolite and all its modified forms were analyzed by XRD, SEM, TEM, BET, FTIR and TPD. It has been revealed that AB-2 catalysts with high pore volume and surface area gave high glycerol conversion with maximum solketal selectivity. Despite this, the crystallinity of AB-3 was lower than AB-2 which helps to provide the shorter path length for reactants and product but due high pore volume AB-2 was preferred which gave maximum bio-glycerol conversion. Temperature does matter the glycerol conversion and selectivity of solketal, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. AB-2 was found to be highly stable as up to 4 repeated experimental runs there was less than 10% decrease in its activity. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: beta-zeolite, bio-glycerol, catalyst, solketal
Procedia PDF Downloads 2142491 Feasiblity of Replacing Inductive Instrument Transformers with Non-Conventional Intrument Transformers to replace
Authors: David A. Wallace, Salakjit J. Nilboworn
Abstract:
Secure and reliable transmission and distribution of electrical power is crucial in today’s ever-increasing demand for electricity. Traditional methods of protecting the electrical grid have relied on relaying systems receiving voltage and current inputs from inductive instruments transformers (IT). This method has provided robust and stable performance throughout the years. Today with the advent of new non-conventional transformers (NCIT) and sensors, the electrical landscape is changing. These new systems have to ability to provide the same electrical performance as traditional instrument transformers with the added features of data acquisition, communication, smaller footprint, lower cost and resistance to GMD/GIC events.Keywords: non-conventional instrument transformers, digital substations, smart grids, micro-grids
Procedia PDF Downloads 822490 Role of Renewable Energy in Foreign Policy of China
Authors: Alina Gilmanova
Abstract:
China’s dependency on coal for energy is causing pollution in China and abroad. To supply the increasing energy demand and being under the pressure from international society to reduce the emissions, China was pushed to develop renewable energy. The increasing subsidies in Renewable energy sources (RES) led not only to the price-cutting but also affecting the international trade in green technology sector. In order to evaluate the role of RES in foreign policy of China, I am going to give an (i) overview of RES development in China and examine the cooperation between China and (ii) developed, (ii) developing and emerging countries. The conclusive remarks are intended to address the question of how the present Chinese renewable energy development is impacting its foreign policy and international society.Keywords: renewable energy, China, foreign affairs, brics, cooperation
Procedia PDF Downloads 638