Search results for: virtual and constructive models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8032

Search results for: virtual and constructive models

6982 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 309
6981 Construction Quality Perception of Construction Professionals and Their Expectations from a Quality Improvement Technique in Pakistan

Authors: Muhammad Yousaf Sadiq

Abstract:

The complexity arises in defining the construction quality due to its perception, based on inherent market conditions and their requirements, the diversified stakeholders itself and their desired output. An quantitative survey based approach was adopted in this constructive study. A questionnaire-based survey was conducted for the assessment of construction Quality perception and expectations in the context of quality improvement technique. The survey feedback of professionals of the leading construction organizations/companies of Pakistan construction industry were analyzed. The financial capacity, organizational structure, and construction experience of the construction firms formed basis for their selection. The quality perception was found to be project-scope-oriented and considered as an excess cost for a construction project. Any quality improvement technique was expected to maximize the profit for the employer, by improving the productivity in a construction project. The study is beneficial for the construction professionals to assess the prevailing construction quality perception and the expectations from implementation of any quality improvement technique in construction projects.

Keywords: construction quality, expectation, improvement, perception

Procedia PDF Downloads 474
6980 Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation

Authors: Virendra Nath, Vipin Kumar

Abstract:

Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential.

Keywords: computational, diabetes, PPAR, simulation

Procedia PDF Downloads 103
6979 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 338
6978 Requirements for the Development of Competencies to Mentor Trainee Teachers: A Case Study of Vocational Education Cooperating Teachers in Quebec

Authors: Nathalie Gagnon, Andréanne Gagné, Julie Courcy

Abstract:

Quebec's vocational education teachers experience an atypical induction process into the workplace and thus face unique challenges. In contrast to elementary and high school teachers, who must undergo initial teacher training in order to access the profession, vocational education teachers, in most cases, are hired based on their professional expertise in the trade they are teaching, without prior pedagogical training. In addition to creating significant stress, which does not foster the acquisition of teaching roles and skills, this approach also forces recruits into a particular posture during their practical training: that of juggling their dual identities as teacher and trainee simultaneously. Recruits are supported by Cooperating Teachers (CPs) who, as experienced educators, take a critical and constructive look at their practices, observe them in the classroom, give them constructive feedback, and encourage them in their reflective practice. Thus, the vocational setting CP also assumes a distinctive posture and role due to the characteristics of the trainees they support. Although it is recognized that preparation, training, and supervision of CPs are essential factors in improving the support provided to trainees, there is little research about how CPs develop their support skills, and very little research focuses on the distinct posture they occupy. However, in order for them to be properly equipped for the important role they play in recruits’ practical training, it is vital to know more about their experience. An individual’s competencies cannot be studied without first examining what characterizes their experience, how they experience any given situation on cognitive, emotional, and motivational levels, in addition to how they act and react in situ. Depending on its nature, the experience will or will not promote the development of a specific competency. The research from which this communication originates focuses on describing the overall experience of vocational education CP in an effort to better understand the mechanisms linked to the development of their mentoring competencies. Experience and competence were, therefore, the two main theoretical concepts leading the research. As per methodology choices, case study methods were used since it proves to be adequate to describe in a rich and detailed way contemporary phenomena within contexts of life. The set of data used was collected from semi-structured interviews conducted with 15 vocational education CP in Quebec (Canada), followed by the use of a data-driven semi-inductive analysis approach to let the categories emerge organically. Focusing on the development needs of vocational education CP to improve their mentoring skills, this paper presents the results of our research, namely the importance of adequate training, better support offered by university supervisors, greater recognition of their role, and specific time slots dedicated to trainee support. The knowledge resulting from this research could improve the quality of support for trainee teachers in vocational education settings and to a more successful induction into the workplace. This communication also presents recommendations regarding the development of training systems that meet the specific needs of vocational education CP.

Keywords: development of competencies, cooperating teacher, mentoring trainee teacher, practical training, vocational education

Procedia PDF Downloads 115
6977 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
6976 Towards a Dialogical Approach between Christianity and Hinduism: A Comparative Theological Analysis of the Concept of Logos, and Shabd

Authors: Abraham Kuruvilla

Abstract:

Since the inception of Christianity, one of the most important precepts has been that of the ‘word becoming flesh.’ Incarnation, as we understand it, is that the ‘word became flesh.’ As we know, it is a commonly held understanding that the concept of Logos was borrowed from the Greek religion. Such understanding has dominated our thought process. This is problematic as it does not draw out the deep roots of Logos. The understanding of Logos also existed in religion such as Hinduism. For the Hindu faith, the understanding of Shabd is pivotal. It could be arguably equated with the understanding of the Logos. The paper looks into the connection of the primal Christian doctrine of the Logos with that of the Hindu understanding of Shabd. The methodology of the paper would be a comparative theological analysis with the New Testament understanding of the Logos with that of the understanding of Shabd as perceived in the different Vedas of the Hindu faith. The paper would come to the conclusion that there is a conceptual connectivity between Logos and the Shabd. As such the understanding of Logos cannot just be attributed to the Greek understanding of Logos, but rather it predates the Greek understanding of Logos by being connected to the Hindu understanding of Shabd. Accordingly, such comparison brings out the implication for a constructive dialogue between Christianity and the Hindu faith.

Keywords: Christianity, Hinudism, Logos, Shabd

Procedia PDF Downloads 224
6975 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model

Authors: Catherine Maware, Olufemi Adetunji

Abstract:

The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.

Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance

Procedia PDF Downloads 485
6974 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 395
6973 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)

Procedia PDF Downloads 259
6972 The Role of Virtual Reality in Mediating the Vulnerability of Distant Suffering: Distance, Agency, and the Hierarchies of Human Life

Authors: Z. Xu

Abstract:

Immersive virtual reality (VR) has gained momentum in humanitarian communication due to its utopian promises of co-presence, immediacy, and transcendence. These potential benefits have led the United Nations (UN) to tirelessly produce and distribute VR series to evoke global empathy and encourage policymakers, philanthropic business tycoons and citizens around the world to actually do something (i.e. give a donation). However, it is unclear whether or not VR can cultivate cosmopolitans with a sense of social responsibility towards the geographically, socially/culturally and morally mediated misfortune of faraway others. Drawing upon existing works on the mediation of distant suffering, this article constructs an analytical framework to articulate the issue. Applying this framework on a case study of five of the UN’s VR pieces, the article identifies three paradoxes that exist between cyber-utopian and cyber-dystopian narratives. In the “paradox of distance”, VR relies on the notions of “presence” and “storyliving” to implicitly link audiences spatially and temporally to distant suffering, creating global connectivity and reducing perceived distances between audiences and others; yet it also enables audiences to fully occupy the point of view of distant sufferers (creating too close/absolute proximity), which may cause them to feel naive self-righteousness or narcissism with their pleasures and desire, thereby destroying the “proper distance”. In the “paradox of agency”, VR simulates a superficially “real” encounter for visual intimacy, thereby establishing an “audiences–beneficiary” relationship in humanitarian communication; yet in this case the mediated hyperreality is not an authentic reality, and its simulation does not fill the gap between reality and the virtual world. In the “paradox of the hierarchies of human life”, VR enables an audience to experience virtually fundamental “freedom”, epitomizing an attitude of cultural relativism that informs a great deal of contemporary multiculturalism, providing vast possibilities for a more egalitarian representation of distant sufferers; yet it also takes the spectator’s personally empathic feelings as the focus of intervention, rather than structural inequality and political exclusion (an economic and political power relations of viewing). Thus, the audience can potentially remain trapped within the minefield of hegemonic humanitarianism. This study is significant in two respects. First, it advances the turn of digitalization in studies of media and morality in the polymedia milieu; it is motivated by the necessary call for a move beyond traditional technological environments to arrive at a more novel understanding of the asymmetry of power between the safety of spectators and the vulnerability of mediated sufferers. Second, it not only reminds humanitarian journalists and NGOs that they should not rely entirely on the richer news experience or powerful response-ability enabled by VR to gain a “moral bond” with distant sufferers, but also argues that when fully-fledged VR technology is developed, it can serve as a kind of alchemy and should not be underestimated merely as a “bugaboo” of an alarmist philosophical and fictional dystopia.

Keywords: audience, cosmopolitan, distant suffering, virtual reality, humanitarian communication

Procedia PDF Downloads 142
6971 Classroom Readiness of Open and Distance Learning Student Teachers

Authors: E. C. du Plessis

Abstract:

Teaching practice is a major component of teacher education and the preparation of teachers for the real-life classroom throughout the world. Learning is seen as a constructive process, whether it is classroom based or takes place by means of distance education. Blending theory and practice with effective education in distance context as part of situated learning is crucial. Therefore, the aim of this research was to determine distance education student teachers' classroom readiness on completion of the teaching practice modules of their Postgraduate Certificate in Education (PGCE) course. A qualitative research approach was used for the collection, analysis, and interpretation of data. A total of 15 student teachers enrolled at the College of Education of an ODL (Open and Distance Learning) institution were selected and volunteered to participate in the research. In the light of the results of the research, it is recommended that more attention is given to the interaction between mentor teachers, academic lecturers, and student teachers, as well as the expectations and responsibilities of these role-players.

Keywords: communities of practice, mentor teachers, open and distance learning, practicum, professional development, student teachers, teaching practice

Procedia PDF Downloads 163
6970 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 84
6969 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments

Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni

Abstract:

Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.

Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil

Procedia PDF Downloads 322
6968 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method

Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger

Abstract:

Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.

Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model

Procedia PDF Downloads 193
6967 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection

Authors: Jiaqi Huang, Yuheng Wang

Abstract:

Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.

Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning

Procedia PDF Downloads 183
6966 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 251
6965 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 380
6964 Framework for Developing Change Team to Maximize Change Initiative Success

Authors: Mohammad Z. Ansari, Lisa Brodie, Marilyn Goh

Abstract:

Change facilitators are individuals who utilize change philosophy to make a positive change to organizations. The application of change facilitators can be seen in various change models; Lewin, Lippitt, etc. The facilitators within numerous change models are considered as internal/external consultants. Whilst most of the scholarly paper considers change facilitation as a consensus attempt to improve organization, there is a lack of a framework that develops both the organization and the change facilitator creating a self-sustaining change environment. This research paper introduces the development of the framework for change Leaders, Planners, and Executers (LPE), aiming at various organizational levels (Process, Departmental, and Organisational). The LPE framework is derived by exploring interrelated characteristics between facilitator(s) and the organization through qualitative research for understanding change management techniques and facilitator(s) behavioral aspect from existing Change Management models and Organisation behavior works of literature. The introduced framework assists in highlighting and identify the most appropriate change team to successfully deliver the change initiative within any organization (s).

Keywords: change initiative, LPE framework, change facilitator(s), sustainable change

Procedia PDF Downloads 196
6963 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images

Authors: J. Jasmee, I. Roslina, A. Mohammed Yaziz & A.H Juazer Rizal

Abstract:

The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML.

Keywords: LiDAR datasets, DSM, DTM, 3D building models

Procedia PDF Downloads 320
6962 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: data mining, knowledge discovery in databases, prediction models, student success

Procedia PDF Downloads 407
6961 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis

Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar

Abstract:

Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.

Keywords: NLP, multilingual, sentiment analysis, texts

Procedia PDF Downloads 102
6960 Drying Kinects of Soybean Seeds

Authors: Amanda Rithieli Pereira Dos Santos, Rute Quelvia De Faria, Álvaro De Oliveira Cardoso, Anderson Rodrigo Da Silva, Érica Leão Fernandes Araújo

Abstract:

The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico.

Keywords: curve of drying seeds, Glycine max L., moisture ratio, statistical models

Procedia PDF Downloads 627
6959 Global Healthcare Village Based on Mobile Cloud Computing

Authors: Laleh Boroumand, Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar

Abstract:

Cloud computing being the use of hardware and software that are delivered as a service over a network has its application in the area of health care. Due to the emergency cases reported in most of the medical centers, prompt for an efficient scheme to make health data available with less response time. To this end, we propose a mobile global healthcare village (MGHV) model that combines the components of three deployment model which include country, continent and global health cloud to help in solving the problem mentioned above. In the creation of continent model, two (2) data centers are created of which one is local and the other is global. The local replay the request of residence within the continent, whereas the global replay the requirements of others. With the methods adopted, there is an assurance of the availability of relevant medical data to patients, specialists, and emergency staffs regardless of locations and time. From our intensive experiment using the simulation approach, it was observed that, broker policy scheme with respect to optimized response time, yields a very good performance in terms of reduction in response time. Though, our results are comparable to others when there is an increase in the number of virtual machines (80-640 virtual machines). The proportionality in increase of response time is within 9%. The results gotten from our simulation experiments shows that utilizing MGHV leads to the reduction of health care expenditures and helps in solving the problems of unqualified medical staffs faced by both developed and developing countries.

Keywords: cloud computing (MCC), e-healthcare, availability, response time, service broker policy

Procedia PDF Downloads 377
6958 When Digital Innovation Augments Cultural Heritage: An Innovation from Tradition Story

Authors: Danilo Pesce, Emilio Paolucci, Mariolina Affatato

Abstract:

Looking at the future and at the post-digital era, innovations commonly tend to dismiss the old and replace it with the new. The aim of this research is to study the role that digital innovation can play alongside the information chain within the traditional sectors and the subsequent value creation opportunities that actors and stakeholders can exploit. By drawing on a wide body of literature on innovation and strategic management and by conducting a case study on the cultural heritage industry, namely Google Arts & Culture, this study shows that technology augments complements, and amplifies the way people experience their cultural interests and experience. Furthermore, the study shows a process of democratization of art since museums can exploit new digital and virtual ways to distribute art globally. Moreover, new needs arose from the 2020 pandemic that hit and forced the world to a state of cultural fasting and caused a radical transformation of the paradigm online vs. onsite. Finally, the study highlights the capabilities that are emerging at different stages of the value chain, owing to the technological innovation available in the market. In essence, this research underlines the role of Google in allowing museums to reach users worldwide, thus unlocking new mechanisms of value creation in the cultural heritage industry. Likewise, this study points out how Google provides value to users by means of increasing the provision of artworks, improving the audience engagement and virtual experience, and providing new ways to access the online contents. The paper ends with a discussion of managerial and policy-making implications.

Keywords: big data, digital platforms, digital transformation, digitization, Google Arts and Culture, stakeholders’ interests

Procedia PDF Downloads 157
6957 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs

Authors: Malo Pocheau-Lesteven, Olivier Le Maître

Abstract:

Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.

Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program

Procedia PDF Downloads 157
6956 Automatic Aggregation and Embedding of Microservices for Optimized Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.

Keywords: aggregation, deployment, embedding, resource allocation

Procedia PDF Downloads 203
6955 Legal Considerations in Fashion Modeling: Protecting Models' Rights and Ensuring Ethical Practices

Authors: Fatemeh Noori

Abstract:

The fashion industry is a dynamic and ever-evolving realm that continuously shapes societal perceptions of beauty and style. Within this industry, fashion modeling plays a crucial role, acting as the visual representation of brands and designers. However, behind the glamorous façade lies a complex web of legal considerations that govern the rights, responsibilities, and ethical practices within the field. This paper aims to explore the legal landscape surrounding fashion modeling, shedding light on key issues such as contract law, intellectual property, labor rights, and the increasing importance of ethical considerations in the industry. Fashion modeling involves the collaboration of various stakeholders, including models, designers, agencies, and photographers. To ensure a fair and transparent working environment, it is imperative to establish a comprehensive legal framework that addresses the rights and obligations of each party involved. One of the primary legal considerations in fashion modeling is the contractual relationship between models and agencies. Contracts define the terms of engagement, including payment, working conditions, and the scope of services. This section will delve into the essential elements of modeling contracts, the negotiation process, and the importance of clarity to avoid disputes. Models are not just individuals showcasing clothing; they are integral to the creation and dissemination of artistic and commercial content. Intellectual property rights, including image rights and the use of a model's likeness, are critical aspects of the legal landscape. This section will explore the protection of models' image rights, the use of their likeness in advertising, and the potential for unauthorized use. Models, like any other professionals, are entitled to fair and ethical treatment. This section will address issues such as working conditions, hours, and the responsibility of agencies and designers to prioritize the well-being of models. Additionally, it will explore the global movement toward inclusivity, diversity, and the promotion of positive body image within the industry. The fashion industry has faced scrutiny for perpetuating harmful standards of beauty and fostering a culture of exploitation. This section will discuss the ethical responsibilities of all stakeholders, including the promotion of diversity, the prevention of exploitation, and the role of models as influencers for positive change. In conclusion, the legal considerations in fashion modeling are multifaceted, requiring a comprehensive approach to protect the rights of models and ensure ethical practices within the industry. By understanding and addressing these legal aspects, the fashion industry can create a more transparent, fair, and inclusive environment for all stakeholders involved in the art of modeling.

Keywords: fashion modeling contracts, image rights in modeling, labor rights for models, ethical practices in fashion, diversity and inclusivity in modeling

Procedia PDF Downloads 77
6954 Scenario-Based Learning Using Virtual Optometrist Applications

Authors: J. S. M. Yang, G. E. T. Chua

Abstract:

Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.

Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios

Procedia PDF Downloads 117
6953 A Research Study of the Inclusiveness of VR Headsets for Higher Education

Authors: Fredrick Forster, Gareth Ward, Matthew Tubby, Pamela Lithgow, Anne Nortcliffe

Abstract:

This paper presents the results from a research study of random adult participants accessing one of four different commercially available Virtual Reality (VR) Head Mounted Displays (HMDs) and completing a post user experience reflection questionnaire. The research sort to understand how inclusive commercially available VR HMDs are and identify any associated barriers that could impact the widespread adoption of the devices, specifically in Higher Education (HE). In the UK, education providers are legally required under the Equality Act 2010 to ensure all education facilities are inclusive and reasonable adjustments can be applied appropriately. The research specifically aimed to identify the considerations that academics and learning technologists need to make when adopting the use of commercial VR HMDs in HE classrooms, namely cybersickness, user comfort, Interpupillary Distance, inclusiveness, and user perceptions of VR. The research approach was designed to build upon previously published research on user reflections on presence, usability, and overall HMD comfort, using quantitative and qualitative research methods by way of a questionnaire. The quantitative data included the recording of physical characteristics such as the distance between eye pupils, known as Interpupillary Distance (IPD). VR HMDs require each user’s IPD measurement to enable the focusing of the VR HMDs virtual camera output to the right position in front of the eyes of the user. In addition, the questionnaire captured users’ qualitative reflections and evaluations of the broader accessibility characteristics of the VR HMDs. The initial research activity was accomplished by enabling a random sample of visitors, staff, and students at Canterbury Christ Church University, Kent to use a VR HMD for a set period of time and asking them to complete the post user experience questionnaire. The study identified that there is little correlation between users who experience cyber sickness and car sickness. Also, users with a smaller IPD than average (typically associated with females) were able to use the VR HMDs successfully; however, users with a larger than average IPD reported an impeded experience. This indicates that there is reduced inclusiveness for the tested VR HMDs for users with a higher-than-average IPD which is typically associated with males of certain ethnicities. As action education research, these initial findings will be used to refine the research method and conduct further investigations with the aim to provide verification and validation of the accessibility of current commercial VR HMDs. The conference presentation will report on the research results of the initial study and subsequent follow up studies with a larger variety of adult volunteers.

Keywords: virtual reality, education technology, inclusive technology, higher education

Procedia PDF Downloads 68