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Abstract : Differentially private ({DP}) training preserves the data privacy but often leads to slower convergence and lower
accuracy, along with notable mis-calibration compared to non-private training. Analyzing {DP} training through a continuous-
time approach with the neural tangent kernel ({NTK}). The {NTK} helps characterize per sample {(PS)} gradient clipping and
the incorporation of noise during {DP} training across arbitrary network architectures as well as loss functions. Our analysis
reveals that noise addition impacts privacy risk exclusively, leaving convergence and calibration unaffected. In contrast, {PS}
gradient clipping (flat styles, layerwise styles) influences convergence as well as calibration but not privacy risk. Models with a
small clipping norm generally achieve optimal accuracy but exhibit poor calibration, making them less reliable. Conversely,
{DP} models that are trained with a large clipping norm maintain the similar accuracy and same privacy guarantee, yet they
demonstrate notably improved calibration.
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