Search results for: variable range hopping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8588

Search results for: variable range hopping

7538 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8

Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti

Abstract:

In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.

Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports

Procedia PDF Downloads 81
7537 Predicting Returns Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models

Authors: Shay Kee Tan, Kok Haur Ng, Jennifer So-Kuen Chan

Abstract:

This paper extends the conditional autoregressive range (CARR) model to multivariate CARR (MCARR) model and further to the two-stage MCARR-return model to model and forecast volatilities, correlations and returns of multiple financial assets. The first stage model fits the scaled realised Parkinson volatility measures using individual series and their pairwise sums of indices to the MCARR model to obtain in-sample estimates and forecasts of volatilities for these individual and pairwise sum series. Then covariances are calculated to construct the fitted variance-covariance matrix of returns which are imputed into the stage-two return model to capture the heteroskedasticity of assets’ returns. We investigate different choices of mean functions to describe the volatility dynamics. Empirical applications are based on the Standard and Poor 500, Dow Jones Industrial Average and Dow Jones United States Financial Service Indices. Results show that the stage-one MCARR models using asymmetric mean functions give better in-sample model fits than those based on symmetric mean functions. They also provide better out-of-sample volatility forecasts than those using CARR models based on two robust loss functions with the scaled realised open-to-close volatility measure as the proxy for the unobserved true volatility. We also find that the stage-two return models with constant means and multivariate Student-t errors give better in-sample fits than the Baba, Engle, Kraft, and Kroner type of generalized autoregressive conditional heteroskedasticity (BEKK-GARCH) models. The estimates and forecasts of value-at-risk (VaR) and conditional VaR based on the best MCARR-return models for each asset are provided and tested using Kupiec test to confirm the accuracy of the VaR forecasts.

Keywords: range-based volatility, correlation, multivariate CARR-return model, value-at-risk, conditional value-at-risk

Procedia PDF Downloads 99
7536 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid

Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop

Abstract:

In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.

Keywords: heat transfer, nanofluid, shrinking surface, stability analysis, three-dimensional flow

Procedia PDF Downloads 287
7535 Effects and Mechanisms of an Online Short-Term Audio-Based Mindfulness Intervention on Wellbeing in Community Settings and How Stress and Negative Affect Influence the Therapy Effects: Parallel Process Latent Growth Curve Modeling of a Randomized Control

Authors: Man Ying Kang, Joshua Kin Man Nan

Abstract:

The prolonged pandemic has posed alarming public health challenges to various parts of the world, and face-to-face mental health treatment is largely discounted for the control of virus transmission, online psychological services and self-help mental health kits have become essential. Online self-help mindfulness-based interventions have proved their effects on fostering mental health for different populations over the globe. This paper was to test the effectiveness of an online short-term audio-based mindfulness (SAM) program in enhancing wellbeing, dispositional mindfulness, and reducing stress and negative affect in community settings in China, and to explore possible mechanisms of how dispositional mindfulness, stress, and negative affect influenced the intervention effects on wellbeing. Community-dwelling adults were recruited via online social networking sites (e.g., QQ, WeChat, and Weibo). Participants (n=100) were randomized into the mindfulness group (n=50) and a waitlist control group (n=50). In the mindfulness group, participants were advised to spend 10–20 minutes listening to the audio content, including mindful-form practices (e.g., eating, sitting, walking, or breathing). Then practice daily mindfulness exercises for 3 weeks (a total of 21 sessions), whereas those in the control group received the same intervention after data collection in the mindfulness group. Participants in the mindfulness group needed to fill in the World Health Organization Five Well-Being Index (WHO), Positive and Negative Affect Schedule (PANAS), Perceived Stress Scale (PSS), and Freiburg Mindfulness Inventory (FMI) four times: at baseline (T0) and at 1 (T1), 2 (T2), and 3 (T3) weeks while those in the waitlist control group only needed to fill in the same scales at pre- and post-interventions. Repeated-measure analysis of variance, paired sample t-test, and independent sample t-test was used to analyze the variable outcomes of the two groups. The parallel process latent growth curve modeling analysis was used to explore the longitudinal moderated mediation effects. The dependent variable was WHO slope from T0 to T3, the independent variable was Group (1=SAM, 2=Control), the mediator was FMI slope from T0 to T3, and the moderator was T0NA and T0PSS separately. The different levels of moderator effects on WHO slope was explored, including low T0NA or T0PSS (Mean-SD), medium T0NA or T0PSS (Mean), and high T0NA or T0PSS (Mean+SD). The results found that SAM significantly improved and predicted higher levels of WHO slope and FMI slope, as well as significantly reduced NA and PSS. FMI slope positively predict WHO slope. FMI slope partially mediated the relationship between SAM and WHO slope. Baseline NA and PSS as the moderators were found to be significant between SAM and WHO slope and between SAM and FMI slope, respectively. The conclusion was that SAM was effective in promoting levels of mental wellbeing, positive affect, and dispositional mindfulness as well as reducing negative affect and stress in community settings in China. SAM improved wellbeing faster through the faster enhancement of dispositional mindfulness. Participants with medium-to-high negative affect and stress buffered the therapy effects of SAM on wellbeing improvement speed.

Keywords: mindfulness, negative affect, stress, wellbeing, randomized control trial

Procedia PDF Downloads 109
7534 Utilization of Cervical Cancer Screening Among HIV Infected Women in Nairobi, Kenya

Authors: E. Njuguna, S. Ilovi, P. Muiruri, K. Mutai, J. Kinuthia, P. Njoroge

Abstract:

Introduction: Cervical cancer is the commonest cause of cancer-related morbidity and mortality among women in developing countries in Sub Saharan Africa. Screening for cervical cancer in all women regardless of HIV status is crucial for the early detection of cancer of the cervix when treatment is most effective in curing the disease. It is particularly more important to screen HIV infected women as they are more at risk of developing the disease and progressing faster once infected with HPV (Human Papilloma Virus). We aimed to determine the factors affecting the utilization of cervical cancer screenings among HIV infected women above 18 years of age at Kenyatta National Hospital (KNH) Comprehensive Care Center (CCC). Materials and Methods: A cross-sectional mixed quantitative and qualitative study involving randomly and purposefully selected HIV positive female respectively was conducted. Qualitative data collection involved 4 focus group discussions of eligible female participants while quantitative data were acquired by one to one interviewer administered structured questionnaires. The outcome variable was the utilization of cervical cancer screening. Data were entered into Access data base and analyzed using Stata version 11.1. Qualitative data were analyzed after coding for significant clauses and transcribing to determine themes arising. Results: We enrolled a total of 387 patients, mean age (IQ range) 40 years (36-44). Cervical cancer screening utilization was 46% despite a health care provider recommendation of 85%. The screening results were reported as normal in 72 of 81 (88.9%) and abnormal 7 of 81(8.6%) of the cases. Those who did not know their result were 2 of 81(2.5%). Patients were less likely to utilize the service with increasing number of years attending the clinic (OR 0.9, 95% CI 0.86-0.99, p-value 0.02), but more likely to utilize the service if recommendation by a staff was made (OR 10, 95% CI 4.2-23.9, p<0.001), and if cervical screening had been done before joining KNH CCC (OR 2.9, 95% CI 1.7-4.9, p < 0.001). Similarly, they were more likely to rate the services on cervical cancer screening as good (OR 5.0, 95% CI 1.7-3.4, p <0.001) and very good (OR 8.1, 95% CI 2.5-6.1, p<0.001) if they had utilized the service. The main barrier themes emerging from qualitative data included fear of screening due to excessive pain or bleeding, lack of proper communication on screening procedures and increased waiting time. Conclusions: Utilization of cervical cancer screening services was low despite health care recommendation. Patient socio-demographic characteristics did not influence whether or not they utilized the services, indicating the important role of the health care provider in the referral and provision of the service.

Keywords: cervical, cancer, HIV, women, comprehensive care center

Procedia PDF Downloads 275
7533 Controlling Dimensions and Shape of Carbon Nanotubes Using Nanoporous Anodic Alumina under Different Conditions

Authors: Amine Mezni, Merfat Algethami, Ali Aldalbahi, Arwa Alrooqi, Abel Santos, Dusan Losic, Sarah Alharthi, Tariq Altalhi

Abstract:

In situ synthesis of carbon nanotubes featuring different diameters (10-200 nm), lengths (1 to 100 µm) and periodically nanostructured shape was performed in a custom designed chemical vapor deposition (CVD) system using nanoporous anodic alumina (NAA) under different conditions. The morphology of the resulting CNTs/NAA composites and free-standing CNTs were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results confirm that highly ordered arrays of CNTs with precise control of nanotube dimensions in the range 20-200 nm with tube length in the range < 1 µm to > 100 μm and with periodically shaped morphology can be fabricated using nanostructured NAA templates prepared by anodization. This technique allows us to obtain tubes open at one / both ends with a uniform diameter along the pore length without using any metal catalyst. Our finding suggests that this fabrication strategy for designing new CNTs membranes and structures can be significant for emerging applications as molecular separation/transport, optical biosensing, and drug delivery.

Keywords: carbon nanotubes, CVD approach, composites membrane, nanoporous anodic alumina

Procedia PDF Downloads 281
7532 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM

Authors: M. J. Davidson, N. Selvaraj, L. Venugopal

Abstract:

The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.

Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube

Procedia PDF Downloads 509
7531 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy

Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena

Abstract:

Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.

Keywords: online range monitoring, particle therapy, quality assurance, tracking detector

Procedia PDF Downloads 240
7530 Real-Time Quantitative Polymerase Chain Reaction Assay for the Detection of microRNAs Using Bi-Directional Extension Sequences

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

MicroRNAs (miRNA) are a class of endogenous, single-stranded, small, and non-protein coding RNA molecules typically 20-25 nucleotides long. They are thought to regulate the expression of other genes in a broad range by binding to 3’- untranslated regions (3’-UTRs) of specific mRNAs. The detection of miRNAs is very important for understanding of the function of these molecules and in the diagnosis of variety of human diseases. However, detection of miRNAs is very challenging because of their short length and high sequence similarities within miRNA families. So, a simple-to-use, low-cost, and highly sensitive method for the detection of miRNAs is desirable. In this study, we demonstrate a novel bi-directional extension (BDE) assay. In the first step, a specific linear RT primer is hybridized to 6-10 base pairs from the 3’-end of a target miRNA molecule and then reverse transcribed to generate a cDNA strand. After reverse transcription, the cDNA was hybridized to the 3’-end which is BDE sequence; it played role as the PCR template. The PCR template was amplified in an SYBR green-based quantitative real-time PCR. To prove the concept, we used human brain total RNA. It could be detected quantitatively in the range of seven orders of magnitude with excellent linearity and reproducibility. To evaluate the performance of BDE assay, we contrasted sensitivity and specificity of the BDE assay against a commercially available poly (A) tailing method using miRNAs for let-7e extracted from A549 human epithelial lung cancer cells. The BDE assay displayed good performance compared with a poly (A) tailing method in terms of specificity and sensitivity; the CT values differed by 2.5 and the melting curve showed a sharper than poly (A) tailing methods. We have demonstrated an innovative, cost-effective BDE assay that allows improved sensitivity and specificity in detection of miRNAs. Dynamic range of the SYBR green-based RT-qPCR for miR-145 could be represented quantitatively over a range of 7 orders of magnitude from 0.1 pg to 1.0 μg of human brain total RNA. Finally, the BDE assay for detection of miRNA species such as let-7e shows good performance compared with a poly (A) tailing method in terms of specificity and sensitivity. Thus BDE proves a simple, low cost, and highly sensitive assay for various miRNAs and should provide significant contributions in research on miRNA biology and application of disease diagnostics with miRNAs as targets.

Keywords: bi-directional extension (BDE), microRNA (miRNA), poly (A) tailing assay, reverse transcription, RT-qPCR

Procedia PDF Downloads 166
7529 Antecedents and Consequents of Organizational Politics: A Select Study of a Central University

Authors: Poonam Mishra, Shiv Kumar Sharma, Sanjeev Swami

Abstract:

Purpose: The Purpose of this paper is to investigate the relationship of percieved organizational politics with three levels of antecedents (i.e., organizational level, work environment level and individual level)and its consequents simultaneously. The study addresses antecedents and consequents of percieved political behavior in the higher education sector of India with specific reference to a central university. Design/ Methodology/ Approach: A conceptual framework and hypotheses were first developed on the basis of review of previous studies on organizational politics. A questionnaire was then developed carrying 66 items related to 8-constructs and demographic characteristics of respondents. Jundegemental sampling was used to select respondents. Primary data is collected through structured questionnaire from 45 faculty members of a central university. The sample constitutes Professors, Associate Professors and Assistant Professors from various departments of the University. To test hypotheses data was analyzed statistically using partial least square-structural equations modeling (PLS-SEM). Findings: Results indicated a strong support for OP’s relationship with three of the four proposed antecedents that are, workforce diversity, relationship conflict and need for power with relationship conflict having the strongest impact. No significant relationship was found between role conflict and perception of organizational politics. The three consequences that is, intention to turnover, job anxiety, and organizational commitment are significantly impacted by perception of organizational politics. Practical Implications– This study will be helpful in motivating future research for improving the quality of higher education in India by reducing the level of antecedents that adds to the level of perception of organizational politics, ultimately resulting in unfavorable outcomes. Originality/value: Although a large number of studies on atecedents and consequents of percieved organizational politics have been reported, little attention has been paid to test all the separate but interdependent relationships simultaneously; in this paper organizational politics will be simultaneously treated as a dependent variable and same will be treated as independent variable in subsequent relationships.

Keywords: organizational politics, workforce diversity, relationship conflict, role conflict, need for power, intention to turnover, job anxiety, organizational commitment

Procedia PDF Downloads 495
7528 Issues in Travel Demand Forecasting

Authors: Huey-Kuo Chen

Abstract:

Travel demand forecasting including four travel choices, i.e., trip generation, trip distribution, modal split and traffic assignment constructs the core of transportation planning. In its current application, travel demand forecasting has associated with three important issues, i.e., interface inconsistencies among four travel choices, inefficiency of commonly used solution algorithms, and undesirable multiple path solutions. In this paper, each of the three issues is extensively elaborated. An ideal unified framework for the combined model consisting of the four travel choices and variable demand functions is also suggested. Then, a few remarks are provided in the end of the paper.

Keywords: travel choices, B algorithm, entropy maximization, dynamic traffic assignment

Procedia PDF Downloads 458
7527 Analysis of Structural Modeling on Digital English Learning Strategy Use

Authors: Gyoomi Kim, Jiyoung Bae

Abstract:

The purpose of this study was to propose a framework that verifies the structural relationships among students’ use of digital English learning strategy (DELS), affective domains, and their individual variables. The study developed a hypothetical model based on previous studies on language learning strategy use as well as digital language learning. The participants were 720 Korean high school students and 430 university students. The instrument was a self-response questionnaire that contained 70 question items based on Oxford’s SILL (Strategy Inventory for Language Learning) as well as the previous studies on language learning strategies in digital learning environment in order to measure DELS and affective domains. The collected data were analyzed through structural equation modeling (SEM). This study used quantitative data analysis procedures: Explanatory factor analysis (EFA) and confirmatory factor analysis (CFA). Firstly, the EFA was conducted in order to verify the hypothetical model; the factor analysis was conducted preferentially to identify the underlying relationships between measured variables of DELS and the affective domain in the EFA process. The hypothetical model was established with six indicators of learning strategies (memory, cognitive, compensation, metacognitive, affective, and social strategies) under the latent variable of the use of DELS. In addition, the model included four indicators (self-confidence, interests, self-regulation, and attitude toward digital learning) under the latent variable of learners’ affective domain. Secondly, the CFA was used to determine the suitability of data and research models, so all data from the present study was used to assess model fits. Lastly, the model also included individual learner factors as covariates and five constructs selected were learners’ gender, the level of English proficiency, the duration of English learning, the period of using digital devices, and previous experience of digital English learning. The results verified from SEM analysis proposed a theoretical model that showed the structural relationships between Korean students’ use of DELS and their affective domains. Therefore, the results of this study help ESL/EFL teachers understand how learners use and develop appropriate learning strategies in digital learning contexts. The pedagogical implication and suggestions for the further study will be also presented.

Keywords: Digital English Learning Strategy, DELS, individual variables, learners' affective domains, Structural Equation Modeling, SEM

Procedia PDF Downloads 125
7526 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System

Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh

Abstract:

A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.

Keywords: double perovskite, electrical conductivity, SEM, XRD

Procedia PDF Downloads 132
7525 Use of Fabric Phase Sorptive Extraction with Gas Chromatography-Mass Spectrometry for the Determination of Organochlorine Pesticides in Various Aqueous and Juice Samples

Authors: Ramandeep Kaur, Ashok Kumar Malik

Abstract:

Fabric Phase Sorptive Extraction (FPSE) combined with Gas chromatography Mass Spectrometry (GCMS) has been developed for the determination of nineteen organochlorine pesticides in various aqueous samples. The method consolidates the features of sol-gel derived microextraction sorbents with rich surface chemistry of cellulose fabric substrate which could directly extract sample from complex sample matrices and incredibly improve the operation with decreased pretreatment time. Some vital parameters such as kind and volume of extraction solvent and extraction time were examinedand optimized. Calibration curves were obtained in the concentration range 0.5-500 ng/mL. Under the optimum conditions, the limits of detection (LODs) were in the range 0.033 ng/mL to 0.136 ng/mL. The relative standard deviations (RSDs) for extraction of 10 ng/mL 0f OCPs were less than 10%. The developed method has been applied for the quantification of these compounds in aqueous and fruit juice samples. The results obtained proved the present method to be rapid and feasible for the determination of organochlorine pesticides in aqueous samples.

Keywords: fabric phase sorptive extraction, gas chromatography-mass spectrometry, organochlorine pesticides, sample pretreatment

Procedia PDF Downloads 484
7524 21st Century Provocation: Modern Slavery, the Implications for Individuals on the Autism Spectrum

Authors: Christina Surmei

Abstract:

Autism Spectrum Disorder (ASD) is defined as a diverse range of developmental conditions that affect an individual’s functionality. ASD is not linear, and individuals can present with deficits in social interaction, communication, and demonstrate limited, repetitive patterns of behaviour, interests, or activities. These characteristics may be observed in a variety of ways and range from mild to severe. ASD may include autism disorder, pervasive developmental disorder not otherwise specified, Asperger’s, or other related pervasive developmental disorders. Modern slavery is defined as 'situations of exploitation that a person cannot refuse or leave because of threats, violence, coercion, and abuse of power or deception'. A review of the literature investigated the prevalence of research regarding ASD and modern slavery. Two universal search engines and five online journals were used as the apparatuses of inquiry. The results revealed two editorials, one study, and one act, totaling four publications attesting to ASD and modern slavery as a joint entity. This is representative of a vast absence of research. However, as individual entities research on autism and modern slavery is in a general high occurrence. This paper has identified a significant gap in research on ASD and modern slavery, and initiates the dialogue to unpack a significant global issue in society today.

Keywords: autism spectrum, education, modern slavery, support

Procedia PDF Downloads 167
7523 Biomechanics of Atalantoaxial Complex for Various Posterior Fixation Techniques

Authors: Arun C. O., Shrijith M. B., Thakur Rajesh Singh

Abstract:

The study aims to analyze and understand the biomechanical stability of the atlantoaxial complex under different posterior fixation techniques using the finite element method in the Indian context. The conventional cadaveric studies performed show heterogeneity in biomechanical properties. The finite element method being a versatile numerical tool, is being wisely used for biomechanics analysis of atlantoaxial complex. However, the biomechanics of posterior fixation techniques for an Indian subject is missing in the literature. It is essential to study in this context as the bone density and geometry of vertebrae vary from region to region, thereby requiring different screw lengths and it can affect the range of motion(ROM), stresses generated. The current study uses CT images for developing a 3D finite element model with C1-C2 geometry without ligaments. Instrumentation is added to this geometry to develop four models for four fixation techniques, namely C1-C2 TA, C1LM-C2PS, C1LM-C2Pars, C1LM-C2TL. To simulate Flexion, extension, lateral bending, axial rotation, 1.5 Nm is applied to C1 while the bottom nodes of C2 are fixed. Then Range of Motion (ROM) is compared with the unstable model(without ligaments). All the fixation techniques showed more than 97 percent reduction in the Range of Motion. The von-mises stresses developed in the screw constructs are obtained. From the studies, it is observed that Transarticular technique is most stable in Lateral Bending, C1LM-C2 Translaminar is found most stable in Flexion/extension. The Von-Mises stresses developed minimum in Trasarticular technique in lateral bending and axial rotation, whereas stress developed in C2 pars construct minimum in Flexion/ Extension. On average, the TA technique is stable in all motions and also stresses in constructs are less in TA. Tarnsarticular technique is found to be the best fixation technique for Indian subjects among the 4 methods.

Keywords: biomechanics, cervical spine, finite element model, posterior fixation

Procedia PDF Downloads 143
7522 Concrete Compressive Strengths of Major Existing Buildings in Kuwait

Authors: Zafer Sakka, Husain Al-Khaiat

Abstract:

Due to social and economic considerations, owners all over the world desire to keep and use existing structures, including aging ones. However, these structures, especially those that are dear, need accurate condition assessment, and proper safety evaluation. More than half of the budget spent on construction activities in developed countries is related to the repair and maintenance of these reinforced concrete (R/C) structures. Also, periodical evaluation and assessment of relatively old concrete structures are vital and imperative. If the evaluation and assessment of structural components of a particular aging R/C structure reveal that repairs are essential for these components, these repairs should not be delayed. Delaying the repairs has the potential of losing serviceability of the whole structure and/or causing total failure and collapse of the structure. In addition, if repairs are delayed, the cost of maintenance will skyrocket as well. It can also be concluded from the above that the assessment of existing needs to receive more consideration and thought from the structural engineering societies and professionals. Ten major existing structures in Kuwait city that were constructed in the 1970s were assessed for structural reliability and integrity. Numerous concrete samples were extracted from the structural systems of the investigated buildings. This paper presents the results of the compressive strength tests that were conducted on the extracted cores. The results are compared for the buildings’ columns and beams elements and compared with the design strengths. The collected data were statistically analyzed. The average compressive strengths of the concrete cores that were extracted from the ten buildings had a large variation. The lowest average compressive strength for one of the buildings was 158 kg/cm². This building was deemed unsafe and economically unfeasible to be repaired; accordingly, it was demolished. The other buildings had an average compressive strengths fall in the range 215-317 kg/cm². Poor construction practices were the main cause for the strengths. Although most of the drawings and information for these buildings were lost during the invasion of Kuwait in 1990, however, information gathered indicated that the design strengths of the beams and columns for most of these buildings were in the range of 280-400 kg/cm². Following the study, measures were taken to rehabilitate the buildings for safety. The mean compressive strength for all cores taken from beams and columns of the ten buildings was 256.7 kg/cm². The values range was 139 to 394 kg/cm². For columns, the mean was 250.4 kg/cm², and the values ranged from 137 to 394 kg/cm². However, the mean compressive strength for the beams was higher than that of columns. It was 285.9 kg/cm², and the range was 181 to 383 kg/cm². In addition to the concrete cores that were extracted from the ten buildings, the 28-day compressive strengths of more than 24,660 concrete cubes were collected from a major ready-mixed concrete supplier in Kuwait. The data represented four different grades of ready-mix concrete (250, 300, 350, and 400 kg/cm²) manufactured between the year 2003 and 2018. The average concrete compressive strength for the different concrete grades (250, 300, 350 and 400 kg/cm²) was found to be 318, 382, 453 and 504 kg/cm², respectively, and the coefficients of variations were found to be 0.138, 0.140, 0.157 and 0.131, respectively.

Keywords: concrete compressive strength, concrete structures, existing building, statistical analysis.

Procedia PDF Downloads 116
7521 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks

Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia

Abstract:

PH, temperature, and time of extraction of each stage, agitation speed, and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.

Keywords: zinc extraction, efficiency, neural networks, operating condition

Procedia PDF Downloads 545
7520 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 54
7519 Predictive Analytics for Theory Building

Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim

Abstract:

Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.

Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building

Procedia PDF Downloads 276
7518 Mapping of Urban Micro-Climate in Lyon (France) by Integrating Complementary Predictors at Different Scales into Multiple Linear Regression Models

Authors: Lucille Alonso, Florent Renard

Abstract:

The characterizations of urban heat island (UHI) and their interactions with climate change and urban climates are the main research and public health issue, due to the increasing urbanization of the population. These solutions require a better knowledge of the UHI and micro-climate in urban areas, by combining measurements and modelling. This study is part of this topic by evaluating microclimatic conditions in dense urban areas in the Lyon Metropolitan Area (France) using a combination of data traditionally used such as topography, but also from LiDAR (Light Detection And Ranging) data, Landsat 8 satellite observation and Sentinel and ground measurements by bike. These bicycle-dependent weather data collections are used to build the database of the variable to be modelled, the air temperature, over Lyon’s hyper-center. This study aims to model the air temperature, measured during 6 mobile campaigns in Lyon in clear weather, using multiple linear regressions based on 33 explanatory variables. They are of various categories such as meteorological parameters from remote sensing, topographic variables, vegetation indices, the presence of water, humidity, bare soil, buildings, radiation, urban morphology or proximity and density to various land uses (water surfaces, vegetation, bare soil, etc.). The acquisition sources are multiple and come from the Landsat 8 and Sentinel satellites, LiDAR points, and cartographic products downloaded from an open data platform in Greater Lyon. Regarding the presence of low, medium, and high vegetation, the presence of buildings and ground, several buffers close to these factors were tested (5, 10, 20, 25, 50, 100, 200 and 500m). The buffers with the best linear correlations with air temperature for ground are 5m around the measurement points, for low and medium vegetation, and for building 50m and for high vegetation is 100m. The explanatory model of the dependent variable is obtained by multiple linear regression of the remaining explanatory variables (Pearson correlation matrix with a |r| < 0.7 and VIF with < 5) by integrating a stepwise sorting algorithm. Moreover, holdout cross-validation is performed, due to its ability to detect over-fitting of multiple regression, although multiple regression provides internal validation and randomization (80% training, 20% testing). Multiple linear regression explained, on average, 72% of the variance for the study days, with an average RMSE of only 0.20°C. The impact on the model of surface temperature in the estimation of air temperature is the most important variable. Other variables are recurrent such as distance to subway stations, distance to water areas, NDVI, digital elevation model, sky view factor, average vegetation density, or building density. Changing urban morphology influences the city's thermal patterns. The thermal atmosphere in dense urban areas can only be analysed on a microscale to be able to consider the local impact of trees, streets, and buildings. There is currently no network of fixed weather stations sufficiently deployed in central Lyon and most major urban areas. Therefore, it is necessary to use mobile measurements, followed by modelling to characterize the city's multiple thermal environments.

Keywords: air temperature, LIDAR, multiple linear regression, surface temperature, urban heat island

Procedia PDF Downloads 137
7517 Gaze Behaviour of Individuals with and without Intellectual Disability for Nonaccidental and Metric Shape Properties

Authors: S. Haider, B. Bhushan

Abstract:

Eye Gaze behaviour of individuals with and without intellectual disability are investigated in an eye tracking study in terms of sensitivity to Nonaccidental (NAPs) and Metric (MPs) shape properties. Total fixation time is used as an indirect measure of attention allocation. Studies have found Mean reaction times for non accidental properties (NAPs) to be shorter than for metric (MPs) when the MP and NAP differences were equalized. METHODS: Twenty-five individuals with intellectual disability (mild and moderate level of Mental Retardation) and twenty-seven normal individuals were compared on mean total fixation duration, accuracy level and mean reaction time for mild NAPs, extreme NAPs and metric properties of images. 2D images of cylinders were adapted and made into forced choice match-to-sample tasks. Tobii TX300 Eye Tracker was used to record total fixation duration and data obtained from the Areas of Interest (AOI). Variable trial duration (total reaction time of each participant) and fixed trail duration (data taken at each second from one to fifteen seconds) data were used for analyses. Both groups did not differ in terms of fixation times (fixed as well as variable) across any of the three image manipulations but differed in terms of reaction time and accuracy. Normal individuals had longer reaction time compared to individuals with intellectual disability across all types of images. Both the groups differed significantly on accuracy measure across all image types. Normal individuals performed better across all three types of images. Mild NAPs vs. Metric differences: There was significant difference between mild NAPs and metric properties of images in terms of reaction times. Mild NAPs images had significantly longer reaction time compared to metric for normal individuals but this difference was not found for individuals with intellectual disability. Mild NAPs images had significantly better accuracy level compared to metric for both the groups. In conclusion, type of image manipulations did not result in differences in attention allocation for individuals with and without intellectual disability. Mild Nonaccidental properties facilitate better accuracy level compared to metric in both the groups but this advantage is seen only for normal group in terms of mean reaction time.

Keywords: eye gaze fixations, eye movements, intellectual disability, stimulus properties

Procedia PDF Downloads 553
7516 The Applicability of Western Environmental Criminology Theories to the Arabic Context

Authors: Nawaf Alotaibi, Andy Evans, Alison Heppenstall, Nick Malleson

Abstract:

Throughout the last two decades, motor vehicle theft (MVT) has accounted for the largest proportion of property crime incidents in Saudi Arabia (SA). However, to date, few studies have investigated SA’s MVT problem. Those that have are primarily focused on the characteristics of car thieves, and most have overlooked any spatial-temporal distribution of MVT incidents and the characteristics of victims. This paper represents the first step in understanding this problem by reviewing the existing MVT studies contextualised within the theoretical frameworks developed in environmental criminology theories – originating in the West – and exploring to what extent they are relevant to the SA context. To achieve this, the paper has identified a range of key features in SA that are different from typical Western contexts, that could limit the appropriateness and capability of applying existing environmental criminology theories. Furthermore, despite these Western studies reviewed so far having introduced a number of explanatory variables for MVT rates, a range of significant elements are apparently absent in the current literature and this requires further analysis. For example, almost no attempts have been made to quantify the associations between the locations of vehicle theft, recovery of stolen vehicles, joyriding and traffic volume.

Keywords: environmental criminology theories, motor vehicle theft, Saudi Arabia, spatial analysis

Procedia PDF Downloads 298
7515 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 39
7514 The Effects of Cultural Distance and Institutions on Foreign Direct Investment Choices: Evidence from Turkey and China

Authors: Nihal Kartaltepe Behram, Göksel Ataman, Dila Okçu

Abstract:

With the development of foreign direct investments, the social, cultural, political and economic interactions between countries and institutions have become visible and they have become determining factors for the strategic structuring and market goals. In this context the purpose of this study is to investigate the effects of cultural distance and institutions on foreign direct investment choices in terms of location and investment model. For international establishments, the concept of culture, as well as the concept of cultural distance, is taken specifically into consideration, especially in the selection of methods for entering the market. In the researches and empirical studies conducted, a direct relationship between cultural distance and foreign direct investments is set and institutions and effective variable factors are examined at the level of defining the investment types. When the detailed calculation strategies and empirical researches and studies are taken into consideration, the most common methods for determining the direct investment model, considering the cultural distances, are full-ownership enterprises and joint ventures. Also, when all of the factors affecting the investments are taken into consideration, it was seen that the effect of institutions such as Government Intervention, Intellectual Property Rights, Corruption and Contract Enforcements is very important. Furthermore agglomeration is more intense and effective on the investment, compared to other factors. China has been selected as the target country, due to its effectiveness in world economy and its contributions to developing countries, which has commercial relationships with. Qualitative research methods are used for this study conducted, to measure the effects of determinative variable factors in the hypotheses of study, on the direct foreign investors and to evaluate the findings. In this study in-depth interview is used as a data collection method and the data analysis is made through descriptive analysis. Foreign Direct Investments are so reactive to institutions and cultural distance is identified by all interviews and analysis. On the other hand, agglomeration is the most strong determiner factor on foreign direct investors in Chinese Market. The reason of this factors, which comprise the sectorial aggregate, are not the strongest factors as agglomeration that the most important finding. We expect that this study became a beneficial guideline for developed and developing countries and local and national institutions’ strategic plans.

Keywords: China, cultural distance, Foreign Direct Investments, institutions

Procedia PDF Downloads 418
7513 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models

Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble

Abstract:

Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.

Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate

Procedia PDF Downloads 215
7512 Levels of Selected Heavy Metals in Varieties of Vegetable oils Consumed in Kingdom of Saudi Arabia and Health Risk Assessment of Local Population

Authors: Muhammad Waqar Ashraf

Abstract:

Selected heavy metals, namely Cu, Zn, Fe, Mn, Cd, Pb, and As, in seven popular varieties of edible vegetable oils collected from Saudi Arabia, were determined by graphite furnace atomic absorption spectrometry (GF-AAS) using microwave digestion. The accuracy of procedure was confirmed by certified reference materials (NIST 1577b). The concentrations for copper, zinc, iron, manganese, lead and arsenic were observed in the range of 0.035 - 0.286, 0.955 - 3.10, 17.3 - 57.8, 0.178 - 0.586, 0.011 - 0.017 and 0.011 - 0.018 µg/g, respectively. Cadmium was found to be in the range of 2.36 - 6.34 ng/g. The results are compared internationally and with standards laid down by world health agencies. A risk assessment study has been carried out to assess exposure to these metals via consumption of vegetable oils. A comparison has been made with safety intake levels for these heavy metals recommended by Institute of Medicine of the National Academies (IOM), US Environmental Protection Agency (US EPA) and Joint FAO/WHO Expert Committee on Food Additives (JECFA). The results indicated that the dietary intakes of the selected heavy metals from daily consumption of 25 g of edible vegetable oils for a 70 kg individual should pose no significant health risk to local population.

Keywords: vegetable oils, heavy metals, contamination, health risk assessment

Procedia PDF Downloads 451
7511 Battery State of Charge Management Algorithm for Photovoltaic Ramp Rate Control

Authors: Nam Kyu Kim, Hee Jun Cha, Jae Jin Seo, Dong Jun Won

Abstract:

Output power of a photovoltaic (PV) generator depends on incident solar irradiance. If the clouds pass or the climate condition is bad, the PV output fluctuates frequently. When PV generator is connected to the grid, these fluctuations adversely affect power quality. Thus, ramp rate control with battery energy storage system (BESS) is needed to reduce PV output fluctuations. At the same time, for effective BESS operation and sizing the optimal BESS capacity, managing state of charge (SOC) is the most important part. In addition, managing SOC helps to avoid violating the SOC operating range of BESS when performing renewable integration (RI) continuously. As PV and BESS increase, the SOC management of BESS will become more important in the future. This paper presents the SOC management algorithm which helps to operate effectively BESS, and has focused on method to manage SOC while reducing PV output fluctuations. A simulation model is developed in PSCAD/EMTDC software. The simulation results show that the SOC is maintained within the operating range by adjusting the output distribution according to the SOC of the BESS.

Keywords: battery energy storage system, ramp rate control, renewable integration, SOC management

Procedia PDF Downloads 180
7510 Image Features Comparison-Based Position Estimation Method Using a Camera Sensor

Authors: Jinseon Song, Yongwan Park

Abstract:

In this paper, propose method that can user’s position that based on database is built from single camera. Previous positioning calculate distance by arrival-time of signal like GPS (Global Positioning System), RF(Radio Frequency). However, these previous method have weakness because these have large error range according to signal interference. Method for solution estimate position by camera sensor. But, signal camera is difficult to obtain relative position data and stereo camera is difficult to provide real-time position data because of a lot of image data, too. First of all, in this research we build image database at space that able to provide positioning service with single camera. Next, we judge similarity through image matching of database image and transmission image from user. Finally, we decide position of user through position of most similar database image. For verification of propose method, we experiment at real-environment like indoor and outdoor. Propose method is wide positioning range and this method can verify not only position of user but also direction.

Keywords: positioning, distance, camera, features, SURF(Speed-Up Robust Features), database, estimation

Procedia PDF Downloads 349
7509 Electrical and Piezoelectric Properties of Vanadium-Modified Lead-Free (K₀.₅Na₀.₅)NbO₃ Ceramics

Authors: Radhapiyari Laishram, Chongtham Jiten, K. Chandramani Singh

Abstract:

During the last decade, there has been a significant growth in developing lead-free piezoelectric ceramics which have the potential to replace the currently dominant but highly superior lead-based piezoelectric materials such as PZT. Among the lead-free piezoelectrics, (K0.5Na0.5)NbO3 - based piezoceramics are promising candidates due to their superior piezoelectric properties and high Curie temperatures. In this work, (K0.5Na0.5)(Nb1-xVx)O3 powders with x varying the range 0 to 0.05 were synthesized from the raw materials K2CO3, Na2CO3, Nb2O5, and V2O5. These powders were ball milled with high-energy Retsch PM 100 ball mill using isopropanol as the medium at the speed of 200rpm for a duration of 8h. The milled powders were sintered at 1080oC for 1h. The crystalline phase of all the calcined powders and corresponding ceramics prepared was found to be perovskite with orthorhombic symmetry. The ceramic with V5+ content of x=0.03 exhibits the maximum values in density of 4.292 g/cc, room temperature dielectric constant (εr) of 432, and piezoelectric charge constant (d33) of 93pC/N. For this sample, the dielectric tan δ loss remains relatively low over a wide temperature range. The temperature dependence of P-E hysteresis loops has been investigated for the ceramic composition with x = 0.03.

Keywords: dielectric properties, ferroelectric properties, perovskie, piezoelectric properties

Procedia PDF Downloads 335