Search results for: robust
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1478

Search results for: robust

428 Hypertension and Obesity: A Cross-National Comparison of BMI and Waist-Height Ratio

Authors: Adam M. Yates, Julie E. Byles

Abstract:

Hypertension has been identified as a prominent co-morbidity of obesity. To improve clinical intervention of hypertension, it is critical to identify metrics that most accurately reflect risk for increased morbidity. Two of the most relevant and accurate measures for increased risk of hypertension due to excess adipose tissue are Body Mass Index (BMI) and Waist-Height Ratio (WHtR). Previous research has examined these measures in cross-national and cross-ethnic studies, but has most often relied on secondary means such as meta-analysis to identify and evaluate the efficacy of individual body mass measures. In this study, we instead use cross-sectional analysis to assess the cross-ethnic discriminative power of BMI and WHtR to predict risk of hypertension. Using the WHO SAGE survey, which collected anthropometric and biometric data from respondents in six middle-income countries (China, Ghana, India, Mexico, Russia, South Africa), we implement logistic regression to examine the discriminative power of measured BMI and WHtR with a known population of hypertensive and non-hypertensive respondents. We control for gender and age to identify whether optimum cut-off points that are adequately sensitive as tests for risk of hypertension may be different between groups. We report results for OR, RR, and ROC curves for each of the six SAGE countries. As seen in existing literature, results demonstrate that both WHtR and BMI are significant predictors of hypertension (p < .01). For these six countries, we find that cut-off points for WHtR may be dependent upon gender, age and ethnicity. While an optimum omnibus cut-point for WHtR may be 0.55, results also suggest that the gender and age relationship with WHtR may warrant the development of individual cut-offs to optimize health outcomes. Trends through multiple countries show that the optimum cut-point for WHtR increases with age while the area under the curve (AUROC) decreases for both men and women. Comparison between BMI and WHtR indicate that BMI may remain more robust than WHtR. Implications for public health policy are discussed.

Keywords: hypertension, obesity, Waist-Height ratio, SAGE

Procedia PDF Downloads 481
427 Nano-Plasmonic Diagnostic Sensor Using Ultraflat Single-Crystalline Au Nanoplate and Cysteine-Tagged Protein G

Authors: Hwang Ahreum, Kang Taejoon, Kim Bongsoo

Abstract:

Nanosensors for high sensitive detection of diseases have been widely studied to improve the quality of life. Here, we suggest robust nano-plasmonic diagnostic sensor using cysteine tagged protein G (Cys3-protein G) and ultraflat, ultraclean and single-crystalline Au nanoplates. Protein G formed on an ultraflat Au surface provides ideal background for dense and uniform immobilization of antibodies. The Au is highly stable in diverse biochemical environment and can immobilize antibodies easily through Au-S bonding, having been widely used for various biosensing applications. Especially, atomically smooth single-crystalline Au nanomaterials synthesized using chemical vapor transport (CVT) method are very suitable to fabricate reproducible sensitive sensors. As the C-reactive protein (CRP) is a nonspecific biomarker of inflammation and infection, it can be used as a predictive or prognostic marker for various cardiovascular diseases. Cys3-protein G immobilized uniformly on the Au nanoplate enable CRP antibody (anti-CRP) to be ordered in a correct orientation, making their binding capacity be maximized for CRP detection. Immobilization condition for the Cys3-protein G and anti-CRP on the Au nanoplate is optimized visually by AFM analysis. Au nanoparticle - Au nanoplate (NPs-on-Au nanoplate) assembly fabricated from sandwich immunoassay for CRP can reduce zero-signal extremely caused by nonspecific bindings, providing a distinct surface-enhanced Raman scattering (SERS) enhancement still in 10-18 M of CRP concentration. Moreover, the NP-on-Au nanoplate sensor shows an excellent selectivity against non-target proteins with high concentration. In addition, comparing with control experiments employing a Au film fabricated by e-beam assisted deposition and linker molecule, we validate clearly contribution of the Au nanoplate for the attomolar sensitive detection of CRP. We expect that the devised platform employing the complex of single-crystalline Au nanoplates and Cys3-protein G can be applied for detection of many other cancer biomarkers.

Keywords: Au nanoplate, biomarker, diagnostic sensor, protein G, SERS

Procedia PDF Downloads 259
426 YOLO-Based Object Detection for the Automatic Classification of Intestinal Organoids

Authors: Luana Conte, Giorgio De Nunzio, Giuseppe Raso, Donato Cascio

Abstract:

The intestinal epithelium serves as a pivotal model for studying stem cell biology and diseases such as colorectal cancer. Intestinal epithelial organoids, which replicate many in vivo features of the intestinal epithelium, are increasingly used as research models. However, manual classification of organoids is labor-intensive and prone to subjectivity, limiting scalability. In this study, we developed an automated object-detection algorithm to classify intestinal organoids in transmitted-light microscopy images. Our approach utilizes the YOLOv10 medium model (YOLO10m), a state-of-the-art object-detection algorithm, to predict and classify objects within labeled bounding boxes. The model was fine-tuned on a publicly available dataset containing 840 manually annotated images with 23,066 total annotations, averaging 28.2 annotations per image (median: 21; range: 1–137). It was trained to identify four categories: cysts, early organoids, late organoids, and spheroids, using a 90:10 train-validation split over 150 epochs. Model performance was assessed using mean average precision (mAP), precision, and recall metrics. The mAP, a standard metric ranging from 0 to 1 (with 1 indicating perfect agreement with manual labeling), was calculated at a 50% overlap threshold (mAP=0.5). Optimal performance was achieved at epoch 80, with an mAP of 0.85, precision of 0.78, and recall of 0.80 on the validation dataset. Classspecific mAP values were highest for cysts (0.87), followed by late organoids (0.83), early organoids (0.76), and spheroids (0.68). Additionally, the model demonstrated the ability to measure organoid sizes and classify them with accuracy comparable to expert scientists, while operating significantly faster. This automated pipeline represents a robust tool for large-scale, high-throughput analysis of intestinal organoids, paving the way for more efficient research in organoid biology and related fields.

Keywords: intestinal organoids, object detection, YOLOv10, transmitted-light microscopy

Procedia PDF Downloads 10
425 Clinical and Microbiologic Efficacy and Safety of Imipenem Cilastatin Relebactam in Complicated Infections: A Meta-analysis

Authors: Syeda Sahra, Abdullah Jahangir, Rachelle Hamadi, Ahmad Jahangir, Allison Glaser

Abstract:

Background: Antimicrobial resistance is on the rise. The use of redundant and inappropriate antibiotics is contributing to recurrent infections and resistance. Newer antibiotics with more robust coverage for gram-negative bacteria are in great demand for complicated urinary tract infections (cUTIs), complicated intra-abdominal infections (cIAIs), hospital-acquired bacterial pneumonia (H.A.B.P.), and ventilator-associated bacterial pneumonia (V.A.B.P.). Objective: We performed this meta-analysis to evaluate the efficacy and safety profile of a new antibiotic, Imipenem/cilastatin/relebactam, compared to other broad-spectrum antibiotics for complicated infections. Search Strategy: We conducted a systemic review search on PubMed, Embase, and Central Cochrane Registry. Selection Criteria: We included randomized clinical trials (R.C.T.s) with the standard of care as comparator arm with Imipenem/cilastatin/relebactam as intervention arm. Analysis: For continuous variables, the mean difference was used. For discrete variables, we used the odds ratio. For effect sizes, we used a confidence interval of 95%. A p-value of less than 0.05 was used for statistical significance. Analysis was done using a random-effects model irrespective of heterogeneity. Heterogeneity was evaluated using the I2 statistic. Results: The authors observed similar efficacy at clinical and microbiologic response levels on early follow-up and late follow-up compared to the established standard of care. The incidence of drug-related adverse events, serious adverse events, and drug discontinuation due to adverse events were comparable across both groups. Conclusion: Imipenem/cilastatin/relebactam has a non-inferior safety and efficacy profile compared to peer antibiotics to treat severe bacterial infections (cUTIs, cIAIs, H.A.B.P., V.A.B.P.).

Keywords: bacterial pneumonia, complicated intra-abdominal infections, complicated urinary tract infection, Imipenem, cilastatin, relebactam

Procedia PDF Downloads 208
424 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure

Authors: Esra Zengin, Sinan Akkar

Abstract:

Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.

Keywords: ground motion selection, scaling, uncertainty, fragility curve

Procedia PDF Downloads 588
423 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 133
422 Seismic Refraction and Resistivity Survey of Ini Local Government Area, South-South Nigeria: Assessing Structural Setting and Groundwater Potential

Authors: Mfoniso Udofia Aka

Abstract:

A seismic refraction and resistivity survey was conducted in Ini Local Government Area, South-South Nigeria, to evaluate the structural setting and groundwater potential. The study involved 20 Vertical Electrical Soundings (VES) using an ABEM Terrameter with a Schlumberger array and a 400-meter electrode spread, analyzed with WinResist software. Concurrently, 20 seismic refraction surveys were performed with a Geometric ES 3000 12-Channel seismograph, employing a 60-meter slant interval. The survey identified three distinct geological layers: top, middle, and lower. Seismic velocities (Vp) ranged from 209 to 500 m/s in the top layer, 221 to 1210 m/s in the middle layer, and 510 to 1700 m/s in the lower layer. Secondary seismic velocities (Vs) ranged from 170 to 410 m/s in the topsoil, 205 to 880 m/s in the middle layer, and 480 to 1120 m/s in the lower layer. Poisson’s ratios varied from -0.029 to -7.709 for the top layer, -0.027 to -6.963 for the middle layer, and -0.144 to -6.324 for the lower layer. The depths of these layers were approximately 1.0 to 3.0 meters for the top layer, 4.0 to 12.0 meters for the middle layer, and 8.0 to 14.5 meters for the lower layer. The topsoil consists of a surficial layer overlaid by reddish/clayey laterite and fine to medium coarse-grained sandy material, identified as the auriferous zone. Resistivity values were 1300 to 3215 Ωm for the topsoil, 720 to 1600 Ωm for the laterite, and 100 to 1350 Ωm for the sandy zone. Aquifer thickness and depth varied, with shallow aquifers ranging from 4.5 to 15.2 meters, medium-depth aquifers from 15.5 to 70.0 meters, and deep aquifers from 4.0 to 70.0 meters. Locations 1, 15, and 13 exhibited favorable water potential with shallow formations, while locations 5, 11, 9, and 14 showed less potential due to the lack of fractured or weathered zones. The auriferous sandy zone indicated significant potential for industrial development. Future surveys should consider using a more robust energy source to enhance data acquisition and accuracy.

Keywords: hydrogeological, aquifer, seismic section geo-electric section, stratigraphy

Procedia PDF Downloads 38
421 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification

Procedia PDF Downloads 271
420 Advanced Study on Hydrogen Evolution Reaction based on Nickel sulfide Catalyst

Authors: Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Assim Alajali, Godlaveeti Sreenivasa Kumar, Aboubakr M. Abdullah, Bijandra Kumar, Mithra Geetha

Abstract:

A potential pathway for efficient hydrogen production from water splitting electrolysis involves catalysis or electrocatalysis, which plays a crucial role in energy conversion and storage. Hydrogen generated by electrocatalytic water splitting requires active, stable, and low-cost catalysts or electrocatalysts to be developed for practical applications. In this study, we evaluated combination of 2D materials of NiS nanoparticle catalysts for hydrogen evolution reactions. The photocatalytic H₂ production rate of this nanoparticle is high and exceeds that obtained on components alone. Nanoparticles serve as electron collectors and transporters, which explains this improvement. Moreover, a current density was recorded at reduced working potential by 0.393 mA. Calculations based on density functional theory indicate that the nanoparticle's hydrogen evolution reaction catalytic activity is caused by strong interaction between its components at the interface. The samples were analyzed by XPS and morphologically by FESEM for the best outcome, depending on their structural shapes. Use XPS and morphologically by FESEM for the best results. This nanocomposite demonstrated higher electro-catalytic activity, and a low tafel slope of 60 mV/dec. Additionally, despite 1000 cycles into a durability test, the electrocatalyst still displays excellent stability with minimal current loss. The produced catalyst has shown considerable potential for use in the evolution of hydrogen due to its robust synthesis. According to these findings, the combination of 2D materials of nickel sulfide sample functions as good electocatalyst for H₂ evolution. Additionally, the research being done in this fascinating field will surely push nickel sulfide-based technology closer to becoming an industrial reality and revolutionize existing energy issues in a sustainable and clean manner.

Keywords: electrochemical hydrogenation, nickel sulfide, electrocatalysts, energy conversion, catalyst

Procedia PDF Downloads 130
419 Using Multiomic Plasma Profiling From Liquid Biopsies to Identify Potential Signatures for Disease Diagnostics in Late-Stage Non-small Cell Lung Cancer (NSCLC) in Trinidad and Tobago

Authors: Nicole Ramlachan, Samuel Mark West

Abstract:

Lung cancer is the leading cause of cancer-associated deaths in North America, with the vast majority being non-small cell lung cancer (NSCLC), with a five-year survival rate of only 24%. Non-invasive discovery of biomarkers associated with early-diagnosis of NSCLC can enable precision oncology efforts using liquid biopsy-based multiomics profiling of plasma. Although tissue biopsies are currently the gold standard for tumor profiling, this method presents many limitations since these are invasive, risky, and sometimes hard to obtain as well as only giving a limited tumor profile. Blood-based tests provides a less-invasive, more robust approach to interrogate both tumor- and non-tumor-derived signals. We intend to examine 30 stage III-IV NSCLC patients pre-surgery and collect plasma samples.Cell-free DNA (cfDNA) will be extracted from plasma, and next-generation sequencing (NGS) performed. Through the analysis of tumor-specific alterations, including single nucleotide variants (SNVs), insertions, deletions, copy number variations (CNVs), and methylation alterations, we intend to identify tumor-derived DNA—ctDNA among the total pool of cfDNA. This would generate data to be used as an accurate form of cancer genotyping for diagnostic purposes. Using liquid biopsies offer opportunities to improve the surveillance of cancer patients during treatment and would supplement current diagnosis and tumor profiling strategies previously not readily available in Trinidad and Tobago. It would be useful and advantageous to use this in diagnosis and tumour profiling as well as to monitor cancer patients, providing early information regarding disease evolution and treatment efficacy, and reorient treatment strategies in, timethereby improving clinical oncology outcomes.

Keywords: genomics, multiomics, clinical genetics, genotyping, oncology, diagnostics

Procedia PDF Downloads 165
418 Adoption of Electronic Logistics Management Information System for Life-Saving Maternal, Neonatal and Child Health Medicines: A Bangladesh Perspective

Authors: Mohammad Julhas Sujan, Md. Ferdous Alam

Abstract:

Maternal, neonatal, and child health (MNCH) holds one of the prime focuses in Bangladesh’s national healthcare system. To save the lives of mothers and children, knowing the stock of MNCH medicines in different healthcare facilities and when to replenish them are essential. A robust information system not only facilitates efficient management of the essential MNCH medicines but also helps effective allocation of scarce resources. In Bangladesh, Supply chain management of the 25-essential life-saving medicines are currently tracked and monitored via an electronic logistics management information system (eLMIS). Our aim was to conduct a cross-sectional study with a year (2020) worth of data from 24 districts of Bangladesh to evaluate how eLMIS is helping the Government and other stakeholders in efficient supply chain management. Data were collected from 4711 healthcare facilities ranging from primary to secondary levels within a district. About 90% (4143) are community clinics which are considered primary health care facilities in Bangladesh. After eLMIS implementation, the average reporting rate across the districts has been increased (> 97%). The month of stock (MOS) of zinc is an average 6 months compared to Inj. Magnesium Sulphate which will take 2.5 years to consume according to the current average monthly consumption (AMC). Due to first approaching expiry, Tab. Misoprostol, 7.1% Chlorhexidine and Inj. Oxytocin may become unusable. Moreover, Inj. Oxytocin is temperature sensitive and may reduce its efficacy if it is stocked for a longer period. In contrast, Zinc should be sufficiently stocked to prevent sporadic stockouts. To understand how data are collected, transmitted, processed, and aggregated for MNCH medicines in a faster and timely manner, an electronic logistics management information system (eLMIS) is necessary. We recommend the use of such a system in developing countries like Bangladesh for efficient supply chain management of essential MNCH medicines.

Keywords: adaption, eLMIS, MNCH, live-saving medicines

Procedia PDF Downloads 164
417 Surgical Team Perceptions of the Surgical Safety Checklist in a Tertiary Hospital in Jordan: A Descriptive Qualitative Study

Authors: Rania Albsoul, Muhammad Ahmed Alshyyab, Baraa Ayed Al Odat, Nermeen Borhan Al Dwekat, Batool Emad Al-masri, Fatima Abdulsattar Alkubaisi, Salsabil Awni Flefil, Majd Hussein Al-Khawaldeh, Ragad Ayman Sa’ed, Maha Waleed Abu Ajamieh, Gerard Fitzgerald

Abstract:

Purpose: The purpose of this paper is to explore the perceptions of operating room staff towards the use of the World Health Organization Surgical Safety Checklist in a tertiary hospital in Jordan. Design/methodology/approach: This was a qualitative descriptive study. Semi-structured interviews were conducted with a purposeful sample of 21 healthcare staff employed in the operating room (nurses, residents, surgeons, and anaesthesiologists). The interviews were conducted in the period from October to December 2021. Thematic analysis was used to analyse the data. Findings: Three main themes emerged from data analysis, namely compliance with the surgical safety checklist, the impact of the surgical safety checklist, and barriers and facilitators to the use of the surgical safety checklist. The use of the checklist was seen as enabling staff to communicate effectively and thus accomplish patient safety and positive outcomes. The perceived barriers to compliance included excessive workload, congestion, and lack of training and awareness. Enhanced training and education were thought to improve the utilization of the surgical safety checklist and help enhance awareness about its importance. Originality/value: While steps to utilize the surgical safety checklist by the operation room personnel may seem simple, the quality of its administration is not necessarily robust. There are several challenges to consistent, complete, and effective administration of the surgical safety checklist by the surgical team members. Healthcare managers must employ interventions to eliminate barriers to and offer facilitators of adherence to the application of the surgical safety checklist, therefore promoting quality healthcare and patient safety.

Keywords: patient safety, surgical safety checklist, compliance, utility, operating room, quality healthcare, communication, teamwork

Procedia PDF Downloads 115
416 Contrasted Mean and Median Models in Egyptian Stock Markets

Authors: Mai A. Ibrahim, Mohammed El-Beltagy, Motaz Khorshid

Abstract:

Emerging Markets return distributions have shown significance departure from normality were they are characterized by fatter tails relative to the normal distribution and exhibit levels of skewness and kurtosis that constitute a significant departure from normality. Therefore, the classical Markowitz Mean-Variance is not applicable for emerging markets since it assumes normally-distributed returns (with zero skewness and kurtosis) and a quadratic utility function. Moreover, the Markowitz mean-variance analysis can be used in cases of moderate non-normality and it still provides a good approximation of the expected utility, but it may be ineffective under large departure from normality. Higher moments models and median models have been suggested in the literature for asset allocation in this case. Higher moments models have been introduced to account for the insufficiency of the description of a portfolio by only its first two moments while the median model has been introduced as a robust statistic which is less affected by outliers than the mean. Tail risk measures such as Value-at Risk (VaR) and Conditional Value-at-Risk (CVaR) have been introduced instead of Variance to capture the effect of risk. In this research, higher moment models including the Mean-Variance-Skewness (MVS) and Mean-Variance-Skewness-Kurtosis (MVSK) are formulated as single-objective non-linear programming problems (NLP) and median models including the Median-Value at Risk (MedVaR) and Median-Mean Absolute Deviation (MedMAD) are formulated as a single-objective mixed-integer linear programming (MILP) problems. The higher moment models and median models are compared to some benchmark portfolios and tested on real financial data in the Egyptian main Index EGX30. The results show that all the median models outperform the higher moment models were they provide higher final wealth for the investor over the entire period of study. In addition, the results have confirmed the inapplicability of the classical Markowitz Mean-Variance to the Egyptian stock market as it resulted in very low realized profits.

Keywords: Egyptian stock exchange, emerging markets, higher moment models, median models, mixed-integer linear programming, non-linear programming

Procedia PDF Downloads 317
415 Case Study: Institutionalization of CSR Activities of MRGC through an NGO (OSDI)

Authors: Aasim Siddiqui

Abstract:

In a country where 45.6 per cent of the total population lives below the poverty line, according to the Human Development Report 2014 by UNDP, an increasing number of private companies are now dedicating their resources to remedy this situation of chronic poverty. Most corporations in Pakistan now have a separate and dedicated department for Corporate Social Responsibility (CSR), albeit with varying goals and hence different strategies for achieving those goals. Similarly, Marine Group of Companies (MRGC) also has a robust CSR policy which the group implements through a Non-Government Organization (NGO) called Organization for Social Development Initiatives (OSDI). This organization, which operates under the ambit of MRGC’s CSR division, has a concentrated focus on helping the poorest communities in the rural areas of Pakistan to break out of intergenerational poverty. This paper maps the theoretical strategies as well as practical activities undertaken by OSDI for poverty alleviation via rural development in Pakistan. To obtain in-depth information of demographics, livelihood and socio-economic indicators in OSDI’s focused districts; a combination of quantitative and qualitative research methodologies was used during the course of this research. The paper highlights and explains OSDI’s unique three-pronged approach which aims at reducing poverty through income generation via the livelihood assistance program and through the provision of access to the most basic services (including health and education) via the community development and food security programs. Modeled on the concept of capacity building, OSDI’s modus operandi is centered on disbursing timely microcredit facilities to farmers who can benefit from these funds by investing in productive assets to foster financial capability for the future. With a focus on increasing the income of poor farmers, OSDI’s approach is to integrate all the socio-economic facets: education, health and sanitation and food security, to induce a sustained positive impact on their living standards.

Keywords: CSR, poverty, rural, sustainability

Procedia PDF Downloads 251
414 Mathematics Bridging Theory and Applications for a Data-Driven World

Authors: Zahid Ullah, Atlas Khan

Abstract:

In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.

Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models

Procedia PDF Downloads 80
413 Enhancing Healthcare Delivery in Low-Income Markets: An Exploration of Wireless Sensor Network Applications

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Healthcare delivery in low-income markets is fraught with numerous challenges, including limited access to essential medical resources, inadequate healthcare infrastructure, and a significant shortage of trained healthcare professionals. These constraints lead to suboptimal health outcomes and a higher incidence of preventable diseases. This paper explores the application of Wireless Sensor Networks (WSNs) as a transformative solution to enhance healthcare delivery in these underserved regions. WSNs, comprising spatially distributed sensor nodes that collect and transmit health-related data, present opportunities to address critical healthcare needs. Leveraging WSN technology facilitates real-time health monitoring and remote diagnostics, enabling continuous patient observation and early detection of medical issues, especially in areas with limited healthcare facilities and professionals. The implementation of WSNs can enhance the overall efficiency of healthcare systems by enabling timely interventions, reducing the strain on healthcare facilities, and optimizing resource allocation. This paper highlights the potential benefits of WSNs in low-income markets, such as cost-effectiveness, increased accessibility, and data-driven decision-making. However, deploying WSNs involves significant challenges, including technical barriers like limited internet connectivity and power supply, alongside concerns about data privacy and security. Moreover, robust infrastructure and adequate training for local healthcare providers are essential for successful implementation. It further examines future directions for WSNs, emphasizing innovation, scalable solutions, and public-private partnerships. By addressing these challenges and harnessing the potential of WSNs, it is possible to revolutionize healthcare delivery and improve health outcomes in low-income markets.

Keywords: wireless sensor networks (WSNs), healthcare delivery, low-Income markets, remote patient monitoring, health data security

Procedia PDF Downloads 41
412 Documenting the 15th Century Prints with RTI

Authors: Peter Fornaro, Lothar Schmitt

Abstract:

The Digital Humanities Lab and the Institute of Art History at the University of Basel are collaborating in the SNSF research project ‘Digital Materiality’. Its goal is to develop and enhance existing methods for the digital reproduction of cultural heritage objects in order to support art historical research. One part of the project focuses on the visualization of a small eye-catching group of early prints that are noteworthy for their subtle reliefs and glossy surfaces. Additionally, this group of objects – known as ‘paste prints’ – is characterized by its fragile state of preservation. Because of the brittle substances that were used for their production, most paste prints are heavily damaged and thus very hard to examine. These specific material properties make a photographic reproduction extremely difficult. To obtain better results we are working with Reflectance Transformation Imaging (RTI), a computational photographic method that is already used in archaeological and cultural heritage research. This technique allows documenting how three-dimensional surfaces respond to changing lighting situations. Our first results show that RTI can capture the material properties of paste prints and their current state of preservation more accurately than conventional photographs, although there are limitations with glossy surfaces because the mathematical models that are included in RTI are kept simple in order to keep the software robust and easy to use. To improve the method, we are currently developing tools for a more detailed analysis and simulation of the reflectance behavior. An enhanced analytical model for the representation and visualization of gloss will increase the significance of digital representations of cultural heritage objects. For collaborative efforts, we are working on a web-based viewer application for RTI images based on WebGL in order to make acquired data accessible to a broader international research community. At the ICDH Conference, we would like to present unpublished results of our work and discuss the implications of our concept for art history, computational photography and heritage science.

Keywords: art history, computational photography, paste prints, reflectance transformation imaging

Procedia PDF Downloads 277
411 The Effect of the COVID-19 Pandemic on Frailty, Sarcopenia, and Other Comorbidities in Liver Transplant Candidates: A Retrospective Review of an Extensive Frailty Database

Authors: Sohaib Raza, Parvez Mantry

Abstract:

Frailty is a multi-system impairment associated with stressors such as age, disease, and invasive surgical procedures. This multi-system impairment can lead to increased post-transplant mortality and functional decline. Additionally, the prevalence and/or severity of frailty increases when patient pre-habilitation is unsatisfactory or lacking. We conducted a retrospective study to examine whether the COVID-19 Pandemic, and subsequent lack of patient access to pre-habilitation and physical therapy resources, led to an increase in the prevalence and severity of frailty, sarcopenia, and other comorbidities including diabetes, hypertension, and COPD. Secondarily, we examined the correlation between patient survival rate and liver frailty index as well as muscle wasting/sarcopenia. Data were analyzed in order to correlate variables associated with these parameters. Three hundred sixty-nine liver transplant candidates at Methodist Dallas Medical Center were administered pre-transplant frailty assessments, which consisted of chair stands, grip strength, and position balance time. A frailty score less than 3.2 indicated a robust condition, a score from 3.3 to 4.4 indicated a pre-frail condition, and a score greater than 4.5 indicated a frail condition. Greater than 50 percent of patients were found to have muscle wasting in the COVID-19 period (March 13, 2020 to February 28, 2022), an increase of 16.5 percent from the pre-COVID period (April 1st, 2018 to March 12, 2020). Additionally, sarcopenia was associated with a two-fold increase in patient mortality rate. Furthermore, high liver frailty index scores were associated with increased patient mortality. However, there was no significant difference in liver frailty index or number of comorbidities between patients in the two cohorts. Conclusion: The COVID-19 Pandemic exacerbated sarcopenia-related muscle wasting in liver transplant candidates, and patient survival rate was directly correlated with liver frailty index score and the presence of sarcopenia.

Keywords: frailty, sarcopenia, covid-19, patient mortality, pre-habilitation, liver transplant candidates

Procedia PDF Downloads 124
410 Restorative Justice to the Victims of Terrorism in the Criminal Justice System of India

Authors: Sumanta Meher, Gaurav Shukla

Abstract:

The torments of the victims of terrorism have not only confined to loss of life and limp but also includes the physiological trauma to the innocent victims. The physical wounds may heal, but the trauma remains in the mind and heart of the victims and their loved ones; however, one should not deny that these terrorist activities affect to a major extent to their livelihood. To protect their human rights and restore the shattered lives of the victims of terrorism all the Nations beyond their differences have to show solidarity and frame a comprehensive restorative policy with an effective implementing mechanism. The General Assembly of United Nations, through its several resolutions, has appealed Nations to show solidarity and also committed to helping the Members State to frame the law and policy to support the victims of terrorism. To achieve the objectives of the resolutions adopted by the United Nations, the Indian legislators in 2008 amended the Code of Criminal Procedure, 1973 and incorporated Section 357A to provide financial assistance to the victims of terrorism. In India, the contemporary developments in the victims’ oriented studies have increased the dimension of the traditional criminal justice systems to protect the rights of the victims. In this regard, the paper has ascertained the Indian legal framework in respect to the restorative justice to the victims of terrorism and also addressed the question as to whether the statutory provisions and enforcement mechanisms are efficient enough to protect the human rights of the victims of terrorism. For that purpose, the paper has analyzed the International instruments and the reports with regard to the compensation to the victims of terrorist attacks, with that, the article also evaluates the initiatives of United Nations to help Members State to frame the law and policies to support the victims of terrorism. The study also made an attempt to critically analyze the legal provisions of compensation and rehabilitation of the victims of terrorist attacks in India and whether they are in alignment with the International standards. While concluding, the paper has made an endeavor for a robust legal framework towards the restorative justice for the victims of terrorism in India.

Keywords: victims of terrorism, restorative justice, human rights, criminal justice system of India

Procedia PDF Downloads 162
409 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 278
408 Geospatial Analysis for Predicting Sinkhole Susceptibility in Greene County, Missouri

Authors: Shishay Kidanu, Abdullah Alhaj

Abstract:

Sinkholes in the karst terrain of Greene County, Missouri, pose significant geohazards, imposing challenges on construction and infrastructure development, with potential threats to lives and property. To address these issues, understanding the influencing factors and modeling sinkhole susceptibility is crucial for effective mitigation through strategic changes in land use planning and practices. This study utilizes geographic information system (GIS) software to collect and process diverse data, including topographic, geologic, hydrogeologic, and anthropogenic information. Nine key sinkhole influencing factors, ranging from slope characteristics to proximity to geological structures, were carefully analyzed. The Frequency Ratio method establishes relationships between attribute classes of these factors and sinkhole events, deriving class weights to indicate their relative importance. Weighted integration of these factors is accomplished using the Analytic Hierarchy Process (AHP) and the Weighted Linear Combination (WLC) method in a GIS environment, resulting in a comprehensive sinkhole susceptibility index (SSI) model for the study area. Employing Jenk's natural break classifier method, the SSI values are categorized into five distinct sinkhole susceptibility zones: very low, low, moderate, high, and very high. Validation of the model, conducted through the Area Under Curve (AUC) and Sinkhole Density Index (SDI) methods, demonstrates a robust correlation with sinkhole inventory data. The prediction rate curve yields an AUC value of 74%, indicating a 74% validation accuracy. The SDI result further supports the success of the sinkhole susceptibility model. This model offers reliable predictions for the future distribution of sinkholes, providing valuable insights for planners and engineers in the formulation of development plans and land-use strategies. Its application extends to enhancing preparedness and minimizing the impact of sinkhole-related geohazards on both infrastructure and the community.

Keywords: sinkhole, GIS, analytical hierarchy process, frequency ratio, susceptibility, Missouri

Procedia PDF Downloads 76
407 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves

Authors: R. Meier, M. Pander

Abstract:

In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.

Keywords: lamb waves, industry 4.0, process control, elasticity, acoustoelasticity, microstructure

Procedia PDF Downloads 228
406 Interbrain Synchronization and Multilayer Hyper brain Networks when Playing Guitar in Quartet

Authors: Viktor Müller, Ulman Lindenberger

Abstract:

Neurophysiological evidence suggests that the physiological states of the system are characterized by specific network structures and network topology dynamics, demonstrating a robust interplay between network topology and function. It is also evident that interpersonal action coordination or social interaction (e.g., playing music in duets or groups) requires strong intra- and interbrain synchronization resulting in a specific hyper brain network activity across two or more brains to support such coordination or interaction. Such complex hyper brain networks can be described as multiplex or multilayer networks that have a specific multidimensional or multilayer network organization characteristic for superordinate systems and their constituents. The aim of the study was to describe multilayer hyper brain networks and synchronization patterns of guitarists playing guitar in a quartet by using electroencephalography (EEG) hyper scanning (simultaneous EEG recording from multiple brains) and following time-frequency decomposition and multilayer network construction, where within-frequency coupling (WFC) represents communication within different layers, and cross-frequency coupling (CFC) depicts communication between these layers. Results indicate that communication or coupling dynamics, both within and between the layers across the brains of the guitarists, play an essential role in action coordination and are particularly enhanced during periods of high demands on musical coordination. Moreover, multilayer hyper brain network topology and dynamical structure of guitar sounds showed specific guitar-guitar, brain-brain, and guitar-brain causal associations, indicating multilevel dynamics with upward and downward causation, contributing to the superordinate system dynamics and hyper brain functioning. It is concluded that the neuronal dynamics during interpersonal interaction are brain-wide and frequency-specific with the fine-tuned balance between WFC and CFC and can best be described in terms of multilayer multi-brain networks with specific network topology and connectivity strengths. Further sophisticated research is needed to deepen our understanding of these highly interesting and complex phenomena.

Keywords: EEG hyper scanning, intra- and interbrain coupling, multilayer hyper brain networks, social interaction, within- and cross-frequency coupling

Procedia PDF Downloads 77
405 The Role of Institutional Quality and Institutional Quality Distance on Trade: The Case of Agricultural Trade within the Southern African Development Community Region

Authors: Kgolagano Mpejane

Abstract:

The study applies a New Institutional Economics (NIE) analytical framework to trade in developing economies by assessing the impacts of institutional quality and institutional quality distance on agricultural trade using a panel data of 15 Southern African Development Community (SADC) countries from the years 1991-2010. The issue of institutions on agricultural trade has not been accorded the necessary attention in the literature, particularly in developing economies. Therefore, the paper empirically tests the gravity model of international trade by measuring the impact of political, economic and legal institutions on intra SADC agricultural trade. The gravity model is noted for its exploratory power and strong theoretical foundation. However, the model has statistical shortcomings in dealing with zero trade values and heteroscedasticity residuals leading to biased results. Therefore, this study employs a two stage Heckman selection model with a Probit equation to estimate the influence of institutions on agricultural trade. The selection stages include the inverse Mills ratio to account for the variable bias of the gravity model. The Heckman model accounts for zero trade values and is robust in the presence of heteroscedasticity. The empirical results of the study support the NIE theory premise that institutions matter in trade. The results demonstrate that institutions determine bilateral agricultural trade on different margins with political institutions having positive and significant influence on bilateral agricultural trade flows within the SADC region. Legal and economic institutions have significant and negative effects on SADC trade. Furthermore, the results of this study confirm that institutional quality distance influences agricultural trade. Legal and political institutional distance have a positive and significant influence on bilateral agricultural trade while the influence of economic, institutional quality is negative and insignificant. The results imply that nontrade barriers, in the form of institutional quality and institutional quality distance, are significant factors limiting intra SADC agricultural trade. Therefore, gains from intra SADC agricultural trade can be attained through the improvement of institutions within the region.

Keywords: agricultural trade, institutions, gravity model, SADC

Procedia PDF Downloads 154
404 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla

Abstract:

Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.

Keywords: fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time

Procedia PDF Downloads 180
403 Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity

Authors: Mohamed Abdalla, Ruixue Cheng, Jianyong Zhang

Abstract:

In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement.

Keywords: spatial sensitivity, electrostatic sensor, pneumatic conveying, Ansys Fluent software

Procedia PDF Downloads 369
402 Development of R³ UV Exposure for the UV Dose-Insensitive and Cost-Effective Fabrication of Biodegradable Polymer Microneedles

Authors: Sungmin Park, Gyungmok Nam, Seungpyo Woo, Young Choi, Sangheon Park, Sang-Hee Yoon

Abstract:

Puncturing human skin with microneedles is critically important for microneedle-mediate drug delivery. Despite of extensive efforts in the past decades, the scale-up fabrication of sharp-tipped and high-aspect-ratio microneedles, especially made of biodegradable polymers, is still a long way off. Here, we present a UV dose insensitive and cost-effective microfabrication method for the biodegradable polymer microneedles with sharp tips and long lengths which can pierce human skin with low insertion force. The biodegradable polymer microneedles are fabricated with the polymer solution casting where a poly(lactic-co-glycolic acid) (PLGA, 50:50) solution is coated onto a SU-8 mold prepared with a reverse, ramped, and rotational (R3) UV exposure. The R3 UV exposure is modified from the multidirectional UV exposure both to suppress UV reflection from the bottom surface without anti-reflection layers and to optimize solvent concentration in the SU-8 photoresist, therefore achieving robust (i.e., highly insensitive to UV dose) and cost-effective fabrication of biodegradable polymer microneedles. An optical model for describing the spatial distribution of UV irradiation dose of the R3 UV exposure is also developed to theoretically predict the microneedle geometry fabricated with the R3 UV exposure and also to demonstrate the insensitiveness of microneedle geometry to UV dose. In the experimental characterization, the microneedles fabricated with the R3 UV exposure are compared with those fabricated with a conventional method (i.e., multidirectional UV exposure). The R3 UV exposure-based microfabrication reduces the end-tip radius by a factor of 5.8 and the deviation from ideal aspect ratio by 74.8%, compared with conventional method-based microfabrication. The PLGA microneedles fabricated with the R3 UV exposure pierce full-thickness porcine skins successfully and are demonstrated to completely dissolve in PBS (phosphate-buffered saline). The findings of this study will lead to an explosive growth of the microneedle-mediated drug delivery market.

Keywords: R³ UV exposure, optical model, UV dose, reflection, solvent concentration, biodegradable polymer microneedle

Procedia PDF Downloads 170
401 Entrepreneurship Education Revised: Merging a Theory-Based and Action-Based Framework for Entrepreneurial Narratives' Impact as an Awareness-Raising Teaching Tool

Authors: Katharina Fellnhofer, Kaisu Puumalainen

Abstract:

Despite the current worldwide increasing interest in entrepreneurship education (EE), little attention has been paid to innovative web-based ways such as the narrative approach by telling individual stories of entrepreneurs via multimedia for demonstrating the impact on individuals towards entrepreneurship. In addition, this research discipline is faced with no consensus regarding its effective content of teaching materials and tools. Therefore, a qualitative hypothesis-generating research contribution is required to aim at drawing new insights from published works in the EE field of research to serve for future research related to multimedia entrepreneurial narratives. Based on this background, our effort will focus on finding support regarding following introductory statement: Multimedia success and failure stories of real entrepreneurs show potential to change perceptions towards entrepreneurship in a positive way. The proposed qualitative conceptual paper will introduce the underlying background for this research framework. Therefore, as a qualitative hypothesis-generating research contribution it aims at drawing new insights from published works in the EE field of research related to entrepreneurial narratives to serve for future research. With the means of the triangulation of multiple theories, we will utilize the foundation for multimedia-based entrepreneurial narratives applying a learning-through-multimedia-real-entrepreneurial-narratives pedagogical tool to facilitate entrepreneurship. Our effort will help to demystify how value-oriented entrepreneurs telling their stories multimedia can simultaneously enhance EE. Therefore, the paper will build new-fangled bridges between well-cited theoretical constructs to build a robust research framework. Overall, the intended contribution seeks to emphasize future research of currently under-researched issues in the EE sphere, which are considered to be essential not only to academia, as well as to business and society having future jobs-providing growth-oriented entrepreneurs in mind. The Authors would like to thank the Austrian Science Fund FWF: [J3740 – G27].

Keywords: entrepreneurship education, entrepreneurial attitudes and perceptions, entrepreneurial intention, entrepreneurial narratives

Procedia PDF Downloads 265
400 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction

Authors: Joy Cao, Min Zhou

Abstract:

Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.

Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.

Procedia PDF Downloads 93
399 Interprofessional School-Based Mental Health Services for Rural Adolescents in South Australia

Authors: Garreth Kestell, Lukah Dykes, Danielle Zerk, Kyla Trewartha, Rhianon Marshall, Elena Rudnik

Abstract:

Adolescent mental health is an international priority and the impact of innovative service models must be evaluated. Secondary school-based mental health services (SBMHS) involving private general practitioners and psychologists are a model of care being trialed in South Australia. Measures of depression, anxiety, and stress are routinely collected throughout psychotherapy sessions. This research set out to quantify the impact of psychotherapy for rural adolescents in a school setting and explore the importance of session frequency. Methods: Demographics, session date and DASS21 scores from students (n=65) seen in 2016 by three psychologists working at the SBMHS were recorded. Students were aged 13-18 years (M=15.43, SD= 1.24), mostly female (F=51, M=14), attended between 1 and 23 sessions with a median of 6 sessions (MAD 5.93) in one-year. The treating psychologist collected self-administered DASS21 scores. A mixed model analysis was used with age, sex, treating psychologist, months from first session, and session number as fixed effects, with response variables of DASS depression, anxiety, and stress scores. Results: 71.5% were classified as having extreme or severe anxiety and half had extreme or severe depression and/or stress scores. On average males had a greater increase in DASS scores over time but males attending more sessions benefited most from therapy. Discussion: Psychologists are treating rural adolescents in schools for severe anxiety, depression, and stress. This pilot study indicates that a predictive model combining demographics, session frequency, and DASS scores may help identify who is most likely to benefit from individual psychotherapy. Variations in DAS scores of individuals over time indicate the need for the collection of information such as living situation and exposure to alcohol. A larger sample size and additional data are currently being collected to allow for a more robust analysis.

Keywords: adolescent health, psychotherapy, school based mental health services, DAS21

Procedia PDF Downloads 167