Search results for: respond surface methodology
11127 The System of Uniform Criteria for the Characterization and Evaluation of Elements of Economic Structure: The Territory, Infrastructure, Processes, Technological Chains, the End Products
Authors: Aleksandr A. Gajour, Vladimir G. Merzlikin, Vladimir I. Veselov
Abstract:
This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with the spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the polar regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under limited and unlimited amount of heat-energy resources are analyzed.Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes
Procedia PDF Downloads 40111126 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions
Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka
Abstract:
Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68
Procedia PDF Downloads 13311125 Indoor Air Quality Analysis for Renovating Building: A Case Study of Student Studio, Department of Landscape, Chiangmai, Thailand
Authors: Warangkana Juangjandee
Abstract:
The rapidly increasing number of population in the limited area creates an effect on the idea of the improvement of the area to suit the environment and the needs of people. Faculty of architecture Chiang Mai University is also expanding in both variety fields of study and quality of education. In 2020, the new department will be introduced in the faculty which is Department of Landscape Architecture. With the limitation of the area in the existing building, the faculty plan to renovate some parts of its school for anticipates the number of students who will join the program in the next two years. As a result, the old wooden workshop area is selected to be renovated as student studio space. With such condition, it is necessary to study the restriction and the distinctive environment of the site prior to the improvement in order to find ways to manage the existing space due to the fact that the primary functions that have been practiced in the site, an old wooden workshop space and the new function, studio space, are too different. 72.9% of the annual times in the room are considered to be out of the thermal comfort condition with high relative humidity. This causes non-comfort condition for occupants which could promote mould growth. This study aims to analyze thermal comfort condition in the Landscape Learning Studio Area for finding the solution to improve indoor air quality and respond to local conditions. The research methodology will be in two parts: 1) field gathering data on the case study 2) analysis and finding the solution of improving indoor air quality. The result of the survey indicated that the room needs to solve non-comfort condition problem. This can be divided into two ways which are raising ventilation and indoor temperature, e.g. improving building design and stack driven ventilation, using fan for enhancing more internal ventilation.Keywords: relative humidity, renovation, temperature, thermal comfort
Procedia PDF Downloads 21511124 Uncertainty in Near-Term Global Surface Warming Linked to Pacific Trade Wind Variability
Authors: M. Hadi Bordbar, Matthew England, Alex Sen Gupta, Agus Santoso, Andrea Taschetto, Thomas Martin, Wonsun Park, Mojib Latif
Abstract:
Climate models generally simulate long-term reductions in the Pacific Walker Circulation with increasing atmospheric greenhouse gases. However, over two recent decades (1992-2011) there was a strong intensification of the Pacific Trade Winds that is linked with a slowdown in global surface warming. Using large ensembles of multiple climate models forced by increasing atmospheric greenhouse gas concentrations and starting from different ocean and/or atmospheric initial conditions, we reveal very diverse 20-year trends in the tropical Pacific climate associated with a considerable uncertainty in the globally averaged surface air temperature (SAT) in each model ensemble. This result suggests low confidence in our ability to accurately predict SAT trends over 20-year timescale only from external forcing. We show, however, that the uncertainty can be reduced when the initial oceanic state is adequately known and well represented in the model. Our analyses suggest that internal variability in the Pacific trade winds can mask the anthropogenic signal over a 20-year time frame, and drive transitions between periods of accelerated global warming and temporary slowdown periods.Keywords: trade winds, walker circulation, hiatus in the global surface warming, internal climate variability
Procedia PDF Downloads 26611123 High Frequency Nanomechanical Oscillators Based on Synthetic Nanowires
Authors: Minjin Kim, Jihwan Kim, Bongsoo Kim, Junho Suh
Abstract:
We demonstrate nanomechanical resonators constructed with synthetic nanowires (NWs) and study their electro-mechanical properties at millikelvin temperatures. Nanomechanical resonators are fabricated using single-crystalline Au NWs and InAs NWs. The mechanical resonance signals are acquired by either magnetomotive or capacitive detection methods. The Au NWs are synthesized by chemical vapor transport method at 1100 °C, and they exhibit clean surface and single-crystallinity with little defects. Due to pristine surface quality, these Au NW mechanical resonators could provide an ideal model system for studying surface-related effects on the mechanical systems. The InAs NWs are synthesized by molecular beam epitaxy or metal organic chemical vapor deposition method. The InAs NWs show electronic conductance modulation resembling Coulomb blockade, which also manifests in the mechanical resonance signals in the form of damping and resonance frequency shift. Our result provides an evidence of strong electro-mechanical coupling in synthetic NW nanomechanical resonators.Keywords: Au nanowire, InAs nanowire, nanomechanical resonator, synthetic nanowires
Procedia PDF Downloads 20811122 Next Generation Membrane for Water Desalination: Facile Fabrication of Patterned Graphene Membrane
Authors: Jae-Kyung Choi, Soon-Yong Kwon, Hyung Duk Yun, Hyun-Sang Chung, Seongho Seo, Kukjin Bae
Abstract:
Recently, there were several attempts to utilize a graphene layer as a water desalination membrane. In order to use a graphene layer as a water desalination membrane, fabrication of crack-free suspension of graphene on a porous membrane, having hydrophobic surface, and generation of a uniform holes on a graphene are very important. In here, we showed a simple chemical vapor deposition (CVD) method to create a patterned graphene membrane on a patterned platinum film. After CVD growth process of patterned graphene layer/patterned Pt on SiO2 substrates, the patterned graphene layer can be successfully transferred onto arbitrary substrates via thermal-assisted transfer method. In this result, the transferred patterned graphene membrane has so hydrophobic surface which will certainly impact on the naturally and speed pass way for fresh water. In addition to this, we observed that overlapping of patterned graphene membranes reported previously by our group may generate different size of holes.Keywords: chemical vapor deposition (CVD), hydrophobic surface, membrane desalination, porous graphene
Procedia PDF Downloads 47011121 Modelling Asymmetric Magnetic Recording Heads with an Underlayer Using Superposition
Authors: Ammar Edress Mohamed, Mustafa Aziz, David Wright
Abstract:
This paper analyses and calculates the head fields of asymmetrical 2D magnetic recording heads when the soft-underlayer is present using the appropriate Green's function to derive the surface potential/field by utilising the surface potential for asymmetrical head without underlayer. The results follow closely the corners, while the gap region shows a linear behaviour for d/g < 0.5 compared with the calculated fields from finite-element.Keywords: magnetic recording, finite elements, asymmetrical magnetic heads, superposition, Laplace's equation
Procedia PDF Downloads 38911120 Calculation of Methane Emissions from Wetlands in Slovakia via IPCC Methodology
Authors: Jozef Mindas, Jana Skvareninova
Abstract:
Wetlands are a main natural source of methane emissions, but they also represent the important biodiversity reservoirs in the landscape. There are about 26 thousands hectares of wetlands in Slovakia identified via the wetlands monitoring program. Created database of wetlands in Slovakia allows to analyze several ecological processes including also the methane emissions estimate. Based on the information from the database, the first estimate of the methane emissions from wetlands in Slovakia has been done. The IPCC methodology (Tier 1 approach) has been used with proposed emission factors for the ice-free period derived from the climatic data. The highest methane emissions of nearly 550 Gg are associated with the category of fens. Almost 11 Gg of methane is emitted from bogs, and emissions from flooded lands represent less than 8 Gg.Keywords: bogs, methane emissions, Slovakia, wetlands
Procedia PDF Downloads 28211119 Quantification of Effects of Shape of Basement Topography below the Circular Basin on the Ground Motion Characteristics and Engineering Implications
Authors: Kamal, Dinesh Kumar, J. P. Narayan, Komal Rani
Abstract:
This paper presents the effects of shape of basement topography on the characteristics of the basin-generated surface (BGS) waves and associated average spectral amplification (ASA) in the 3D basins having circular surface area. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on parsimonious staggered-grid approximation of 3D viscoelastic wave equations. An increase of amplitude amplification and ASA towards the centre of different considered basins was obtained. Further, it may be concluded that ASA in basin very much depends on the impedance contrast, exposure area of basement to the incident wave front, edge-slope, focusing of the BGS-waves and sediment-damping. There is an urgent need of incorporation of a map of differential ground motion (DGM) caused by the BGS-waves as one of the output maps of the seismic microzonation.Keywords: 3D viscoelastic simulation, basin-generated surface waves, maximum displacement, average spectral amplification
Procedia PDF Downloads 29511118 Deciphering Suitability of Rhamnolipids as Emulsifying Agent for Hydrophobic Pollutants
Authors: Asif Jamal, Samia Sakindar, Ramla Rehman
Abstract:
Biosurfactants are amphiphilic surface active compounds obtained from natural resources such as plants and microorganisms. Because of their diverse physicochemical characteristics biosurfactant are replacing synthetic compounds in various commercial applications. In present study, a strain of P. aeruginosa was isolated from crude oil contaminated soil as efficient biosurfactant producers. The biosurfactant production was analyzed as a function of surface tension reduction, oil spreading capacity, emulsification index and hemolysis assay. This bacterial strain showed excellent emulsion activity of EI24 85%, surface tension reduction up to 28.6 mNm-1 and 7.0 mm oil displacement zone. Physicochemical and biological properties of extracted rhamnolipid were also investigated in current study. The chemical composition of product from strain PSS was analyzed by FTIR spectroscopy. The results revealed that extracted biosurfactant was rhamnolipid type in nature having RL-1 and RL-2 homologues. The surface behavior of rhamnolipid in aqueous phase was investigated varying extreme pH, temperature, salt conditions and with various hydrocarbons. The results indicated that biosurfactant produced by strain PSS Which showed stability during high temperature up to 121 C, salt concentrations up to 20% and pH range between (4—14). The emulsification activity with different hydrocarbons was also remarkable. It was concluded that rhamnolipid biosurfactant produced by strain PSS has excellent potential as emulsifying/remediation agent for broad range of hydrophobic pollutants.Keywords: P. aeruginosa, bioremediation, rhamnolipid, surfactants
Procedia PDF Downloads 27911117 Functionalization of Carbon-Coated Iron Nanoparticles with Fluorescent Protein
Authors: A. G. Pershina, P. S. Postnikov, M. E. Trusova, D. O. Burlakova, A. E. Sazonov
Abstract:
Invention of magnetic-fluorescent nanocomposites is a rapidly developing area of research. The magnetic-fluorescent nanocomposite attractiveness is connected with the ability of simultaneous management and control of such nanocomposites by two independent methods based on different physical principles. These nanocomposites are applied for the solution of various essential scientific and experimental biomedical problems. The aim of this research is development of principle approach to nanobiohybrid structures with magnetic and fluorescent properties design. The surface of carbon-coated iron nanoparticles (Fe@C) were covalently modified by 4-carboxy benzenediazonium tosylate. Recombinant fluorescent protein TagGFP2 (Eurogen) was obtained in E. coli (Rosetta DE3) by standard laboratory techniques. Immobilization of TagGFP2 on the nanoparticles surface was provided by the carbodiimide activation. The amount of COOH-groups on the nanoparticle surface was estimated by elemental analysis (Elementar Vario Macro) and TGA-analysis (SDT Q600, TA Instruments. Obtained nanocomposites were analyzed by FTIR spectroscopy (Nicolet Thermo 5700) and fluorescence microscopy (AxioImager M1, Carl Zeiss). Amount of the protein immobilized on the modified nanoparticle surface was determined by fluorimetry (Cary Eclipse) and spectrophotometry (Unico 2800) with the help of preliminary obtained calibration plots. In the FTIR spectra of modified nanoparticles the adsorption band of –COOH group around 1700 cm-1 and bands in the region of 450-850 cm-1 caused by bending vibrations of benzene ring were observed. The calculated quantity of active groups on the surface was equal to 0,1 mmol/g of material. The carbodiimide activation of COOH-groups on nanoparticles surface results to covalent immobilization of TagGFP2 fluorescent protein (0.2 nmol/mg). The success of immobilization was proved by FTIR spectroscopy. Protein characteristic adsorption bands in the region of 1500-1600 cm-1 (amide I) were presented in the FTIR spectrum of nanocomposite. The fluorescence microscopy analysis shows that Fe@C-TagGFP2 nanocomposite possesses fluorescence properties. This fact confirms that TagGFP2 protein retains its conformation due to immobilization on nanoparticles surface. Magnetic-fluorescent nanocomposite was obtained as a result of unique design solution implementation – the fluorescent protein molecules were fixed to the surface of superparamagnetic carbon-coated iron nanoparticles using original diazonium salts.Keywords: carbon-coated iron nanoparticles, diazonium salts, fluorescent protein, immobilization
Procedia PDF Downloads 34111116 A Novel Photocrosslinkable and Cytocompatible Chitosan Coating for TI6AL4V Surfaces
Authors: D. Zujur, J. Moret, D. Rodriguez, L. Cruz, J. Lira, L. Gil, E. Dominguez, J. F. Alvarez-Barreto
Abstract:
In this work, chitosan (CH) has been used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. The Ti6Al4V surface was sandblasted with alumina particles and observed by SEM. Chitosan was chemically modified, via crodiimide chemistry, with lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photo-crosslinkable, respectively. The reaction was verified by FTIR, NMR, and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing the polymer crosslinking, and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating´s cytocompatibility was determined in vitro through the culture of rat bone marrow´s mesenchymal stem cells, using an MTT assay. The results show that the developed coating is cytocompatible, easy to apply and could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue-implant interface.Keywords: chitosan, photo-crosslinking, Ti6Al4V, bioactive coating, hydrogel
Procedia PDF Downloads 32111115 Vascular Foramina of the Capitate Bone of the Hand – an Anatomical Study
Authors: Latha V. Prabhu, B.V. Murlimanju, P.J. Jiji, Mangala M. Pai
Abstract:
Background: The capitate is the largest among the carpal bones. There exists no literature about the vascular foramina of the capitate bone. The objective of the present study was to investigate the morphology and number of the nutrient foramina in the cadaveric dried capitate bones of the Indian population. Methods: The present study included 59 capitate bones (25 right sided and 34 left sided) which were obtained from the gross anatomy laboratory of our institution. The bones were macroscopically observed for the nutrient foramina and the data was collected with respect to their number. The tabulation of the data and analysis were done. Results: All of our specimens (100%) exhibited the nutrient foramina over the non-articular and articular surfaces. The foramina were observed at the medial, lateral, palmar and dorsal surfaces of the capitate bones. The foramina were ranged from 6 to 23 in each capitate bone. In the medial surface, the foramina ranged from 1 to 6, lateral surface from 0 to 7, the foramina ranged between 0 and 5 in the palmar surface. However most of the foramina were located at the dorsal surface which ranged from 3 to 11. Conclusion: We believe that the present study has provided additional data about the nutrient foramina of the capitate bones. The data is enlightening to the orthopedic surgeon and would help in the hand surgeries. The knowledge about the foramina is also important to the radiologists to prevent the misinterpretation of the findings in the x ray and computed tomogram scan films. The foramina may mimick like erosions and ossicles. The morphological knowledge of the vasculature, their foramina of entry and number is required to understand the concepts in the avascular necrosis of the capitate.Keywords: avascular necrosis, capitate, morphology, nutrient foramen
Procedia PDF Downloads 34011114 Surface Morphology and Wetting Behavior of the Aspidiotus spp. Scale Covers
Authors: Meril Kate Mariano, Billy Joel Almarinez Divina Amalin, Jose Isagani Janairo
Abstract:
The scale insects Aspidiotus destructor and Aspidiotus rigidus exhibit notable scale covers made of wax which provides protection against water loss and is capable to resist wetting, thus making them a desirable model for biomimetic designs. Their waxy covers enable them to infest mainly leaves of coconut trees despite the harsh wind and rain. This study aims to describe and compare the micro morphological characters on the surfaces of their scale covers consequently, how these micro structures affect their wetting properties. Scanning electron microscope was used for the surface characterization while an optical contact angle meter was employed in the wetting measurement. The scale cover of A. destructor is composed of multiple overlapping layers of wax that is arranged regularly while that of A. rigidus is composed of a uniform layer of wax with much more prominent wax ribbons irregularly arranged compared to the former. The protrusions found on the two organisms are formed by the wax ribbons that differ in arrangement with their height being A. destructor (3.57+1.29) < A. rigidus (4.23+1.22) and their density A. destructor (15+2.94) < A. rigidus (18.33+2.64). These morphological measurements could affect the contact angle (CA θ) measurement of A. destructor (102.66+9.78°) < A. rigidus (102.77 + 11.01°) wherein the assessment that the interaction of the liquid to the microstructures of the substrate is a large factor in the wetting properties of the insect scales is realized. The calculated surface free energy of A. destructor (38.47 mJ/m²) > A. rigidus (31.02 mJ/m²) shows inverse proportionality with the CA measurement. The dispersive interaction between the surface and liquid is more prevalent compared to the polar interaction for both Aspidiotus species, which was observed using the Fowkes method. The results of this study have possible applications to be a potential biomimetic design for various industries such as textiles and coatings.Keywords: Aspidiotus spp., biomimetics, contact angle, surface characterization, wetting behavior
Procedia PDF Downloads 12111113 Silver Grating for Strong and Reproducible SERS Response
Authors: Y. Kalachyova, O. Lyutakov, V. Svorcik
Abstract:
One of the most significant obstacles for the application of surface enhanced Raman spectroscopy (SERS) is the poor reproducibility of SERS active substrates: SERS intensity can be varied from one substrate to another and moreover along the one substrate surface. High enhancement of the near-field intensity is the key factor for ultrasensitive SERS realization. SERS substrate can be prepared through introduction of highly ordered metal array, where light focusing is achieved through excitation of surface plasmon-polaritons (SPPs). In this work, we report the preparation of silver nanostructures with plasmon absorption peaks tuned by the metal arrangement. Excimer laser modification of poly(methyl methacrylate) followed by silver evaporation is proposed as an effective way for the creation of reproducible and effective surface plasmon-polaritons (SPP)-based SERS substrate. Theoretical and experimental studies were performed to optimize structure parameter for effective SPP excitation. It was found that the narrow range of grating periodicity and metal thickness exist, where SPPs can be most efficiently excited. In spite of the fact, that SERS response was almost always achieved, the enhancement factor was found to vary more with the effectivity of SPP excitation. When the real structure parameters were set to optimal for SPP excitation, a SERS enhancement factor was achieved up to four times. Theoretical and experimental investigation of SPP excitation on the two-dimensional periodical silver array was performed with the aim to make SERS response as high as possible.Keywords: grating, nanostructures, plasmon-polaritons, SERS
Procedia PDF Downloads 26611112 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies
Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru
Abstract:
Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil
Procedia PDF Downloads 37211111 Biosurfactants Production by Bacillus Strain from an Environmental Sample in Egypt
Authors: Mervat Kassem, Nourhan Fanaki, F. Dabbous, Hamida Abou-Shleib, Y. R. Abdel-Fattah
Abstract:
With increasing environmental awareness and emphasis on a sustainable society in harmony with the global environment, biosurfactants are gaining prominence and have already taken over for a number of important industrial uses. They are produced by living organisms, for examples Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. The main goal of this work was to optimize biosurfactants production by an environmental Gram positive isolate for large scale production with maximum yield and low cost. After molecular characterization, phylogenetic tree was constructed where it was found to be B. subtilis, which close matches to B. subtilis subsp. subtilis strain CICC 10260. For optimizing its biosurfactants production, sequential statistical design using Plackett-Burman and response surface methodology, was applied where 11 variables were screened. When analyzing the regression coefficients for the 11 variables, pH, glucose, glycerol, yeast extract, ammonium chloride and ammonium nitrate were found to have a positive effect on the biosurfactants production. Ammonium nitrate, pH and glucose were further studied as significant independent variables for Box-Behnken design and their optimal levels were estimated and were found to be 7.328 pH value, 3 g% glucose and 0.21g % ammonium nitrate yielding high biosurfactants concentration that reduced the surface tension of the culture medium from 72 to 18.16 mN/m. Next, kinetics of cell growth and biosurfactants production by the tested B. subtilis isolate, in bioreactor was compared with that of shake flask where the maximum growth and specific growth (µ) in the bioreactor was higher by about 25 and 53%, respectively, than in shake flask experiment, while the biosurfactants production kinetics was almost the same in both shake flask and bioreactor experiments.Keywords: biosurfactants, B. subtilis, molecular identification, phylogenetic trees, Plackett-Burman design, Box-Behnken design, 16S rRNA
Procedia PDF Downloads 40811110 3D Printing for Maritime Cultural Heritage: A Design for All Approach to Public Interpretation
Authors: Anne Eugenia Wright
Abstract:
This study examines issues in accessibility to maritime cultural heritage. Using the Pillar Dollar Wreck in Biscayne National Park, Florida, this study presents an approach to public outreach based on the concept of Design for All. Design for All advocates creating products that are accessible and functional for all users, including those with visual, hearing, learning, mobility, or economic impairments. As a part of this study, a small exhibit was created that uses 3D products as a way to bring maritime cultural heritage to the public. It was presented to the public at East Carolina University’s Joyner Library. Additionally, this study presents a methodology for 3D printing scaled photogrammetry models of archaeological sites in full color. This methodology can be used to present a realistic depiction of underwater archaeological sites to those who are incapable of accessing them in the water. Additionally, this methodology can be used to present underwater archaeological sites that are inaccessible to the public due to conditions such as visibility, depth, or protected status. This study presents a practical use for 3D photogrammetry models, as well as an accessibility strategy to expand the outreach potential for maritime archaeology.Keywords: Underwater Archaeology, 3D Printing, Photogrammetry, Design for All
Procedia PDF Downloads 13811109 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials
Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó
Abstract:
Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.Keywords: morphology, PE, roughness, titanium
Procedia PDF Downloads 12411108 The Effect of Balance Training on Stable and Unstable Surfaces under Cognitive Dual-Task Condition on the Two Directions of Body Sway, Functional Balance and Fear of Fall in Non-Fallers Older Adults
Authors: Elham Azimzadeh, Fahimeh Khorshidi, Alireza Farsi
Abstract:
Balance impairment and fear of falling in older adults may reduce their quality of life. Reactive balance training could improve rapid postural responses and fall prevention in the elderly during daily tasks. Performing postural training and simultaneously cognitive dual tasks could be similar to the daily circumstances. Purpose: This study aimed to determine the effect of balance training on stable and unstable surfaces under dual cognitive task conditions on postural control and fear of falling in the elderly. Methods: Thirty non-fallers of older adults (65-75 years) were randomly assigned to two training groups: stable-surface (n=10), unstable-surface (n=10), or a control group (n=10). The intervention groups underwent six weeks of balance training either on a stable (balance board) or an unstable (wobble board) surface while performing a cognitive dual task. The control group received no balance intervention. COP displacements in the anterioposterior (AP) and mediolateral (ML) directions using a computerized balance board, functional balance using TUG, and fear of falling using FES-I were measured in all participants before and after the interventions. Summary of Results: Mixed ANOVA (3 groups * 2 times) with repeated measures and post hoc test showed a significant improvement in both intervention groups in AP index (F= 11/652, P= 0/0002) and functional balance (F= 9/961, P= 0/0001). However, the unstable surface training group had more improvement. However, the fear of falling significantly improved after training on an unstable surface (p= 0/035). All groups had no significant improvement in the ML index (p= 0/817). In the present study, there was an improvement in the AP index after balance training. Conclusion: Unstable surface training may reduce reaction time in posterior ankle muscle activity. Furthermore, focusing attention on cognitive tasks can lead to maintaining balance unconsciously. Most of the daily activities need attention distribution among several activities. So, balance training concurrent to a dual cognitive task is challenging and more similar to the real world. According to the specificity of the training principle, it may improve functional independence and fall prevention in the elderly.Keywords: cognitive dual task, elderly, fear of falling, postural control, unstable surface
Procedia PDF Downloads 6211107 Genotypic and Allelic Distribution of Polymorphic Variants of Gene SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) and Their Association to the Clinical Response to Metformin in Adult Pakistani T2DM Patients
Authors: Sadaf Moeez, Madiha Khalid, Zoya Khalid, Sania Shaheen, Sumbul Khalid
Abstract:
Background: Inter-individual variation in response to metformin, which has been considered as a first line therapy for T2DM treatment is considerable. In the current study, it was aimed to investigate the impact of two genetic variants Leu125Phe (rs77474263) and Gly64Asp (rs77630697) in gene SLC47A1 on the clinical efficacy of metformin in T2DM Pakistani patients. Methods: The study included 800 T2DM patients (400 metformin responders and 400 metformin non-responders) along with 400 ethnically matched healthy individuals. The genotypes were determined by allele-specific polymerase chain reaction. In-silico analysis was done to confirm the effect of the two SNPs on the structure of genes. Association was statistically determined using SPSS software. Results: Minor allele frequency for rs77474263 and rs77630697 was 0.13 and 0.12. For SLC47A1 rs77474263 the homozygotes of one mutant allele ‘T’ (CT) of rs77474263 variant were fewer in metformin responders than metformin non-responders (29.2% vs. 35.5 %). Likewise, the efficacy was further reduced (7.2% vs. 4.0 %) in homozygotes of two copies of ‘T’ allele (TT). Remarkably, T2DM cases with two copies of allele ‘C’ (CC) had 2.11 times more probability to respond towards metformin monotherapy. For SLC47A1 rs77630697 the homozygotes of one mutant allele ‘A’ (GA) of rs77630697 variant were fewer in metformin responders than metformin non-responders (33.5% vs. 43.0 %). Likewise, the efficacy was further reduced (8.5% vs. 4.5%) in homozygotes of two copies of ‘A’ allele (AA). Remarkably, T2DM cases with two copies of allele ‘G’ (GG) had 2.41 times more probability to respond towards metformin monotherapy. In-silico analysis revealed that these two variants affect the structure and stability of their corresponding proteins. Conclusion: The present data suggest that SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) polymorphisms were associated with the therapeutic response of metformin in T2DM patients of Pakistan.Keywords: diabetes, T2DM, SLC47A1, Pakistan, polymorphism
Procedia PDF Downloads 15711106 Feasibility Study of Measurement of Turning Based-Surfaces Using Perthometer, Optical Profiler and Confocal Sensor
Authors: Khavieya Anandhan, Soundarapandian Santhanakrishnan, Vijayaraghavan Laxmanan
Abstract:
In general, measurement of surfaces is carried out by using traditional methods such as contact type stylus instruments. This prevalent approach is challenged by using non-contact instruments such as optical profiler, co-ordinate measuring machine, laser triangulation sensors, machine vision system, etc. Recently, confocal sensor is trying to be used in the surface metrology field. This sensor, such as a confocal sensor, is explored in this study to determine the surface roughness value for various turned surfaces. Turning is a crucial machining process to manufacture products such as grooves, tapered domes, threads, tapers, etc. The roughness value of turned surfaces are in the range of range 0.4-12.5 µm, were taken for analysis. Three instruments were used, namely, perthometer, optical profiler, and confocal sensor. Among these, in fact, a confocal sensor is least explored, despite its good resolution about 5 nm. Thus, such a high-precision sensor was used in this study to explore the possibility of measuring turned surfaces. Further, using this data, measurement uncertainty was also studied.Keywords: confocal sensor, optical profiler, surface roughness, turned surfaces
Procedia PDF Downloads 13211105 Preparation of Silver and Silver-Gold, Universal and Repeatable, Surface Enhanced Raman Spectroscopy Platforms from SERSitive
Authors: Pawel Albrycht, Monika Ksiezopolska-Gocalska, Robert Holyst
Abstract:
Surface Enhanced Raman Spectroscopy (SERS) is a technique of growing importance not only in purely scientific research related to analytical chemistry. It finds more and more applications in broadly understood testing - medical, forensic, pharmaceutical, food - and everywhere works perfectly, on one condition that SERS substrates used for testing give adequate enhancement, repeatability, and homogeneity of SERS signal. This is a problem that has existed since the invention of this technique. Some laboratories use as SERS amplifiers colloids with silver or gold nanoparticles, others form rough silver or gold surfaces, but results are generally either weak or unrepeatable. Furthermore, these structures are very often highly specific - they amplify the signal only of a small group of compounds. It means that they work with some kinds of analytes but only with those which were used at a developer’s laboratory. When it comes to research on different compounds, completely new SERS 'substrates' are required. That underlay our decision to develop universal substrates for the SERS spectroscopy. Generally, each compound has different affinity for both silver and gold, which have the best SERS properties, and that's what depends on what signal we get in the SERS spectrum. Our task was to create the platform that gives a characteristic 'fingerprint' of the largest number of compounds with very high repeatability - even at the expense of the intensity of the enhancement factor (EF) (possibility to repeat research results is of the uttermost importance). As specified above SERS substrates are offered by SERSitive company. Applied method is based on cyclic potentiodynamic electrodeposition of silver or silver-gold nanoparticles on the conductive surface of ITO-coated glass at controlled temperature of the reaction solution. Silver nanoparticles are supplied in the form of silver nitrate (AgNO₃, 10 mM), gold nanoparticles are derived from tetrachloroauric acid (10 mM) while sodium sulfite (Na₂O₃, 5 mM) is used as a reductor. To limit and standardize the size of the SERS surface on which nanoparticles are deposited, photolithography is used. We secure the desired ITO-coated glass surface, and then etch the unprotected ITO layer which prevents nanoparticles from settling at these sites. On the prepared surface, we carry out the process described above, obtaining SERS surface with nanoparticles of sizes 50-400 nm. The SERSitive platforms present highly sensitivity (EF = 10⁵-10⁶), homogeneity and repeatability (70-80%).Keywords: electrodeposition, nanoparticles, Raman spectroscopy, SERS, SERSitive, SERS platforms, SERS substrates
Procedia PDF Downloads 15411104 The Effect of Irradiation Distance on Microhardness of Hybrid Resin Composite Polymerization Using Light-Emitting Diodes
Authors: Deli Mona, Rafika Husni
Abstract:
The aim of this research is to evaluate the effect of lighting distance on surface hardness of light composite resin. We held laboratory experimental research with post-test only group design. The samples used are 30 disc-like hybrid composite resins with the diameter is 6 mm and the thickness is 2 mm, lighted by an LED for 20 seconds. They were divided into 3 groups, and every group was consisted by 10 samples, which were 0 mm, 2 mm, and 5 mm lighting distance group. Every samples group was treated with hardness test, Vicker Hardness Test, then analyzed with one-way ANOVA test to evaluate the effect of lighting distance differences on surface hardness of light composite resin. Statistic test result shown hardness mean change of composite renin between 0 mm and 2 mm lighting distance with 0.00 significance (p<0.05), between 0 mm and 5 mm lighting distance with 0.00 significance (p<0.05), and 2 mm and 5 mm lighting distance with 0.05 significance (p<0.05). According to the result of this research, we concluded that the further lighting distance, the more surface hardness decline of hybrid composite resin.Keywords: composite resin hybrid, tip distance, microhardness, light curing LED
Procedia PDF Downloads 34511103 Thermal Buckling of Functionally Graded Panel Based on Mori-Tanaka Scheme
Authors: Seok-In Bae, Young-Hoon Lee, Ji-Hwan Kim
Abstract:
Due to the asymmetry of the material properties of the Functionally Graded Materials(FGMs) in the thickness direction, neutral surface of the model is not the same as the mid-plane of the symmetric structure. In order to investigate the thermal bucking behavior of FGMs, neutral surface is chosen as a reference plane. In the model, material properties are assumed to be temperature dependent, and varied continuously in the thickness direction of the plate. Further, the effective material properties such as Young’s modulus and Poisson’s ratio are homogenized using Mori-Tanaka scheme which considers the interaction among adjacent inclusions. In this work, the finite element methods are used, and the first-order shear deformation theory of plate are accounted. The thermal loads are assumed to be uniform, linear and non-linear distribution through the thickness directions, respectively. Also, the effects of various parameters for thermal buckling behavior of FGM panel are discussed in detail.Keywords: functionally graded plate, thermal buckling analysis, neutral surface
Procedia PDF Downloads 40011102 Surface Motion of Anisotropic Half Space Containing an Anisotropic Inclusion under SH Wave
Authors: Yuanda Ma, Zhiyong Zhang, Zailin Yang, Guanxixi Jiang
Abstract:
Anisotropy is very common in underground media, such as rock, sand, and soil. Hence, the dynamic response of anisotropy medium under elastic waves is significantly different from the isotropic one. Moreover, underground heterogeneities and structures, such as pipelines, cylinders, or tunnels, are usually made by composite materials, leading to the anisotropy of these heterogeneities and structures. Both the anisotropy of the underground medium and the heterogeneities have an effect on the surface motion of the ground. Aiming at providing theoretical references for earthquake engineering and seismology, the surface motion of anisotropic half-space with a cylindrical anisotropic inclusion embedded under the SH wave is investigated in this work. Considering the anisotropy of the underground medium, the governing equation with three elastic parameters of SH wave propagation is introduced. Then, based on the complex function method and multipolar coordinates system, the governing equation in the complex plane is obtained. With the help of a pair of transformation, the governing equation is transformed into a standard form. By means of the same methods, the governing equation of SH wave propagation in the cylindrical inclusion with another three elastic parameters is normalized as well. Subsequently, the scattering wave in the half-space and the standing wave in the inclusion is deduced. Different incident wave angle and anisotropy are considered to obtain the reflected wave. Then the unknown coefficients in scattering wave and standing wave are solved by utilizing the continuous condition at the boundary of the inclusion. Through truncating finite terms of the scattering wave and standing wave, the equation of boundary conditions can be calculated by programs. After verifying the convergence and the precision of the calculation, the validity of the calculation is verified by degrading the model of the problem as well. Some parameters which influence the surface displacement of the half-space is considered: dimensionless wave number, dimensionless depth of the inclusion, anisotropic parameters, wave number ratio, shear modulus ratio. Finally, surface displacement amplitude of the half space with different parameters is calculated and discussed.Keywords: anisotropy, complex function method, sh wave, surface displacement amplitude
Procedia PDF Downloads 11811101 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer
Authors: Timothee Gidenne, Xia Pinqi
Abstract:
In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression
Procedia PDF Downloads 12811100 Flexural Properties of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Aggressive Environment
Authors: Mohd Shahneel Saharudin, Jiacheng Wei, Islam Shyha, Fawad Inam
Abstract:
This study aimed to investigate the effect of aggressive environment on the flexural properties of halloysite nanotubes-polyester nanocomposites. Results showed that the addition of halloysite nanotubes into polyester matrix was found to improve flexural properties of the nanocomposites in dry condition and after water-methanol exposure. Significant increase in surface roughness was also observed and measured by Alicona Infinite Focus optical microscope.Keywords: halloysite nanotube, composites, flexural properties, surface roughness
Procedia PDF Downloads 27811099 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys
Authors: Dong Bok Lee, Min Jung Kim
Abstract:
The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment
Procedia PDF Downloads 31511098 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior
Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli
Abstract:
Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).Keywords: urban mobility, decongestion, machine learning, neural network
Procedia PDF Downloads 192