Search results for: incremental mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1308

Search results for: incremental mining

258 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning

Authors: Angelina A. Tzacheva, Jaishree Ranganathan

Abstract:

Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.

Keywords: actionable pattern discovery, education, emotion, data mining

Procedia PDF Downloads 98
257 Health and Safety Risk Assesment with Electromagnetic Field Exposure for Call Center Workers

Authors: Dilsad Akal

Abstract:

Aim: Companies communicate with each other and with their costumers via call centers. Call centers are defined as stressful because of their uncertain working hours, inadequate relief time, performance based system and heavy workload. In literature, this sector is defined as risky as mining sector by means of health and safety. The aim of this research is to enlight the relatively dark area. Subject and Methods: The collection of data for this study completed during April-May 2015 for the two selected call centers in different parts of Turkey. The applied question mostly investigated the health conditions of call center workers. Electromagnetic field measurements were completed at the same time with applying the question poll. The ratio of employee accessibility noted as 73% for the first call center and 87% for the second. Results: The results of electromagnetic field measurements were as between 371 V/m-32 V/m for the first location and between 370 V/m-61 V/m for the second. The general complaints of the employees for both workplaces can be counted as; inadequate relief time, inadequate air conditioning, disturbance, poor thermal conditions, inadequate or extreme lighting. Furthermore, musculoskeletal discomfort, stress, ear and eye discomfort are main health problems of employees. Conclusion: The measured values and the responses to the question poll were found parallel with the other similar research results in literature. At the end of this survey, a risk map of workplace was prepared in terms of safety and health at work in general and some suggestions for resolution were provided.

Keywords: call center, health and safety, electromagnetic field, risk map

Procedia PDF Downloads 180
256 Design and Fabrication of a Smart Quadruped Robot

Authors: Shivani Verma, Amit Agrawal, Pankaj Kumar Meena, Ashish B. Deoghare

Abstract:

Over the decade robotics has been a major area of interest among the researchers and scientists in reducing human efforts. The need for robots to replace human work in different dangerous fields such as underground mining, nuclear power station and war against terrorist attack has gained huge attention. Most of the robot design is based on human structure popularly known as humanoid robots. However, the problems encountered in humanoid robots includes low speed of movement, misbalancing in structure, poor load carrying capacity, etc. The simplification and adaptation of the fundamental design principles seen in animals have led to the creation of bio-inspired robots. But the major challenges observed in naturally inspired robot include complexity in structure, several degrees of freedom and energy storage problem. The present work focuses on design and fabrication of a bionic quadruped walking robot which is based on different joint of quadruped mammals like a dog, cheetah, etc. The design focuses on the structure of the robot body which consists of four legs having three degrees of freedom per leg and the electronics system involved in it. The robot is built using readily available plastics and metals. The proposed robot is simple in construction and is able to move through uneven terrain, detect and locate obstacles and take images while carrying additional loads which may include hardware and sensors. The robot will find possible application in the artificial intelligence sector.

Keywords: artificial intelligence, bionic, quadruped robot, degree of freedom

Procedia PDF Downloads 215
255 Identification of Workplace Hazards of Underground Coal Mines

Authors: Madiha Ijaz, Muhammad Akram, Sima Mir

Abstract:

Underground mining of coal is carried out manually in Pakistan. Exposure to ergonomic hazards (musculoskeletal disorders) are very common among the coal cutters of these mines. Cutting coal in narrow spaces poses a great threat to both upper and lower limbs of these workers. To observe the prevalence of such hazards, a thorough study was conducted on 600 workers from 30 mines (20 workers from 1 mine), located in two districts of province Punjab, Pakistan. Rapid Upper Limb Assessment sheet and Rapid Entire Body Assessment sheet were used for the study along with a standard Nordic Musculoskeleton disorder questionnaire. SPSS, 25, software was used for data analysis on upper and lower limb disorders, and regression analysis models were run for upper and lower back pain. According to the results obtained, it was found that work stages (drilling & blasting, coal cutting, timbering & supporting, etc.), wok experience and number of repetitions performed/minute were significant (with p-value 0.00,0.004 and 0.009, respectively) for discomfort in upper and lower limb. Age got p vale 0.00 for upper limb and 0.012 for lower limb disorder. The task of coal cutting was strongly associated with the pain in upper back (with odd ratios13.21, 95% confidence interval (CI)14.0-21.64)) and lower back pain (3.7, 95% confidence interval 1.3-4.2). scored on RULA and REBA sheets, every work-stage was ranked at 7-highest level of risk involved. Workers were young (mean value of age= 28.7 years) with mean BMI 28.1 kg/m2

Keywords: workplace hazards, ergonomic disorders, limb disorders, MSDs.

Procedia PDF Downloads 84
254 Applying Theory of Inventive Problem Solving to Develop Innovative Solutions: A Case Study

Authors: Y. H. Wang, C. C. Hsieh

Abstract:

Good service design can increase organization revenue and consumer satisfaction while reducing labor and time costs. The problems facing consumers in the original serve model for eyewear and optical industry includes the following issues: 1. Insufficient information on eyewear products 2. Passively dependent on recommendations, insufficient selection 3. Incomplete records on progression of vision conditions 4. Lack of complete customer records. This study investigates the case of Kobayashi Optical, applying the Theory of Inventive Problem Solving (TRIZ) to develop innovative solutions for eyewear and optical industry. Analysis results raise the following conclusions and management implications: In order to provide customers with improved professional information and recommendations, Kobayashi Optical is suggested to establish customer purchasing records. Overall service efficiency can be enhanced by applying data mining techniques to analyze past consumer preferences and purchase histories. Furthermore, Kobayashi Optical should continue to develop a 3D virtual trial service which can allow customers for easy browsing of different frame styles and colors. This 3D virtual trial service will save customer waiting times in during peak service times at stores.

Keywords: theory of inventive problem solving (TRIZ), service design, augmented reality (AR), eyewear and optical industry

Procedia PDF Downloads 279
253 Determination of Safe Ore Extraction Methodology beneath Permanent Extraction in a Lead Zinc Mine with the Help of FLAC3D Numerical Model

Authors: Ayan Giri, Lukaranjan Phukan, Shantanu Karmakar

Abstract:

Structure and tectonics play a vital role in ore genesis and deposition. The existence of a swelling structure below the current level of a mine leads to the discovery of ores below some permeant developments of the mine. The discovery and the extraction of the ore body are very critical to sustain the business requirement of the mine. The challenge was to extract the ore without hampering the global stability of the mine. In order to do so, different mining options were considered and analysed by numerical modelling in FLAC3d software. The constitutive model prepared for this simulation is the improved unified constitutive model, which can better and more accurately predict the stress-strain relationships in a continuum model. The IUCM employs the Hoek-Brown criterion to determine the instantaneous Mohr-Coulomb parameters cohesion (c) and friction (ɸ) at each level of confining stress. The extra swelled part can be dimensioned as north-south strike width 50m, east-west strike width 50m. On the north side, already a stope (P1) is excavated of the dimension of 25m NS width. The different options considered were (a) Open stoping of extraction of southern part (P0) of 50m to the full extent, (b) Extraction of the southern part of 25m, then filling of both the primaries and extraction of secondary (S0) 25m in between. (c) Extraction of the southern part (P0) completely, preceded by backfill and modify the design of the secondary (S0) for the overall stability of the permanent excavation above the stoping.

Keywords: extraction, IUCM, FLAC 3D, stoping, tectonics

Procedia PDF Downloads 212
252 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 75
251 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 189
250 Atomic Town: History and Vernacular Heritage at the Mary Kathleen Uranium Mine in Australia

Authors: Erik Eklund

Abstract:

Mary Kathleen was a purpose-built company town located in northwest Queensland in Australia. It was created to work on a rich uranium deposit discovered in the area in July 1954. The town was complete by 1958, possessing curved streets, modern materials, and a progressive urban planning scheme. Formed in the minds of corporate executives and architects and made manifest in arid zone country between Cloncurry and Mount Isa, Mary Kathleen was a modern marvel in the outback, a town that tamed the wild country of northwest Queensland, or so it seemed. The town was also a product of the Cold War. In the context of a nuclear arms race between the Soviet Union and her allies, and the United States of America (USA) and her Allies, a rapid rush to locate, mine, and process uranium after 1944 led to the creation of uranium towns in Czechoslovakia, Canada, the Soviet Union, USA and Australia of which Mary Kathleen was one such example. Mary Kathleen closed in 1981, and most of the town’s infrastructure was removed. Since then, the town’s ghostly remains have attracted travellers and tourists. Never an officially-sanctioned tourist site, the area has nevertheless become a regular stop for campers and day trippers who have engaged with the site often without formal interpretation. This paper explores the status of this vernacular heritage and asks why it has not gained any official status and what visitors might see in the place despite its uncertain status.

Keywords: uranium mining, planned communities, official heritage, vernacular heritage, Australian history

Procedia PDF Downloads 89
249 Lipidomic Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Salvador Sanchez Vinces, Caroline F. A. Gatinoni, Vitor P. Iordanu, Carlos A. R. Martinez

Abstract:

Lipidomics methods are widely used in the identification and validation of disease-specific biomarkers and therapy response evaluation. The present study aimed to identify a panel of potential lipid biomarkers to evaluate response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma (RAC). Liquid chromatography–mass spectrometry (LC-MS)-based untargeted lipidomic was used to profile human serum samples from patients with clinical stage T2 or T3 resectable RAC, after and before chemoradiotherapy treatment. A total of 28 blood plasma samples were collected from 14 patients with RAC who recruited at the São Francisco University Hospital (HUSF/USF). The study was approved by the ethics committee (CAAE 14958819.8.0000.5514). Univariate and multivariate statistical analyses were applied to explore dysregulated metabolic pathways using untargeted lipidic profiling and data mining approaches. A total of 36 statistically significant altered lipids were identified and the subsequent partial least-squares discriminant analysis model was both cross validated (R2, Q2) and permutated. Lisophosphatidyl-choline (LPC) plasmalogens containing palmitoleic and oleic acids, with high variable importance in projection score, showed a tendency to be lower after completion of chemoradiotherapy. Chemoradiotherapy seems to change plasmanyl-phospholipids levels, indicating that these lipids play an important role in the RAC pathogenesis.

Keywords: lipidomics, neoadjuvant chemoradiotherapy, plasmalogens, rectal adenocarcinoma

Procedia PDF Downloads 131
248 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: big data analysis, document classification, multi-category, text mining, topic analysis

Procedia PDF Downloads 272
247 Children and Migration in Ghana: Unveiling the Realities of Vulnerability and Social Exclusion

Authors: Thomas Yeboah

Abstract:

In contemporary times, the incessant movement of northern children especially girls to southern Ghana at the detriment of their education is worrisome. Due to the misplaced mindset of the migrants concerning southern Ghana, majority of them move without an idea of where to stay and what to do exposing them to hash conditions of living. Majority find menial work in cocoa farms, illegal mining and head porterage business. This study was conducted in the Kumasi Metropolis to ascertain the major causes of child migration from the northern part of Ghana to the south and their living conditions. Both qualitative and quantitative tools of data collection and analysis were employed. The purposive sampling technique was used to select 90 migrants below 18 years. Specifically, interviews, focus group discussions and questionnaires were used to elicit responses from the units of analysis. The study revealed that the major cause of child migration from northern Ghana to the south is poverty. It was evident that respondents were vulnerable to the new environment in which they lived. They are exposed to harsh environmental conditions; sexual, verbal and physical assault; and harassment from arm robbers. The paper recommends that policy decisions should be able to create an enabling environment for the labour force in the north to ameliorate the compelling effects poverty has on child migration. Efforts should also be made to create a proper psychological climate in the minds of the children regarding their destination areas through sensitization and education.

Keywords: child migration, vulnerability, social exclusion, child labour, Ghana

Procedia PDF Downloads 443
246 Petrology Investigation of Apatite Minerals in the Esfordi Mine

Authors: Haleh Rezaei Zanjirabadi, Fatemeh Saberi, Bahman Rahimzadeh, Fariborz Masoudi, Mohammad Rahgosha

Abstract:

In this study, apatite minerals from the iron-phosphate deposit of Yazd have been investigated within the microcontinent zone of Iran in the Zagros structural zone. The geological units in the Esfordi area belong to the pre-Cambrian to lower-Cambrian age, consisting of a succession of carbonate rocks (dolomite), shale, tuff, sandstone, and volcanic rocks. In addition to the mentioned sedimentary and volcanic rocks, the granitoid mass of Bahabad, which is the largest intrusive mass in the region, has intruded into the eastern part of this series and has caused its metamorphism and alteration. After collecting the available data, various samples of Esfordi’s apatite were prepared, and their mineralogy and crystallography were investigated using laboratory methods such as petrographic microscopy, Raman spectroscopy, EDS, and SEM. In non-destructive Raman spectroscopy, the molecular structure of apatite minerals was revealed in four distinct spectral ranges. Initially, the spectra of phosphate and aluminum bonds with O2HO, OH, were observed, followed by the identification of Cl, OH, Al, Na, Ca and hydroxyl units depending on the type of apatite mineral family. In SEM analysis, based on various shapes and different phases of apatites, their constituent major elements were identified through EDS, indicating that the samples from the Esfordi mining area exhibit a dense and coherent texture with smooth surfaces. Based on the elemental analysis results by EDS, the apatites in the Esfordi area are classified into the calcic apatite group.

Keywords: petrology, apatite, Esfordi, EDS, SEM, Raman spectroscopy

Procedia PDF Downloads 61
245 Graph-Based Semantical Extractive Text Analysis

Authors: Mina Samizadeh

Abstract:

In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems.

Keywords: keyword extraction, n-gram extraction, text summarization, topic clustering, semantic analysis

Procedia PDF Downloads 70
244 Mitigation Measures for the Acid Mine Drainage Emanating from the Sabie Goldfield: Case Study of the Nestor Mine

Authors: Rudzani Lusunzi, Frans Waanders, Elvis Fosso-Kankeu, Robert Khashane Netshitungulwana

Abstract:

The Sabie Goldfield has a history of gold mining dating back more than a century. Acid mine drainage (AMD) from the Nestor mine tailings storage facility (MTSF) poses a serious threat to the nearby ecosystem, specifically the Sabie River system. This study aims at developing mitigation measures for the AMD emanating from the Nestor MTSF using materials from the Glynns Lydenburg MTSF. The Nestor MTSF (NM) and the Glynns Lydenburg MTSF (GM) each provided about 20 kg of bulk composite samples. Using samples from the Nestor MTSF and the Glynns Lydenburg MTSF, two mixtures were created. MIX-A is a mixture that contains 25% weight percent (GM) and 75% weight percent (NM). MIX-B is the name given to the second mixture, which contains 50% AN and 50% AG. The same static test, i.e., acid–base accounting (ABA), net acid generation (NAG), and acid buffering characteristics curve (ABCC) was used to estimate the acid-generating probabilities of samples NM and GM for MIX-A and MIX-B. Furthermore, the mineralogy of the Nestor MTSF samples consists of the primary acid-producing mineral pyrite as well as the secondary minerals ferricopiapite and jarosite, which are common in acidic conditions. The Glynns Lydenburg MTSF samples, on the other hand, contain primary acid-neutralizing minerals calcite and dolomite. Based on the assessment conducted, materials from the Glynns Lydenburg are capable of neutralizing AMD from Nestor MTSF. Therefore, the alkaline tailings materials from the Glynns Lydenburg MTSF can be used to rehabilitate the acidic Nestor MTSF.

Keywords: Nestor Mine, acid mine drainage, mitigation, Sabie River system

Procedia PDF Downloads 85
243 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 154
242 Assessment of the Effect of Cu and Zn on the Growth of Two Chlorophytic Microalgae

Authors: Medina O. Kadiri, John E. Gabriel

Abstract:

Heavy metals are metallic elements with a relatively high density, at least five times greater compared to water. The sources of heavy metal pollution in the environment include industrial, medical, agricultural, pharmaceutical, domestic effluents, and atmospheric sources, mining, foundries, smelting, and any heavy metal-based operation. Although some heavy metals in trace quantities are required for biological metabolism, their higher concentrations elicit toxicities. Others are distinctly toxic and are of no biological functions. Microalgae are the primary producers of aquatic ecosystems and, therefore, the foundation of the aquatic food chain. A study investigating the effects of copper and zinc on the two chlorophytes-Chlorella vulgaris and Dictyosphaerium pulchellum was done in the laboratory, under different concentrations of 0mg/l, 2mg/l, 4mg/l, 6mg/l, 8mg/l, 10mg/l, and 20mg/l. The growth of the test microalgae was determined every two days for 14 days. The results showed that the effects of the test heavy metals were concentration-dependent. From the two microalgae species tested, Chlorella vulgaris showed appreciable growth up to 8mg/l concentration of zinc. Dictyoshphaerium pulchellum had only minimal growth at different copper concentrations except for 2mg/l, which seemed to have relatively higher growth. The growth of the control was remarkably higher than in other concentrations. Generally, the growth of both test algae was consistently inhibited by heavy metals. Comparatively, copper generally inhibited the growth of both algae than zinc. Chlorella vulgaris can be used for bioremediation of high concentrations of zinc. The potential of many microalgae in heavy metal bioremediation can be explored.

Keywords: heavy metals, green algae, microalgae, pollution

Procedia PDF Downloads 195
241 An Automated Approach to the Nozzle Configuration of Polycrystalline Diamond Compact Drill Bits for Effective Cuttings Removal

Authors: R. Suresh, Pavan Kumar Nimmagadda, Ming Zo Tan, Shane Hart, Sharp Ugwuocha

Abstract:

Polycrystalline diamond compact (PDC) drill bits are extensively used in the oil and gas industry as well as the mining industry. Industry engineers continually improve upon PDC drill bit designs and hydraulic conditions. Optimized injection nozzles play a key role in improving the drilling performance and efficiency of these ever changing PDC drill bits. In the first part of this study, computational fluid dynamics (CFD) modelling is performed to investigate the hydrodynamic characteristics of drilling fluid flow around the PDC drill bit. An Open-source CFD software – OpenFOAM simulates the flow around the drill bit, based on the field input data. A specifically developed console application integrates the entire CFD process including, domain extraction, meshing, and solving governing equations and post-processing. The results from the OpenFOAM solver are then compared with that of the ANSYS Fluent software. The data from both software programs agree. The second part of the paper describes the parametric study of the PDC drill bit nozzle to determine the effect of parameters such as number of nozzles, nozzle velocity, nozzle radial position and orientations on the flow field characteristics and bit washing patterns. After analyzing a series of nozzle configurations, the best configuration is identified and recommendations are made for modifying the PDC bit design.

Keywords: ANSYS Fluent, computational fluid dynamics, nozzle configuration, OpenFOAM, PDC dill bit

Procedia PDF Downloads 420
240 Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand

Authors: Khachen Kongpakwattana, Nathorn Chaiyakunapruk

Abstract:

Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced.

Keywords: Alzheimer's disease, cost-effectiveness analysis, discrete event simulation, health technology assessment

Procedia PDF Downloads 129
239 Cultivation of High-value Patent from the Perspective of Knowledge Diffusion: A Case Study of the Power Semiconductor Field

Authors: Lin Qing

Abstract:

[Objective/Significance] The cultivation of high-value patents is the focus and difficulty of patent work, which is of great significance to the construction of a powerful country with intellectual property rights. This work should not only pay attention to the existing patent applications, but also start from the pre-application to explore the high-value technical solutions as the core of high-value patents. [Methods/processes] Comply with the principle of scientific and technological knowledge diffusion, this study studies the top academic conference papers and their cited patent applications, taking the power semiconductor field as an example, using facts date show the feasibility and rationality of mining technology solutions from high quality research results to foster high value patents, stating the actual benefits of these achievements to the industry, giving patent protection suggestions for Chinese applicants comparative with field situation. [Results/Conclusion] The research shows that the quality of citation applications of ISPSD papers is significantly higher than the field average level, and the ability of Chinese applicants to use patent protection related achievements needs to be improved. This study provides a practical and highly targeted reference idea for patent administrators and researchers, and also makes a positive exploration for the practice of the spirit of breaking the five rules.

Keywords: high-value patents cultivation, technical solutions, knowledge diffusion, top academic conference papers, intellectual property information analysis

Procedia PDF Downloads 128
238 Big Data in Construction Project Management: The Colombian Northeast Case

Authors: Sergio Zabala-Vargas, Miguel Jiménez-Barrera, Luz VArgas-Sánchez

Abstract:

In recent years, information related to project management in organizations has been increasing exponentially. Performance data, management statistics, indicator results have forced the collection, analysis, traceability, and dissemination of project managers to be essential. In this sense, there are current trends to facilitate efficient decision-making in emerging technology projects, such as: Machine Learning, Data Analytics, Data Mining, and Big Data. The latter is the most interesting in this project. This research is part of the thematic line Construction methods and project management. Many authors present the relevance that the use of emerging technologies, such as Big Data, has taken in recent years in project management in the construction sector. The main focus is the optimization of time, scope, budget, and in general mitigating risks. This research was developed in the northeastern region of Colombia-South America. The first phase was aimed at diagnosing the use of emerging technologies (Big-Data) in the construction sector. In Colombia, the construction sector represents more than 50% of the productive system, and more than 2 million people participate in this economic segment. The quantitative approach was used. A survey was applied to a sample of 91 companies in the construction sector. Preliminary results indicate that the use of Big Data and other emerging technologies is very low and also that there is interest in modernizing project management. There is evidence of a correlation between the interest in using new data management technologies and the incorporation of Building Information Modeling BIM. The next phase of the research will allow the generation of guidelines and strategies for the incorporation of technological tools in the construction sector in Colombia.

Keywords: big data, building information modeling, tecnology, project manamegent

Procedia PDF Downloads 128
237 Valence and Arousal-Based Sentiment Analysis: A Comparative Study

Authors: Usama Shahid, Muhammad Zunnurain Hussain

Abstract:

This research paper presents a comprehensive analysis of a sentiment analysis approach that employs valence and arousal as its foundational pillars, in comparison to traditional techniques. Sentiment analysis is an indispensable task in natural language processing that involves the extraction of opinions and emotions from textual data. The valence and arousal dimensions, representing the intensity and positivity/negativity of emotions, respectively, enable the creation of four quadrants, each representing a specific emotional state. The study seeks to determine the impact of utilizing these quadrants to identify distinct emotional states on the accuracy and efficiency of sentiment analysis, in comparison to traditional techniques. The results reveal that the valence and arousal-based approach outperforms other approaches, particularly in identifying nuanced emotions that may be missed by conventional methods. The study's findings are crucial for applications such as social media monitoring and market research, where the accurate classification of emotions and opinions is paramount. Overall, this research highlights the potential of using valence and arousal as a framework for sentiment analysis and offers invaluable insights into the benefits of incorporating specific types of emotions into the analysis. These findings have significant implications for researchers and practitioners in the field of natural language processing, as they provide a basis for the development of more accurate and effective sentiment analysis tools.

Keywords: sentiment analysis, valence and arousal, emotional states, natural language processing, machine learning, text analysis, sentiment classification, opinion mining

Procedia PDF Downloads 100
236 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts

Authors: Maria Ledinskaya

Abstract:

This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.

Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management

Procedia PDF Downloads 71
235 Smart in Performance: More to Practical Life than Hardware and Software

Authors: Faten Hatem

Abstract:

This paper promotes the importance of focusing on spatial aspects and affective factors that impact smart urbanism. This helps to better inform city governance, spatial planning, and policymaking to focus on what Smart does and what it can achieve for cities in terms of performance rather than on using the notion for prestige in a worldwide trend towards becoming a smart city. By illustrating how this style of practice compromises the social aspects and related elements of space making through an interdisciplinary comparative approach, the paper clarifies the impact of this compromise on the overall smart city performance. In response, this paper recognizes the importance of establishing a new meaning for urban progress by moving beyond improving basic services of the city to enhance the actual human experience which is essential for the development of authentic smart cities. The topic is presented under five overlooked areas that discuss the relation between smart cities’ potential and efficiency paradox, the social aspect, connectedness with nature, the human factor, and untapped resources. However, these themes are not meant to be discussed in silos, instead, they are presented to collectively examine smart cities in performance, arguing there is more to the practical life of smart cities than software and hardware inventions. The study is based on a case study approach, presenting Milton Keynes as a living example to learn from while engaging with various methods for data collection including multi-disciplinary semi-structured interviews, field observations, and data mining.

Keywords: smart design, the human in the city, human needs and urban planning, sustainability, smart cities, smart

Procedia PDF Downloads 99
234 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 156
233 Consequential Effects of Coal Utilization on Urban Water Supply Sources – a Study of Ajali River in Enugu State Nigeria

Authors: Enebe Christian Chukwudi

Abstract:

Water bodies around the world notably underground water, ground water, rivers, streams, and seas, face degradation of their water quality as a result of activities associated with coal utilization including coal mining, coal processing, coal burning, waste storage and thermal pollution from coal plants which tend to contaminate these water bodies. This contamination results from heavy metals, presence of sulphate and iron, dissolved solids, mercury and other toxins contained in coal ash, sludge, and coal waste. These wastes sometimes find their way to sources of urban water supply and contaminate them. A major problem encountered in the supply of potable water to Enugu municipality is the contamination of Ajali River, the source of water supply to Enugu municipal by coal waste. Hydro geochemical analysis of Ajali water samples indicate high sulphate and iron content, high total dissolved solids(TDS), low pH (acidity values) and significant hardness in addition to presence of heavy metals, mercury, and other toxins. This is indicative of the following remedial measures: I. Proper disposal of mine wastes at designated disposal sites that are suitably prepared. II. Proper water treatment and III. Reduction of coal related contaminants taking advantage of clean coal technology.

Keywords: effects, coal, utilization, water quality, sources, waste, contamination, treatment

Procedia PDF Downloads 423
232 Epidemiological Patterns of Pediatric Fever of Unknown Origin

Authors: Arup Dutta, Badrul Alam, Sayed M. Wazed, Taslima Newaz, Srobonti Dutta

Abstract:

Background: In today's world, with modern science and contemporary technology, a lot of diseases may be quickly identified and ruled out, but children's fever of unknown origin (FUO) still presents diagnostic difficulties in clinical settings. Any fever that reaches 38 °C and lasts for more than seven days without a known cause is now classified as a fever of unknown origin (FUO). Despite tremendous progress in the medical sector, fever of unknown origin, or FOU, persists as a major health issue and a major contributor to morbidity and mortality, particularly in children, and its spectrum is sometimes unpredictable. The etiology is influenced by geographic location, age, socioeconomic level, frequency of antibiotic resistance, and genetic vulnerability. Since there are currently no known diagnostic algorithms, doctors are forced to evaluate each patient one at a time with extreme caution. A persistent fever poses difficulties for both the patient and the doctor. This prospective observational study was carried out in a Bangladeshi tertiary care hospital from June 2018 to May 2019 with the goal of identifying the epidemiological patterns of fever of unknown origin in pediatric patients. Methods: It was a hospital-based prospective observational study carried out on 106 children (between 2 months and 12 years) with prolonged fever of >38.0 °C lasting for more than 7 days without a clear source. Children with additional chronic diseases or known immunodeficiency problems were not allowed. Clinical practices that helped determine the definitive etiology were assessed. Initial testing included a complete blood count, a routine urine examination, PBF, a chest X-ray, CRP measurement, blood cultures, serology, and additional pertinent investigations. The analysis focused mostly on the etiological results. The standard program SPSS 21 was used to analyze all of the study data. Findings: A total of 106 patients identified as having FUO were assessed, with over half (57.5%) being female and the majority (40.6%) falling within the 1 to 3-year age range. The study categorized the etiological outcomes into five groups: infections, malignancies, connective tissue conditions, miscellaneous, and undiagnosed. In the group that was being studied, infections were found to be the main cause in 44.3% of cases. Undiagnosed cases came in at 31.1%, cancers at 10.4%, other causes at 8.5%, and connective tissue disorders at 4.7%. Hepato-splenomegaly was seen in people with enteric fever, malaria, acute lymphoid leukemia, lymphoma, and hepatic abscesses, either by itself or in combination with other conditions. About 53% of people who were not diagnosed also had hepato-splenomegaly at the same time. Conclusion: Infections are the primary cause of PUO (pyrexia of unknown origin) in children, with undiagnosed cases being the second most common cause. An incremental approach is beneficial in the process of diagnosing a condition. Non-invasive examinations are used to diagnose infections and connective tissue disorders, while invasive investigations are used to diagnose cancer and other ailments. According to this study, the prevalence of undiagnosed diseases is still remarkable, so extensive historical analysis and physical examinations are necessary in order to provide a precise diagnosis.

Keywords: children, diagnostic challenges, fever of unknown origin, pediatric fever, undiagnosed diseases

Procedia PDF Downloads 27
231 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 409
230 Mathematics Professional Development: Uptake and Impacts on Classroom Practice

Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier

Abstract:

Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. Included is a close-up examination of a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two US states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data were collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used. The full paper will include the case study of Ana to illustrate the factors involved in what teachers take up and use from participating in the LTG PD.

Keywords: geometry, mathematics professional development, pedagogical content knowledge, teacher learning

Procedia PDF Downloads 125
229 Gas Phase Extraction: An Environmentally Sustainable and Effective Method for The Extraction and Recovery of Metal from Ores

Authors: Kolela J Nyembwe, Darlington C. Ashiegbu, Herman J. Potgieter

Abstract:

Over the past few decades, the demand for metals has increased significantly. This has led to a decrease and decline of high-grade ore over time and an increase in mineral complexity and matrix heterogeneity. In addition to that, there are rising concerns about greener processes and a sustainable environment. Due to these challenges, the mining and metal industry has been forced to develop new technologies that are able to economically process and recover metallic values from low-grade ores, materials having a metal content locked up in industrially processed residues (tailings and slag), and complex matrix mineral deposits. Several methods to address these issues have been developed, among which are ionic liquids (IL), heap leaching, and bioleaching. Recently, the gas phase extraction technique has been gaining interest because it eliminates many of the problems encountered in conventional mineral processing methods. The technique relies on the formation of volatile metal complexes, which can be removed from the residual solids by a carrier gas. The complexes can then be reduced using the appropriate method to obtain the metal and regenerate-recover the organic extractant. Laboratory work on the gas phase have been conducted for the extraction and recovery of aluminium (Al), iron (Fe), copper (Cu), chrome (Cr), nickel (Ni), lead (Pb), and vanadium V. In all cases the extraction revealed to depend of temperature and mineral surface area. The process technology appears very promising, offers the feasibility of recirculation, organic reagent regeneration, and has the potential to deliver on all promises of a “greener” process.

Keywords: gas-phase extraction, hydrometallurgy, low-grade ore, sustainable environment

Procedia PDF Downloads 132