Search results for: uranium mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1116

Search results for: uranium mining

1116 The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China

Authors: Lixin Zhao, Genmao Zhou

Abstract:

Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit.

Keywords: CO₂+O₂ ISL, industrial production, well field layout, uranium processing

Procedia PDF Downloads 139
1115 Uranium and Thorium Measurements in the Water along Oum Er-Rabia River (Morocco)

Authors: L. Oufni, M. Amrane

Abstract:

In this work, different river water samples have been collected and analyzed from different locations along Oum Er-Rabia River in Morocco. The uranium (238U) and thorium (232Th) concentrations were investigated in the studied river and dam water samples using Solid State Nuclear Track Detector (SSNTD). Mean activity concentrations of uranium and thorium in water were found to be between 12 – 37 Bq m^-3 and 2-10 Bq m^-3, respectively. The pH measured at all river water samples was slightly alkaline and ranged from 7.5 to 8.75. The electrical conductivity ranged from 2790 to 794 µS cm^-1. It was found that uranium and thorium concentrations were correlated with some chemical parameters in Oum Er-Rabia River water. The uranium concentrations found in river water are insignificant from the radiological point of view. The recommended value for uranium in drinking water based on its toxicity given by the Federal Environment Agency. This corresponds to an activity concentration of 238U of 123.5 mBq L^-1. In none of the samples, the uranium activity exceeds this value.

Keywords: uranium, thorium, conductivity, water, SSNTD

Procedia PDF Downloads 326
1114 The Concentration of Natural Alpha Emitters Radionuclides in Fish and Their Contribution to the Internal Dose

Authors: Wagner Pereira, Alphonse Kelecom

Abstract:

Mining can impact the environment, and the major impact of some mining activities is the radiological impact. In human populations, such impact is well studied and regulated. For biota, this assessment always had as focus the protection of human food chain. The protection of biota itself is a new approach, still developing. In order to contribute to this new approach, fish collecting was carried out in areas of naturally occurring radioactive materials (NORM), where a uranium mine is in decommissioning phase. The activity concentrations were analyzed, in Bq/kg wet weight, for Uranium (Unat), Th-232 and Ra-226 in the lambari fish Astyanax bimaculatus L. (omnivorous fish) and in the traíra fish Hoplias malabaricus Bloch, 1794 (carnivorous fish). Seven composite samples (that is: a sufficient number of individuals to reach at least 2 kg of fresh weight) were collected every six months between 2013 and 2015. The mean activity concentrations (AC) for uranium ranged from 1.12 (lambari) to 0.60 (lungfish). For Th, variations ranged from 0.30 to 0.05 (lambari and traíra, respectively). Finally, the Ra-226 means ranged between 0.08 and 0.03. No temporal trends of accumulation could be identified. Systematically, the AC values of radionuclides were higher in omnivorous fish when compared to the carnivore ones.

Keywords: biota dose, NORM, fish, environmental protection

Procedia PDF Downloads 221
1113 Liquid-Liquid Extraction of Uranium(vi) from Aqueous Solution Using 1-Hydroxyalkylidene-1,1-Diphosphonic Acids

Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi

Abstract:

The extraction of uranium(VI) from aqueous solutions has been investigated using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) and 1-hydroxydodecylidene-1,1-diphosphonic acid (HDDPA), which were synthesized and characterized by elemental analysis and by FT-IR, 1H NMR, 31P NMR spectroscopy. In this paper, we propose a tentative assignment for the shifts of those two ligands and their specific complexes with uranium(VI). We carried out the extraction of uranium(VI) by HHDPA and HDDPA from [carbon tetrachloride + 2-octanol (v/v: 90%/10%)] solutions. Various factors such as contact time, pH, organic/aqueous phase ratio and extractant concentration were considered. The optimum conditions obtained were: contact time= 20 min, organic/aqueous phase ratio = 1, pH value = 3.0 and extractant concentration = 0.3M. The extraction yields are more significant in the case of the HHDPA which is equipped with a hydrocarbon chain, longer than that of the HDDPA. Logarithmic plots of the uranium(VI) distribution ratio vs. pHeq and the extractant concentration showed that the ratio of extractant to extracted uranium(VI) (ligand/metal) is 2:1. The formula of the complex of uranium(VI) with the HHDPA and the DHDPA is UO2(H3L)2 (HHDPA and DHDPA are denoted as H4L). A spectroscopic analysis has showed that coordination of uranium(VI) takes place via oxygen atoms.

Keywords: liquid-liquid extraction, uranium(vi), 1-hydroxyalkylidene-1, 1-diphosphonic acids, hhdpa, hddpa, aqueous solution

Procedia PDF Downloads 245
1112 Preliminary Study on the Removal of Solid Uranium Compound in Nuclear Fuel Production System

Authors: Bai Zhiwei, Zhang Shuxia

Abstract:

By sealing constraint, the system of nuclear fuel production penetrates a trace of air in during its service. The vapor in the air can react with material in the system and generate solid uranium compounds. These solid uranium compounds continue to accumulate and attached to the production equipment and pipeline of system, which not only affects the operation reliability of production equipment and give off radiation hazard as well after system retired. Therefore, it is necessary to select a reasonable method to remove it. Through the analysis of physicochemical properties of solid uranium compounds, halogenated fluoride compounds are selected as a cleaning agent, which can remove solid uranium compounds effectively. This paper studied the related chemical reaction under the condition of static test and results show that the selection of high fluoride halogen compounds can be removed solid uranium compounds completely. The study on the influence of reaction pressure with the reaction rate discovered a phenomenon that the higher the pressure, the faster the reaction rate.

Keywords: fluoride halogen compound, remove, radiation, solid uranium compound

Procedia PDF Downloads 270
1111 Liquid-Liquid Extraction of Uranium (VI) from Aqueous Solution Using 1-Hydroxyalkylidene-1,1-Diphosphonic Acids

Authors: Mustapha Bouhoun Ali, Ahmed Yacine Badjah Hadj Ahmed, Mouloud Attou, Abdel Hamid Elias, Mohamed Amine Didi

Abstract:

The extraction of uranium(VI) from aqueous solutions has been investigated using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) and 1-hydroxydodecylidene-1,1-diphosphonic acid (HDDPA), which were synthesized and characterized by elemental analysis and by FT-IR, 1H NMR, 31P NMR spectroscopy. In this paper, we propose a tentative assignment for the shifts of those two ligands and their specific complexes with uranium(VI). We carried out the extraction of uranium(VI) by HHDPA and HDDPA from [carbon tetrachloride + 2-octanol (v/v: 90%/10%)] solutions. Various factors such as contact time, pH, organic/aqueous phase ratio and extractant concentration were considered. The optimum conditions obtained were: contact time = 20 min, organic/aqueous phase ratio = 1, pH value = 3.0 and extractant concentration = 0.3M. The extraction yields are more significant in the case of the HHDPA which is equipped with a hydrocarbon chain, longer than that of the HDDPA. Logarithmic plots of the uranium(VI) distribution ratio vs. pHeq and the extractant concentration showed that the ratio of extractant to extracted uranium(VI) (ligand/metal) is 2:1. The formula of the complex of uranium(VI) with the HHDPA and the DHDPA is UO2(H3L)2 (HHDPA and DHDPA are denoted as H4L). A spectroscopic analysis has showed that coordination of uranium(VI) takes place via oxygen atoms.

Keywords: liquid-liquid extraction, uranium(VI), 1-hydroxyalkylidene-1, 1-diphosphonic acids, HHDPA, HDDPA, aqueous solution

Procedia PDF Downloads 488
1110 Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes

Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng

Abstract:

The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.

Keywords: electrokinetic remediation, ion exchange membranes, soil, uranium

Procedia PDF Downloads 313
1109 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Heavy Water Reactor, Burn up, Minor Actinides, Neutronic Calculation

Procedia PDF Downloads 218
1108 Ix Operation for the Concentration of Low-Grade Uranium Leach Solution

Authors: Heba Ahmed Nawafleh

Abstract:

In this study, two commercial resins were evaluated to concentrate uranium from real solutions that were produced from analkaline leaching process of carbonate deposits. The adsorption was examined using a batch process. Different parameters were evaluated, including initial pH, contact time, temperature, adsorbent dose, and finally, uranium initial concentration. Both resins were effective and selective for uranium ions from the tested leaching solution. The adsorption isotherms data were well fitted for both resins using the Langmuir model. Thermodynamic functions (Gibbs free energy change ΔG, enthalpy change ΔH, and entropy change ΔS) were calculated for the adsorption of uranium. The result shows that the adsorption process is endothermic, spontaneous, and chemisorption processes took place for both resins. The kinetic studies showed that the equilibrium time for uranium ions is about two hours, where the maximum uptake levels were achieved. The kinetics studies were carried out for the adsorption of U ions, and the data was found to follow pseudo-second-order kinetics, which indicates that the adsorption of U ions was chemically controlled. In addition, the reusability (adsorption/ desorption) process was tested for both resins for five cycles, these adsorbents maintained removal efficiency close to first cycle efficiency of about 91% and 80%.

Keywords: uranium, adsorption, ion exchange, thermodynamic and kinetic studies

Procedia PDF Downloads 54
1107 Atomic Town: History and Vernacular Heritage at the Mary Kathleen Uranium Mine in Australia

Authors: Erik Eklund

Abstract:

Mary Kathleen was a purpose-built company town located in northwest Queensland in Australia. It was created to work on a rich uranium deposit discovered in the area in July 1954. The town was complete by 1958, possessing curved streets, modern materials, and a progressive urban planning scheme. Formed in the minds of corporate executives and architects and made manifest in arid zone country between Cloncurry and Mount Isa, Mary Kathleen was a modern marvel in the outback, a town that tamed the wild country of northwest Queensland, or so it seemed. The town was also a product of the Cold War. In the context of a nuclear arms race between the Soviet Union and her allies, and the United States of America (USA) and her Allies, a rapid rush to locate, mine, and process uranium after 1944 led to the creation of uranium towns in Czechoslovakia, Canada, the Soviet Union, USA and Australia of which Mary Kathleen was one such example. Mary Kathleen closed in 1981, and most of the town’s infrastructure was removed. Since then, the town’s ghostly remains have attracted travellers and tourists. Never an officially-sanctioned tourist site, the area has nevertheless become a regular stop for campers and day trippers who have engaged with the site often without formal interpretation. This paper explores the status of this vernacular heritage and asks why it has not gained any official status and what visitors might see in the place despite its uncertain status.

Keywords: uranium mining, planned communities, official heritage, vernacular heritage, Australian history

Procedia PDF Downloads 51
1106 Results of EPR Dosimetry Study of Population Residing in the Vicinity of the Uranium Mines and Uranium Processing Plant

Authors: K. Zhumadilov, P. Kazymbet, A. Ivannikov, M. Bakhtin, A. Akylbekov, K. Kadyrzhanov, A. Morzabayev, M. Hoshi

Abstract:

The aim of the study is to evaluate the possible excess of dose received by uranium processing plant workers. The possible excess of dose of workers was evaluated with comparison with population pool (Stepnogorsk) and control pool (Astana city). The measured teeth samples were extracted according to medical indications. In total, twenty-seven tooth enamel samples were analyzed from the residents of Stepnogorsk city (180 km from Astana city, Kazakhstan). About 6 tooth samples were collected from the workers of uranium processing plant. The results of tooth enamel dose estimation show us small influence of working conditions to workers, the maximum excess dose is less than 100 mGy. This is pilot study of EPR dose estimation and for a final conclusion additional sample is required.

Keywords: EPR dose, workers, uranium mines, tooth samples

Procedia PDF Downloads 367
1105 Qualitative and Quantitative Analysis of Uranium in Ceramic Tiles Using Laser-Induced Breakdown Spectroscopy and Gamma-Ray Spectroscopy

Authors: Reem M. Altuwirqi, Mohja S. Summan, Entesar A. Ganash, Safia H. Hamidalddin, Tamer E. Youssef, Mohammed A. Gondal

Abstract:

Laser-Induced Breakdown Spectroscopy (LIBS) technique using 1064 nm Nd: YAG laser was optimized and applied for investigating the existence of radioactive elements (uranium) in twenty-six different ceramic tiles. These tiles were collected from the local Saudi market. Qualitative and quantitative analysis for trace radioactive elements like uranium in these samples was achieved using LIBS. The plasma parameters such as temperature and electron density were calculated to confirm that the plasma generated by the tile samples under laser irradiation can be related to analyte concentrations. In order to perform a quantitative analysis, calibration curves were constructed for two uranium lines (U II (424.166 nm) and U II (424.437 nm)). The Uranium activity concentration in Bq/kg for each sample was measured. Cross-validation of LIBS results with a conventional technique such as Gamma-Ray spectroscopy was also carried out for five ceramic samples. The results show that the LIBS method is an effective way of determining radioactive elements such as uranium in ceramic tiles. Moreover, the uranium concentrations of the investigated samples were below the permissible safe limit for building materials in the majority of samples. Such LIBS system could be applied to determine the presence of natural radioactive elements in ceramic tiles and their radioactivity level rapidly to ensure that they are under the safe allowed limit.

Keywords: laser-induced breakdown spectroscopy, gamma-ray spectroscopy, natural radioactivity, uranium, ceramic tiles

Procedia PDF Downloads 134
1104 On the Qarat Kibrit Salt Dome Faulting System South of Adam, Oman: In Search of Uranium Anomalies

Authors: Alaeddin Ebrahimi, Narasimman Sundararajan, Bernhard Pracejus

Abstract:

Development of salt domes, often a rising from depths of some 10 km or more, causes an intense faulting of the surrounding host rocks (salt tectonics). The fractured rocks then present ideal space for oil that can migrate and get trapped. If such moving of hydrocarbons passes uranium-carrying rock units (e.g., shales), uranium is collected and enriched by organic carbon compounds. Brines from the salt body are also ideal carriers for oxidized uranium species and will further dislocate uranium when in contact with uranium-enriched oils. Uranium then has the potential to mineralize in the vicinity of the dome (blue halite is evidence for radiation having affected salt deposits elsewhere in the world). Based on this knowledge, the Qarat Kibrit salt dome was investigated by a well-established geophysical method like very low frequency electromagnetic (VLF-EM) along five traverses approximately 250 m in length (10 m intervals) in order to identify subsurface fault systems. In-phase and quadrature components of the VLF-EM signal were recorded at two different transmitter frequencies (24.0 and 24.9 kHz). The images of Fraser filtered response of the in-phase components indicate a conductive zone (fault) in the southeast and southwest of the study area. The Karous-Hjelt current density pseudo section delineates subsurface faults at depths between 10 and 40 m. The stacked profiles of the Fraser filtered responses brought out two plausible trends/directions of faults. However, there seems to be no evidence for uranium enrichment has been recorded in this area.

Keywords: salt dome, uranium, fault, in-phase component, quadrature component, Fraser filter, Karous-Hjelt current density

Procedia PDF Downloads 203
1103 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 268
1102 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.

Keywords: uranium diNitride, UN2, DFT+U, elastic properties

Procedia PDF Downloads 404
1101 Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border

Authors: Fengqing Li, Petra Schneider

Abstract:

Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF.

Keywords: Central Asia, contaminant transport modelling, radioactive residue, transboundary conflict

Procedia PDF Downloads 83
1100 Recovery of Rare Earths and Scandium from in situ Leaching Solutions

Authors: Maxim S. Botalov, Svetlana М. Titova, Denis V. Smyshlyaev, Grigory M. Bunkov, Evgeny V. Kirillov, Sergey V. Kirillov, Maxim A. Mashkovtsev, Vladimir N. Rychkov

Abstract:

In uranium production, in-situ leaching (ISL) with its relatively low cost has become an important technology. As the orebody containing uranium most often contains a considerable value of other metals, particularly rare earth metals it has rendered feasible to recover the REM from the barren ISL solutions, from which the major uranium content has been removed. Ural Federal University (UrFU, Ekaterinburg, Russia) have performed joint research on the development of industrial technologies for the extraction of REM and Scandium compounds from Uranium ISL solutions. Leaching experiments at UrFU have been supported with multicomponent solution model. The experimental work combines solvent extraction with advanced ion exchange methodology in a pilot facility capable of treating 500 kg/hr of solids. The pilot allows for the recovery of a 99% concentrate of scandium oxide and collective concentrate with over 50 % REM content, with further recovery of heavy and light REM concentrates (99%).

Keywords: extraction, ion exchange, rare earth elements, scandium

Procedia PDF Downloads 193
1099 Uranium Migration Process: A Multi-Technique Investigation Strategy for a Better Understanding of the Role of Colloids

Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes

Abstract:

The knowledge of uranium migration processes within underground environments is a major issue in the environmental risk assessment associated with nuclear activities. This process is identified as strongly controlled by adsorption mechanisms, thus leading to strongly delayed migration paths. Colloidal ligands are likely to significantly increase the mobility of uranium in natural environments. The ability of colloids to mobilize and transport uranium depends on their origin, their nature, their structure, their stability and their reactivity with uranium. Thus, the colloidal mobilization and transport properties are often described as site-specific. In this work, the colloidal phases of two leachates obtained from two different horizons of the same podzolic soil were characterized with a speciation approach. For this purpose, a multi-technique strategy was used, based on Field-Flow Fractionation coupled to Ultraviolet, Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry (AF4-UV-MALS-ICPMS), Transmission Electron Microscopy (TEM), Electrospray Ionization Orbitrap Mass Spectrometry (ESI-Orbitrap), and Time-Resolved Laser Fluorescence Spectroscopy (TRLFS-EEM). Thus, elemental composition, size distribution, microscopic structure, colloidal stability and possible organic and/or inorganic content of colloids were determined, as well as their association with uranium. The leachates exhibit differences in their physical and chemical characteristics, mainly in the nature of organic matter constituents. The multi-technique investigation strategy used provides original data about colloidal phase structure and composition, offering a new vision of the way the uranium can be mobilized and transported in the considered soil. This information is a real significant contribution opening the way to our understanding and predicting of the colloidal transport.

Keywords: colloids, migration, multi-technique, speciation, transport, uranium

Procedia PDF Downloads 113
1098 Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid

Authors: H. Aghayan, F. A. Hashemi, R. Yavari, S. Zolghadri

Abstract:

In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N2 adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model.

Keywords: platelet SBA-15, tungstomolybdophosphoric acid, adsorption, uranium ion

Procedia PDF Downloads 150
1097 The Solvent Extraction of Uranium, Plutonium and Thorium from Aqueous Solution by 1-Hydroxyhexadecylidene-1,1-Diphosphonic Acid

Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi

Abstract:

In this paper, the solvent extraction of uranium(VI), plutonium(IV) and thorium(IV) from aqueous solutions using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) in treated kerosene has been investigated. The HHDPA was previously synthesized and characterized by FT-IR, 1H NMR, 31P NMR spectroscopy and elemental analysis. The effects contact time, initial pH, initial metal concentration, aqueous/organic phase ratio, extractant concentration and temperature on the extraction process have been studied. An empirical modelling was performed by using a 25 full factorial design, and regression equation for extraction metals was determined from the data. The conventional log-log analysis of the extraction data reveals that ratios of extractant to extracted U(VI), Pu(IV) and Th(IV) are 1:1, 1:2 and 1:2, respectively. Thermodynamic parameters showed that the extraction process was exothermic heat and spontaneous. The obtained optimal parameters were applied to real effluents containing uranium(VI), plutonium(IV) and thorium(IV) ions.

Keywords: solvent extraction, uranium, plutonium, thorium, 1-hydroxyhexadecylidene-1-1-diphosphonic acid, aqueous solution

Procedia PDF Downloads 246
1096 Natural Radioactivity in Tunisian Bottled Mineral Waters

Authors: Salam Labidi, Sonia Machraoui, Souha Gharbi

Abstract:

Radium isotopes (226Ra, 228Ra) and uranium isotopes (234U, 238U) activity concentrations were determined in most popular Tunisian bottled mineral waters samples. Activity concentrations of uranium were studied by radiochemical separation procedures followed by alpha spectrometry and that of radium isotopes by gamma-ray spectrometry. The activity concentrations of 238U, 234U, 226Ra and 228Ra in water samples varied in range 3.3 - 22.5 mBq.L−1, 4.0 - 34.2 mBq L−1, 2.0 - 67.0 mBq L−1 and 2.0 - 30.2 mBq L−1, respectively. These values are comparable with those reported for many other countries in the world for different types of water. Based on the activity concentration results obtained in this study, the estimated annual ingestion dose rates for three different age groups (babies, children and adults) due to the ingestion of radium and uranium isotopes through drinking water are lower than the limit of intake prescribed by WHO. The annual doses exceed the recommended value of 0.1 mSv y-1 in one case for babies.

Keywords: mineral water, natural radioactivity, radiation dose, radium, uranium

Procedia PDF Downloads 227
1095 Study of Radiological and Chemical Effects of Uranium in Ground Water of SW and NE Punjab, India

Authors: Komal Saini, S. K. Sahoo, B. S. Bajwa

Abstract:

The Laser Fluorimetery Technique has been used for the microanalysis of uranium content in water samples collected from different sources like the hand pumps, tube wells in the drinking water samples of SW & NE Punjab, India. The geographic location of the study region in NE Punjab is between latitude 31.21º- 32.05º N and longitude 75.60º-76.14º E and for SW Punjab is between latitude 29.66º-30.48º N and longitude 74.69º-75.54º E. The purpose of this study was mainly to investigate the uranium concentration levels of ground water being used for drinking purposes and to determine its health effects, if any, to the local population of these regions. In the present study 131 samples of drinking water collected from different villages of SW and 95 samples from NE, Punjab state, India have been analyzed for chemical and radiological toxicity. In the present investigation, uranium content in water samples of SW Punjab ranges from 0.13 to 908 μgL−1 with an average of 82.1 μgL−1 whereas in samples collected from NE- Punjab, it ranges from 0 to 28.2 μgL−1 with an average of 4.84 μgL−1. Thus, revealing that in the SW- Punjab 54 % of drinking water samples have uranium concentration higher than international recommended limit of 30 µgl-1 (WHO, 2011) while 35 % of samples exceeds the threshold of 60 µgl-1 recommended by our national regulatory authority of Atomic Energy Regulatory Board (AERB), Department of Atomic Energy, India, 2004. On the other hand in the NE-Punjab region, none of the observed water sample has uranium content above the national/international recommendations. The observed radiological risk in terms of excess cancer risk ranges from 3.64x10-7 to 2.54x10-3 for SW-Punjab, whereas for NE region it ranges from 0 to 7.89x10-5. The chemical toxic effect in terms of Life-time average Daily Dose (LDD) and Hazard Quotient (HQ) have also been calculated. The LDD for SW-Punjab varies from 0.0098 to 68.46 with an average of 6.18 µg/ kg/day whereas for NE region it varies from 0 to 2.13 with average 0.365 µg/ kg/day, thus indicating presence of chemical toxicity in SW Punjab as 35% of the observed samples in the SW Punjab are above the recommendation limit of 4.53 µg/ kg/day given by AERB for 60 µgl-1 of uranium. Maximum & Minimum values for hazard quotient for SW Punjab is 0.002 & 15.11 with average 1.36 which is considerably high as compared to safe limit i.e. 1. But for NE Punjab HQ varies from 0 to 0.47. The possible sources of high uranium observed in the SW- Punjab will also be discussed.

Keywords: uranium, groundwater, radiological and chemical toxicity, Punjab, India

Procedia PDF Downloads 347
1094 FTIR Characterization of EPS Ligands from Mercury Resistant Bacterial Isolate, Paenibacillus jamilae PKR1

Authors: Debajit Kalita, Macmillan Nongkhlaw, S. R. Joshi

Abstract:

Mercury (Hg) is a highly toxic heavy metal released both from naturally occurring volcanoes and anthropogenic activities like alkali and mining industries as well as biomedical wastes. Exposure to mercury is known to affect the nervous, gastrointestinal and renal systems. In the present study, a bacterial isolate identified using 16S rRNA marker as Paenibacillus jamilae PKR1 isolated from India’s largest sandstone-type uranium deposits, containing an average of 0.1% U3O8, was found to be resistance to Hg contamination under culture conditions. It showed strong hydrophobicity as revealed by SAT, MATH, PAT, SAA adherence assays. The Fourier Transform Infrared (FTIR) spectra showed the presence of hydroxyl, amino and carboxylic functional groups on the cell surface EPS which are known to contribute in the binding of metals. It is proposed that the characterized isolate tolerating up to 4.0mM of mercury provides scope for its application in bioremediation of mercury from contaminated sites.

Keywords: mercury, Domiasiat, uranium, paenibacillus jamilae, hydrophobicity, FTIR

Procedia PDF Downloads 377
1093 A Review Paper on Data Mining and Genetic Algorithm

Authors: Sikander Singh Cheema, Jasmeen Kaur

Abstract:

In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.

Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining

Procedia PDF Downloads 562
1092 The Effect of Additive Acid on the Phytoremediation Efficiency

Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh

Abstract:

Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.

Keywords: phytoremediation, heavy metal, wheat, soil

Procedia PDF Downloads 292
1091 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: mining big data, big data, machine learning, telecommunication

Procedia PDF Downloads 359
1090 Study of the Transport of ²²⁶Ra Colloidal in Mining Context Using a Multi-Disciplinary Approach

Authors: Marine Reymond, Michael Descostes, Marie Muguet, Clemence Besancon, Martine Leermakers, Catherine Beaucaire, Sophie Billon, Patricia Patrier

Abstract:

²²⁶Ra is one of the radionuclides resulting from the disintegration of ²³⁸U. Due to its half-life (1600 y) and its high specific activity (3.7 x 1010 Bq/g), ²²⁶Ra is found at the ultra-trace level in the natural environment (usually below 1 Bq/L, i.e. 10-13 mol/L). Because of its decay in ²²²Rn, a radioactive gas with a shorter half-life (3.8 days) which is difficult to control and dangerous for humans when inhaled, ²²⁶Ra is subject to a dedicated monitoring in surface waters especially in the context of uranium mining. In natural waters, radionuclides occur in dissolved, colloidal or particular forms. Due to the size of colloids, generally ranging between 1 nm and 1 µm and their high specific surface areas, the colloidal fraction could be involved in the transport of trace elements, including radionuclides in the environment. The colloidal fraction is not always easy to determine and few existing studies focus on ²²⁶Ra. In the present study, a complete multidisciplinary approach is proposed to assess the colloidal transport of ²²⁶Ra. It includes water sampling by conventional filtration (0.2µm) and the innovative Diffusive Gradient in Thin Films technique to measure the dissolved fraction (<10nm), from which the colloidal fraction could be estimated. Suspended matter in these waters were also sampled and characterized mineralogically by X-Ray Diffraction, infrared spectroscopy and scanning electron microscopy. All of these data, which were acquired on a rehabilitated former uranium mine, allowed to build a geochemical model using the geochemical calculation code PhreeqC to describe, as accurately as possible, the colloidal transport of ²²⁶Ra. Colloidal transport of ²²⁶Ra was found, for some of the sampling points, to account for up to 95% of the total ²²⁶Ra measured in water. Mineralogical characterization and associated geochemical modelling highlight the role of barite, a barium sulfate mineral well known to trap ²²⁶Ra into its structure. Barite was shown to be responsible for the colloidal ²²⁶Ra fraction despite the presence of kaolinite and ferrihydrite, which are also known to retain ²²⁶Ra by sorption.

Keywords: colloids, mining context, radium, transport

Procedia PDF Downloads 121
1089 Metal Contaminants in River Water and Human Urine after an Episode of Major Pollution by Mining Wastes in the Kasai Province of DR Congo

Authors: Remy Mpulumba Badiambile, Paul Musa Obadia, Malick Useni Mutayo, Jeef Numbi Mukanya, Patient Nkulu Banza, Tony Kayembe Kitenge, Erik Smolders, Jean-François Picron, Vincent Haufroid, Célestin Banza Lubaba Nkulu, Benoit Nemery

Abstract:

Background: In July 2021, the Tshikapa river became heavily polluted by mining wastes from a diamond mine in neighboring Angola, leading to massive killing of fish, as well as disease and even deaths among residents living along the Tshikapa and Kasai rivers, a major contributory of the Congo river. The exact nature of the pollutants was unknown. Methods: In a cross-sectional study conducted in the city of Tshikapa in August 2021, we enrolled by opportunistic sampling 65 residents (11 children < 16y) living alongside the polluted rivers and 65 control residents (5 children) living alongside a non-affected portion of the Kasai river (upstream from the Tshikapa-Kasai confluence). We administered a questionnaire and obtained spot urine samples for measurements of thiocyanate (a metabolite of cyanide) and 26 trace metals (by ICP-MS). Metals (and pH) were also measured in samples of river water. Results: Participants from both groups consumed river water. In the area affected by the pollution, most participants had eaten dead fish. Prevalences of reported health symptoms were higher in the exposed group than among controls: skin rashes (52% vs 0%), diarrhea (40% vs 8%), abdominal pain (8% vs 3%), nausea (3% vs 0%). In polluted water, concentrations [median (range)] were only higher for nickel [(2.2(1.4–3.5)µg/L] and uranium [78(71–91)ng/L] than in non-polluted water [0.8(0.6–1.9)µg/L; 9(7–19)ng/L]. In urine, concentrations [µg/g creatinine, median(IQR)] were significantly higher in the exposed group than in controls for lithium [19.5(12.4–27.3) vs 6.9(5.9–12.1)], thallium [0.41(0.31–0.57) vs 0.19(0.16–0.39)], and uranium [0.026(0.013–0.037)] vs 0.012(0.006–0.024)]. Other elements did not differ between the groups, but levels were higher than reference values for several metals (including manganese, cobalt, nickel, and lead). Urinary thiocyanate concentrations did not differ. Conclusion: This study, after an ecological disaster in the DRC, has documented contamination of river water by nickel and uranium and high urinary levels of some trace metals among affected riverine populations. However, the exact cause of the massive fish kill and disease among residents remains elusive. The capacity to rapidly investigate toxic pollution events must be increased in the area.

Keywords: metal contaminants, river water and human urine, pollution by mining wastes, DR Congo

Procedia PDF Downloads 107
1088 Project Risk Assessment of the Mining Industry of Ghana

Authors: Charles Amoatey

Abstract:

The issue of risk in the mining industry is a global phenomenon and the Ghanaian mining industry is not exempted. The main purpose of this study is to identify the critical risk factors affecting the mining industry. The study takes an integrated view of the mining industry by examining the contribution of various risk factors to mining project failure in Ghana. A questionnaire survey was conducted to solicit the critical risk factors from key mining practitioners. About 80 respondents from 11 mining firms participated in the survey. The study identified 22 risk factors contributing to mining project failure in Ghana. The five most critical risk factors based on both probability of occurrence and impact were: (1) unstable commodity prices, (2) inflation/exchange rate, (3) land degradation, (4) high cost of living and (5) government bureaucracy for obtaining licenses. Furthermore, the study found that risk assessment in the mining sector has a direct link with mining project sustainability. Mitigation measures for addressing the identified risk factors were discussed. The key findings emphasize the need for a comprehensive risk management culture in the entire mining industry.

Keywords: risk, assessment, mining, Ghana

Procedia PDF Downloads 401
1087 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques

Authors: Tosin Ige

Abstract:

Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.

Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique

Procedia PDF Downloads 123