Search results for: improve efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13208

Search results for: improve efficiency

12158 Green Walls and Living Facades: The Portuguese Experience

Authors: Andreia Cortes, Carla Pimentel-Rodrigues, Joao Almeida, Myriam Kanoun-Boule, Carla Carvalho, Antonio Tadeu, Armando Silva-Afonso

Abstract:

The adoption of green infrastructure is nowadays encouraged as an essential measure of urban planning and territorial development whenever it offers a better alternative, or is complementary, to current solutions. Green walls and living facades often provide healthy alternatives to traditional grey infrastructures, offering many benefits for both citizens and cities. Beyond the ability to improve environmental conditions and quality of life, they can augment the energy efficiency of buildings, enhance biodiversity and deliver a range of ecosystem services such as water purification, reduction of the urban heat island effect, improvement of air quality and climate change adaptation. For this communication, a systematic survey of the existing green walls and living facades in Portugal was carried out. Different systems were analyzed and compared in terms of dimensions, constructive solutions, vegetative species, maintenance necessities and environmental aspects.

Keywords: green buildings, green walls, living facades, sustainability construction

Procedia PDF Downloads 405
12157 Preparation of Ag-Doped and MOFs Coupled-LaFeO₃ Nanosheet for Electrochemical CO₂ Conversion

Authors: Iltaf Khan, Munzir H. Suliman, Muhammad Usman

Abstract:

The rapid growth of modern industries has led to increased energy demand and worsened fossil fuel depletion, resulting in global warming, while organic pollutants pose significant threats to aquatic environments due to their stability, insolubleness, and non-biodegradability. So, scientists are investigating high-performance materials to resolve these issues. In this study, we prepared LaFeO₃ nanosheets (LFONS) employing a solvothermal method via a soft template such as polyvinylpyrrolidone (PVP). The LFONS have good performance regarding surface area and charge separation as compared to LaFeO₃ nanoparticles (LFONP). To improve the efficiency of LFONS, it was further modified with Ag and ZIF-67 and utilized for CO₂ conversion. Herein, the results confirm that Ag-doped and ZIF-67 coupled LFONS (ZIF-67/Ag-LFONS) exhibit superior performance compared to pristine LFONP. In addition, the stability tests confirm that our optimal sample is the most active and stable one among various nanocomposites. Ultimately, our studies will open a new pave for cost-effective, eco-friendly, and electroactive nanomaterials for CO₂ conversion.

Keywords: LaFeO₃ nanosheets, Ag incorporation, MOFs coupling, CO₂ conversion

Procedia PDF Downloads 30
12156 Removal of Nitenpyram from Farmland Runoff by an Integrated Ecological Ditches with Constructed Wetland System

Authors: Dan Qu, Dezhi Sun, Benhang Li

Abstract:

The removal of Nitenpyram from farmland runoff by an integrated eco-ditches and constructed wetland system was investigated in the case of different HRT. Experimental results show that the removal of COD, N and P was not influenced by the Nitenpyram. When the HRT was 2.5 d, 2 d, and 1 d, the Nitenpyram removal efficiency could reach 100%, 100% and 84%, respectively. The removal efficiency in the ecological ditches was about 38%-40% in the case of different HRT, while that in the constructed wetland was influenced by the HRT variation. The optimum HRT for Nitenpyram and pollutants removal was 2 d. The substrate zeolite with soil and hollow brick layer enabled higher Nitenpyram removal rates, probably due to the cooperative phenomenon of plant uptake and microbiological deterioration as well as the adsorption by the substrate.

Keywords: ecological ditch, vertical flow constructed wetland, hydraulic retention time, Nitenpyram

Procedia PDF Downloads 374
12155 Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia

Authors: A. Felimban, A. Prieto, U. Knaack, T. Klein

Abstract:

This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios.

Keywords: energy efficiency, energy retrofitting, hot arid, Saudi Arabia

Procedia PDF Downloads 108
12154 Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel

Authors: Roman Kalvin, Anam Nadeem, Saba Arif

Abstract:

Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted.

Keywords: turbocharger, turbine blades, structural steel, ANSYS

Procedia PDF Downloads 224
12153 Starch-Based Systems for the Nano-Delivery of Quercetin

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

Quercetin is a naturally occurring polyphenol found in many vegetables, such as onion, with antioxidant properties. It is a dietary component with a documented role in reducing different human cancers. However, its low bioavailability, poor water solubility, and chemical instability limit its applications. Different nano-delivery systems such as nanoparticles, micelles, and nanohydrogels have been studied in order to improve the bioavailability of quercetin. Nanoparticles based on natural polymers such as starch have the advantage of being biocompatible, biodegradable, and non-toxic. In this study, quercetin was loaded into starch nanoparticles using a nanoprecipitation method. Different routes, using sodium tripolyphosphate and Tween® 80 as tensioactive agents, were tested in order to obtain an optimized starch-based nano-delivery system. The characterization of the nanoparticles loaded with quercetin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that starch-based systems could be successfully used for the nano-delivery of quercetin.

Keywords: starch nanoparticles, nanoprecipitation, quercetin, biomedical applications

Procedia PDF Downloads 115
12152 Myoelectric Analysis for the Assessment of Muscle Functions and Fatigue Monitoring of Upper Extremity for Stroke Patients Performing Robot-Assisted Bilateral Training

Authors: Hsiao-Lung Chan, Ching-Yi Wu, Yan-Zou Lin, Yo Chiao, Ya-Ju Chang

Abstract:

Robot-assisted bilateral arm training has demonstrated useful to improve motor control in stroke patients and save human resources. In clinics, the efficiency of this treatment is mostly performed by comparing functional scales before and after rehabilitation. However, most of these assessments are based on behavior evaluation. The underlying improvement of muscle activation and coordination is unknown. Moreover, stroke patients are easier to have muscle fatigue under robot-assisted rehabilitation due to the weakness of muscles. This safety issue is still less studied. In this study, EMG analysis was applied during training. Our preliminary results showed the co-contraction index and co-contraction area index can delineate the improved muscle coordination of biceps brachii vs. flexor carpiradialis. Moreover, the smoothed, normalized cycle-by-cycle median frequency of left and right extensor carpiradialis decreased as the training progress, implying the occurrence of muscle fatigue.

Keywords: robot-assisted rehabilitation, strokes, muscle coordination, muscle fatigue

Procedia PDF Downloads 454
12151 Development of Mobile Application for Energy Consumption Assessment of University Buildings

Authors: MinHee Chung, BoYeob Lee, Yuri Kim, Eon Ku Rhee

Abstract:

With an increase in the interest in the energy conservation for buildings, and the emergence of many methods and easily-understandable approaches to it, energy conservation has now become the public’s main interest, as compared to in the past when it was only focused upon by experts. This study aims to help the occupants of a building to understand the energy efficiency and consumption of the building by providing them information on the building’s energy efficiency through a mobile application. The energy performance assessment models are proposed on the basis of the actual energy usage and building characteristics such as the architectural scheme and the building equipment. The university buildings in Korea are used as a case to demonstrate the mobile application.

Keywords: energy consumption, energy performance assessment, mobile application, university buildings

Procedia PDF Downloads 525
12150 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk

Authors: Moses Jenkins

Abstract:

Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.

Keywords: insulation, condensation, masonry, historic

Procedia PDF Downloads 148
12149 Detergent Removal from Rinsing Water by Peroxi Electrocoagulation Process

Authors: A. Benhadji, M. Taleb Ahmed

Abstract:

Among the various methods of treatment, advanced oxidation processes (AOP) are the most promising ones. In this study, Peroxi Electrocoagulation Process (PEP) was investigated for the treatment of detergent wastewater. The process was compared with electrooxidation treatment. The results showed that chemical oxygen demand (COD) was high 7584 mgO2.L-1, while the biochemical oxygen demand was low (250 mgO2.L-1). This wastewater was hardly biodegradable. Electrochemical process was carried out for the removal of detergent using a glass reactor with a volume of 1 L and fitted with three electrodes. A direct current (DC) supply was used. Samples were taken at various current density (0.0227 A/cm2 to 0.0378 A/cm2) and reaction time (1-2-3-4 and 5 hour). Finally, the COD was determined. The results indicated that COD removal efficiency of PEP was observed to increase with current intensity and reached to 77% after 5 h. The highest removal efficiency was observed after 5 h of treatment.

Keywords: AOP, COD, detergent, PEP, wastewater

Procedia PDF Downloads 103
12148 Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance

Authors: Saad Odeh

Abstract:

Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels.

Keywords: PV panel, thermal performance, roof shading, energy efficiency

Procedia PDF Downloads 195
12147 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews

Authors: Vishnu Goyal, Basant Agarwal

Abstract:

Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.

Keywords: feature selection, sentiment analysis, hybrid feature selection

Procedia PDF Downloads 309
12146 Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder

Authors: Baha Vural Kök, Mehmet Yilmaz, Mustafa Akpolat, Cihat Sav

Abstract:

Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder.

Keywords: bitumen, crumb rubber, modification, rheological properties

Procedia PDF Downloads 291
12145 Thermal Performance of Dual Flame Impinging Normally on to a Flat Surface

Authors: Satpal Singh, Subhash Chander

Abstract:

An experimental study has been conducted to evaluate the thermal performance of the CNG/air dual flame impinging normally on to a flat surface. The stability limits for the dual flame under both impinging and free conditions have been evaluated to select experimental operating range. Dual flame shape and structure have been explained with direct flame image and schematic diagram indicating modification in recirculation zone in presence of inner flame. Effects of various operating parameters like H/Dh, Re(o), Φ(o), and θ(o) on heat transfer characteristics have been discussed. Inner non-swirling flame Reynolds number (Re(i)) and equivalence ratio (Φ(i)) were kept constant. Heating patterns in the impingement region around the stagnation point have been altered significantly with change in the values of H/Dh, Re(o), Φ(o), and θ(o). The axial flow of inner flame has been notably effected with increase in Re(o). Heating was most favorable near stoichiometeric conditions of the outer swirling flame. However, the effect of change in swirl intensity (expressed in terms of θ(o)) on overall heat transfer efficiency was not as significant as in the case of other parameters. It has been inferred that best performance (higher uniformity and efficiency) of the dual flame impinging on a flat surface can be achieved at moderate value of separation distance (H/Dh of 2-3) and outer swirling flame Reynolds number (Re(o) of 7000-9000) under stoichiometeric conditions.

Keywords: dual flame, heat transfer, impingement, swirling insert, transmission efficiency

Procedia PDF Downloads 278
12144 Preparation and Visible Light Photoactivity of N-Doped ZnO/ZnS Photocatalysts

Authors: Nuray Güy, Mahmut Özacar

Abstract:

Semiconductor nanoparticles such as TiO₂ and ZnO as photocatalysts are very efficient catalysts for wastewater treatment by the chemical utilization of light energy, which is capable of converting the toxic and nonbiodegradable organic compounds into carbon dioxide and mineral acids. ZnO semiconductor has a wide bandgap energy of 3.37 eV and a relatively large exciton binding Energy (60 meV), thus can absorb only UV light with the wavelength equal to or less than 385 nm. It exhibits low efficiency under visible light illumination due to its wide band gap energy. In order to improve photocatalytic activity of ZnO under visible light, band gap of ZnO may be narrowed by doping such as N, C, S nonmetal ions and coupled two separate semiconductors possessing different energy levels for their corresponding conduction and valence bands. ZnS has a wider band gap (Eg=3.7 eV) than ZnO and generates electron–hole pairs by photoexcitation rapidly. In the present work, N doped ZnO/ZnS nano photocatalysts with visible-light response were synthesized by microwave-hydrothermal method using thiourea as N source. The prepared photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible (UV–vis). The photocatalytic activities samples and undoped ZnO have been studied for the degradation of dye, and have also been compared with together.

Keywords: photocatalyst, synthesis, visible light, ZnO/ZnS

Procedia PDF Downloads 265
12143 Agent-Based Modeling of Pedestrian Corridor Congestion on the Characteristics of Physical Space Form

Authors: Sun Shi, Sun Cheng

Abstract:

The pedestrian corridor is the most crowded area in the public space. The crowded severity has been focused on the field of evacuation strategies of the entrance in large public spaces. The aim of this paper is to analyze the walking efficiency in different spaces of pedestrian corridor with the variation of spatial parameters. The congestion condition caused by the variation of walking efficiency is modeled as well. This study established the space model of the walking corridor by setting the width, slope, turning form and turning angle of the pedestrian corridor. The pedestrian preference of walking mode varied with the difference of the crowded severity, walking speed, field of vision, sight direction and the expected destination, which is influenced by the characters of physical space form. Swarm software is applied to build Agent model. According to the output of the Agent model, the relationship between the pedestrian corridor width, ground slope, turning forms, turning angle and the walking efficiency, crowded severity is acquired. The results of the simulation can be applied to pedestrian corridor design in order to reduce the crowded severity and the potential safety risks caused by crowded people.

Keywords: crowded severity, multi-agent, pedestrian preference, urban space design

Procedia PDF Downloads 195
12142 Universiti Sains Malaysia

Authors: Eisa A. Alsafran, Francis T. Edum-Fotwe, Wayne E. Lord

Abstract:

The degree to which a public client actively participates in Public Private Partnership (PPP) schemes, is seen as a determinant of the success of the arrangement, and in particular, efficiency in the delivery of the assets of any infrastructure development. The asset delivery is often an early barometer for judging the overall performance of the PPP. Currently, there are no defined descriptors for the degree of such participation. The lack of defined descriptors makes the association between the degree of participation and efficiency of asset delivery, difficult to establish. This is particularly so if an optimum effect is desired. In addition, such an association is important for the strategic decision to embark on any PPP initiative. This paper presents a conceptual model of different levels of participation that characterise PPP schemes. The modelling was achieved by a systematic review of reported sources that address essential aspects and structures of PPP schemes, published from 2001 to 2015. As a precursor to the modelling, the common areas of Public Client Participation (PCP) were investigated. Equity and risk emerged as two dominant factors in the common areas of PCP, and were therefore adopted to form the foundation of the modelling. The resultant conceptual model defines the different states of combined PCP. The defined states provide a more rational basis for establishing how the degree of PCP affects the efficiency of asset delivery in PPP schemes.

Keywords: asset delivery, infrastructure development, public private partnership, public client participation

Procedia PDF Downloads 250
12141 Applied Methods for Lightweighting Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 495
12140 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems

Authors: Zahid Ullah, Atlas Khan

Abstract:

This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.

Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms

Procedia PDF Downloads 90
12139 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System

Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae

Abstract:

Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.

Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy

Procedia PDF Downloads 283
12138 Sustainable Solutions for Enhancing Efficiency, Safety, and Quality of Construction Value Chain Services Integration

Authors: Lo Kar Yin

Abstract:

In view of the increasing speed and quantity of the housing supply, building, and civil engineering infrastructure works triggered by the pandemic across the globe, contractors, professional services providers (PSP), including consultants (e.g., architect, project manager, civil/geotechnical/structural engineer, building services engineer, quantity surveyor/cost manager, etc.) and suppliers have faced tremendous challenges of the fierce market, limited manpower, and resources under contract prices fluctuation and competitive fee and price. With qualitative analysis, this paper is to review the available information from the industry stakeholders with a view to finding solutions for enhancing efficiency, safety, and quality of construction value chain services for public and private organizations/companies’ sustainable growth, not limited to checking the deliverables and data transfer from multi-disciplinary parties. Technology, contracts, and people are the key requirements for shaping the construction industry. With the integration of a modern engineering contract (e.g., NEC) collaborative approach, practical workflows are designed to address loopholes together with different levels of people employment/retention and technology adoption to achieve the best value for money.

Keywords: efficiency, safety, quality, technology, contract, people, sustainable solutions, construction, services, integration

Procedia PDF Downloads 107
12137 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network

Authors: T. Lydon, A. McNabola, P. Coughlan

Abstract:

Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.

Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network

Procedia PDF Downloads 242
12136 Morphology Evolution in Titanium Dioxide Nanotubes Arrays Prepared by Electrochemical Anodization

Authors: J. Tirano, H. Zea, C. Luhrs

Abstract:

Photocatalysis has established as viable option in the development of processes for the treatment of pollutants and clean energy production. This option is based on the ability of semiconductors to generate an electron flow by means of the interaction with solar radiation. Owing to its electronic structure, TiO₂ is the most frequently used semiconductors in photocatalysis, although it has a high recombination of photogenerated charges and low solar energy absorption. An alternative to reduce these limitations is the use of nanostructured morphologies which can be produced during the synthesis of TiO₂ nanotubes (TNTs). Therefore, if possible to produce vertically oriented nanostructures it will be possible to generate a greater contact area with electrolyte and better charge transfer. At present, however, the development of these innovative structures still presents an important challenge for the development of competitive photoelectrochemical devices. This research focuses on established correlations between synthesis variables and 1D nanostructure morphology which has a direct effect on the photocatalytic performance. TNTs with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C-550 °C. Morphology and crystalline phase of the TNTs were carried out by SEM, EDS and XRD analysis. As results, the synthesis conditions were established to produce nanostructures with specific morphological characteristics. Anatase was the predominant phase of TNTs after thermal treatment. Nanotubes with 10 μm in length, 40 nm in pore diameter and a surface-volume ratio of 50 are important in photoelectrochemical applications based on TiO₂ due to their 1D characteristics, high surface-volume ratio, reduced radial dimensions and high oxide/electrolyte interface. Finally, this knowledge can be used to improve the photocatalytic activity of TNTs by making additional surface modifications with dopants that improve their efficiency.

Keywords: electrochemical anodization, morphology, self-organized nanotubes, TiO₂ nanotubes

Procedia PDF Downloads 136
12135 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser

Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua

Abstract:

In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.

Keywords: energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis

Procedia PDF Downloads 360
12134 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 50
12133 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries

Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani

Abstract:

Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation

Procedia PDF Downloads 503
12132 The Dependency of the Solar Based Disinfection on the Microbial Quality of the Source Water

Authors: M. T. Amina, A. A. Alazba, U. Manzoor

Abstract:

Solar disinfection (SODIS) is a viable method for household water treatment and is recommended by the World Health Organization as cost effective approach that can be used without special skills. The efficiency of both SODIS and solar collector disinfection (SOCODIS) system was evaluated using four different sources of water including stored rainwater, storm water, ground water and treated sewage. Samples with naturally occurring microorganisms were exposed to sunlight for about 8-9 hours in 2-L polyethylene terephthalate bottles under similar experimental conditions. Total coliform (TC), Escherichia coli (E. coli) and heterotrophic plate counts (HPC) were used as microbial water quality indicators for evaluating the disinfection efficiency at different sunlight intensities categorized as weak, mild and strong weathers. Heterotrophic bacteria showed lower inactivation rates compared to E. coli and TC in both SODIS and SOCODIS system. The SOCODIS system at strong weather was the strongest disinfection system in this study and the complete inactivation of HPC was observed after 8-9 hours of exposure with SODIS being ineffective for HPC. At moderate weathers, however, the SOCODIS system did not show complete inactivation of HPC due to very high concentrations (up to 5x10^7 CFU/ml) in both storm water and treated sewage. SODIS even remained ineffective for the complete inactivation of E. coli due to its high concentrations of about 2.5x10^5 in treated sewage compared with other waters even after 8-9 hours of exposure. At weak weather, SODIS was not effective at all while SOCODIS system, though incomplete, showed good disinfection efficiency except for HPC and to some extent for high E. coli concentrations in storm water. Largest reduction of >5 log occurred for TC when used stored rainwater even after 6 hours of exposure in the case of SOCODIS system at strong weather. The lowest E. coli and HPC reduction of ~2 log was observed in SODIS system at weak weather. Further tests with varying pH and turbidity are required to understand the effects of reaction parameters that could be a step forward towards maximizing the disinfection efficiency of such systems for the complete inactivation of naturally occurring E. coli or HPC at moderate or even at weak weathers.

Keywords: efficiency, microbial, SODIS, SOCODIS, weathers

Procedia PDF Downloads 244
12131 Collaborative Technology Implementation Success and Knowledge Capacity: Case of Tunisian Banks with Mixed Capital

Authors: Amira Khelil, Habib Affes

Abstract:

Organization resource planning implementation success is important. Today`s competitors in business, in enterprise resource planning and in managing are becoming one of the main tools of achieving competitiveness in business. Resource technologies are considered as an infrastructure to create and maintain business to improve front and back-office efficiency and effectiveness. This study is significant to bring new ideas in determining the key antecedents which are technological resource planning implementation based on knowledge capacity perspectives and help to understand the key success factor in the Tunisian banks. Based on a survey of 150 front office Tunisian agents working in Tunisian banks with mixed capital, using Groupware system, only 51 respondents had given feedback to this survey. By using Warp PLS 3.0, through several tests the relationship between knowledge capability and Groupware implementation success having beta coefficient 0.37 and P-Value <0.01. This result highlights that knowledge capability of bank agent can influence the success of the Groupware implementation.

Keywords: groupware implementation, knowledge capacity, partial least squares method, Tunisian banks

Procedia PDF Downloads 470
12130 Study Biogas Produced by Strain Archaea Methanothrix soehngenii in Different Biodigesters UASB in Treating Brewery Effluent in Brazil

Authors: Ederaldo Godoy Junior, Ricardo O. Jesus, Pedro H. Jesus, José R. Camargo, Jorge Y. Oliveira, Nicoly Milhardo Lourenço

Abstract:

This work aimed at the comparative study of the quality and quantity of biogas produced by archaea strain Methanothrix soehngenii operating in different versions of anaerobic digesters upflow sludge bed in the brewery wastewater treatment in Brazil in the tropical region. Four types of UASB digesters were studied made of different geometries and materials which are: a UASB IC steel 20 meters high; a circular UASB steel 6 meters high; an UASB reinforced concrete lined with geomembrane PEAB with 6 meters high; and finally a UASB plug flow comprising two UASB in serious rotomolded HDPE 6 meters high.Observed clearly that the biogas produced in the digester UASB steel H2S concentrations had values lower than the HDPE. With respect to efficiency in short time, the UASB IC showed the best results to absorb overloads, as the UASB circular steel showed an efficiency of 90% removal of the organic load. The UASB system plug flow in HDPE showed the lowest cost of deployment, and its efficiency in removing the organic load was 80%.

Keywords: biogas, achaeas, UASB, Brewery effluent

Procedia PDF Downloads 339
12129 Perceived Influence of Information Communication Technology on Empowerment Amongst the College of Education Physical and Health Education Students in Oyo State

Authors: I. O. Oladipo, Olusegun Adewale Ajayi, Omoniyi Oladipupo Adigun

Abstract:

Information Communication Technology (ICT) have the potential to contribute to different facets of educational development and effective learning; expanding access, promoting efficiency, improve the quality of learning, enhancing the quality of teaching and provide important mechanism for the economic crisis. Considering the prevalence of unemployment among the higher institution graduates in this nation, in which much seems not to have been achieved in this direction. In view of this, the purpose of this study is to create an awareness and enlightenment of ICT for empowerment opportunities after school. A self-developed modified 4-likert scale questionnaire was used for data collection among Colleges of Education, Physical and Health Education students in Oyo State. Inferential statistical analysis of chi-square set at 0.05 alpha levels was used to analyze the stated hypotheses. The study concludes that awareness and enlightenment of ICT significantly influence empowerment opportunities and recommended that college of education students should be encouraged on the application of ICT for job opportunity after school.

Keywords: employment, empowerment, information communication technology, physical education

Procedia PDF Downloads 368