Search results for: ground source heat pump system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24595

Search results for: ground source heat pump system

23545 Ground Response Analysis at the Rukni Irrigation Project Site Located in Assam, India

Authors: Tauhidur Rahman, Kasturi Bhuyan

Abstract:

In the present paper, Ground Response Analysis at the Rukni irrigation project has been thoroughly investigated. Surface level seismic hazard is mainly used by the practical Engineers for designing the important structures. Surface level seismic hazard can be obtained accounting the soil factor. Structures on soft soil will show more ground shaking than the structure located on a hard soil. The Surface level ground motion depends on the type of soil. Density and shear wave velocity is different for different types of soil. The intensity of the soil amplification depends on the density and shear wave velocity of the soil. Rukni irrigation project is located in the North Eastern region of India, near the Dauki fault (550 Km length) which has already produced earthquakes of magnitude (Mw= 8.5) in the past. There is a probability of a similar type of earthquake occuring in the future. There are several faults also located around the project site. There are 765 recorded strong ground motion time histories available for the region. These data are used to determine the soil amplification factor by incorporation of the engineering properties of soil. With this in view, three of soil bore holes have been studied at the project site up to a depth of 30 m. It has been observed that in Soil bore hole 1, the shear wave velocity vary from 99.44 m/s to 239.28 m/s. For Soil Bore Hole No 2 and 3, shear wave velocity vary from 93.24 m/s to 241.39 m/s and 93.24m/s to 243.01 m/s. In the present work, surface level seismic hazard at the project site has been calculated based on the Probabilistic seismic hazard approach accounting the soil factor.

Keywords: Ground Response Analysis, shear wave velocity, soil amplification, surface level seismic hazard

Procedia PDF Downloads 549
23544 A Novel Dual Band-pass filter Based On Coupling of Composite Right/Left Hand CPW and (CSRRs) Uses Ferrite Components

Authors: Mohammed Berka, Khaled Merit

Abstract:

Recent works on microwave filters show that the constituent materials such filters are very important in the design and realization. Several solutions have been proposed to improve the qualities of filtering. In this paper, we propose a new dual band-pass filter based on the coupling of a composite (CRLH) coplanar waveguide with complementary split ring resonators (CSRRs). The (CRLH) CPW is composed of two resonators, each one has an interdigital capacitor (CID) and two short-circuited stubs parallel to top ground plane. On the lower ground plane, we use defected ground structure technology (DGS) to engrave two (CSRRs) offered with different shapes and dimensions. Between the top ground plane and the substrate, we place a ferrite layer to control the electromagnetic coupling between (CRLH) CPW and (CSRRs). The global filter that has coplanar access will have a dual band-pass behavior around the magnetic resonances of (CSRRs). Since there’s no scientific or experimental result in the literature for this kind of complicated structure, it was necessary to perform simulation using HFSS Ansoft designer.

Keywords: complementary split ring resonators, coplanar waveguide, ferrite, filter, stub.

Procedia PDF Downloads 403
23543 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 399
23542 Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach

Authors: Md. Asif Ullah, M. A. R. Sarkar

Abstract:

This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used.

Keywords: sub-channels, Reynold’s number, Nusselt number, convective heat transfer

Procedia PDF Downloads 361
23541 Probabilistic Modeling of Post-Liquefaction Ground Deformation

Authors: Javad Sadoghi Yazdi, Robb Eric S. Moss

Abstract:

This paper utilizes a probabilistic liquefaction triggering method for modeling post-liquefaction ground deformation. This cone penetration test CPT-based liquefaction triggering is employed to estimate the factor of safety against liquefaction (FSL) and compute the maximum cyclic shear strain (γmax). The study identifies a maximum PL value of 90% across various relative densities, which challenges the decrease from 90% to 70% as relative density decreases. It reveals that PL ranges from 5% to 50% for volumetric strain (εvol) less than 1%, while for εvol values between 1% and 3.2%, PL spans from 50% to 90%. The application of the CPT-based simplified liquefaction triggering procedures has been employed in previous researches to estimate liquefaction ground-failure indices, such as the Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN). However, several studies have been conducted to highlight the variability in liquefaction probability calculations, suggesting a more accurate depiction of liquefaction likelihood. Consequently, the utilization of these simplified methods may not offer practical efficiency. This paper further investigates the efficacy of various established liquefaction vulnerability parameters, including LPI and LSN, in explaining the observed liquefaction-induced damage within residential zones of Christchurch, New Zealand using results from CPT database.

Keywords: cone penetration test (CPT), liquefaction, postliquefaction, ground failure

Procedia PDF Downloads 73
23540 Energy Calculation for Excited Lithium Atom in Position Space

Authors: Khalil H. Al-Bayati, Khalid Omar Al-Baiti

Abstract:

The energy expectation value for Li-like ions systems (Li, Be+ and Be2+) hasbeen calculated and examined within the ground state (1s2sα)^2 S and the excited state (1s3sα)^2 S in position space. The partitioning technique of Hartree-Fock (H-F) has been used for existing wavefnctions.

Keywords: energy expectation value, atomic systems, ground and excited states, Hartree-Fock approximation

Procedia PDF Downloads 618
23539 Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials

Authors: Zihua Wu, Yueming He, Xiaoxiao Yu, Yuanyuan Wang, Huaqing Xie

Abstract:

The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application.

Keywords: solar energy, solar thermoelectric generator, phase change materials, solar-to-electric energy, DM/MWCNT

Procedia PDF Downloads 72
23538 Characteristics of Bio-hybrid Hydrogel Materials with Prolonged Release of the Model Active Substance as Potential Wound Dressings

Authors: Katarzyna Bialik-Wąs, Klaudia Pluta, Dagmara Malina, Małgorzata Miastkowska

Abstract:

In recent years, biocompatible hydrogels have been used more and more in medical applications, especially as modern dressings and drug delivery systems. The main goal of this research was the characteristics of bio-hybrid hydrogel materials incorporated with the nanocarrier-drug system, which enable the release in a gradual and prolonged manner, up to 7 days. Therefore, the use of such a combination will provide protection against mechanical damage and adequate hydration. The proposed bio-hybrid hydrogels are characterized by: transparency, biocompatibility, good mechanical strength, and the dual release system, which allows for gradual delivery of the active substance, even up to 7 days. Bio-hybrid hydrogels based on sodium alginate (SA), poly(vinyl alcohol) (PVA), glycerine, and Aloe vera solution (AV) were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate as a crosslinking agent. Additionally, a nanocarrier-drug system was incorporated into SA/PVA/AV hydrogel matrix. Here, studies were focused on the release profiles of active substances from bio-hybrid hydrogels using the USP4 method (DZF II Flow-Through System, Erweka GmbH, Langen, Germany). The equipment incorporated seven in-line flow-through diffusion cells. The membrane was placed over support with an orifice of 1,5 cm in diameter (diffusional area, 1.766 cm²). All the cells were placed in a cell warmer connected with the Erweka heater DH 2000i and the Erweka piston pump HKP 720. The piston pump transports the receptor fluid via seven channels to the flow-through cells and automatically adapts the setting of the flow rate. All volumes were measured by gravimetric methods by filling the chambers with Milli-Q water and assuming a density of 1 g/ml. All the determinations were made in triplicate for each cell. The release study of the model active substance was carried out using a regenerated cellulose membrane Spectra/Por®Dialysis Membrane MWCO 6-8,000 Carl Roth® Company. These tests were conducted in buffer solutions – PBS at pH 7.4. A flow rate of receptor fluid of about 4 ml /1 min was selected. The experiments were carried out for 7 days at a temperature of 37°C. The released concentration of the model drug in the receptor solution was analyzed using UV-Vis spectroscopy (Perkin Elmer Company). Additionally, the following properties of the modified materials were studied: physicochemical, structural (FT-IR analysis), morphological (SEM analysis). Finally, the cytotoxicity tests using in vitro method were conducted. The obtained results exhibited that the dual release system allows for the gradual and prolonged delivery of the active substances, even up to 7 days.

Keywords: wound dressings, SA/PVA hydrogels, nanocarrier-drug system, USP4 method

Procedia PDF Downloads 148
23537 Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages

Authors: Mohammad Taghi Karbalaei Aghamolki, Mohd Khanif Yusop, Fateh Chand Oad, Hamed Zakikhani, Hawa Zee Jaafar, Sharifh Kharidah, Mohamed Hanafi Musa, Shahram Soltani

Abstract:

The high temperatures during sensitive growth phases are changing rice morphology as well as influencing yield. In the glass house study, the treatments were: growing conditions [normal growing (32oC+2) and heat stress (38oC+2) day time and 22oC+2 night time], growth stages (booting, flowering and ripening) and four cultivars (Hovaze, Hashemi, Fajr, as exotic and MR219 as indigenous). The heat chamber was prepared covered with plastic, and automatic heater was adjusted at 38oC+2 (day) and 22oC+2 (night) for two weeks in every growth stages. Rice morphological and yield under the influence of heat stress during various growth stages showed taller plants in Hashsemi due to its tall character. The total tillers per hill were significantly higher in Fajr receiving heat stress during booting stage. In all growing conditions and growth stages, Hashemi recorded higher panicle exertion and flag leaf length. The flag leaf width in all situations was found higher in Hovaze. The total tillers per hill were more in Fajr, although heat stress was imposed during booting and flowering stages. The indigenous MR219 in all situations of growing conditions, growth stages recorded higher grain yield. However, its grain yield slightly decreased when heat stress was imposed during booting and flowering. Similar results were found in all other exotic cultivars recording to lower grain yield in the heat stress condition during booting and flowering. However, plants had no effect on heat stress during ripening stage.

Keywords: rice, growth, heat, temperature, stress, morphology, yield

Procedia PDF Downloads 278
23536 Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall

Authors: Muzna Tariq, Ihtzaz Qamar

Abstract:

In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range.

Keywords: computational fluid dynamics, conduction, conjugate heat transfer, convection, fluid flow, thermocouples

Procedia PDF Downloads 149
23535 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress

Authors: S. K. Thind, Aparjot Kaur

Abstract:

Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.

Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism

Procedia PDF Downloads 327
23534 Enhancing the Performance of Vapor Compression Refrigeration Systems Using HFC134a by Nanoparticles Suspensions

Authors: Hafsi Khebab, Zirari Mounir, Mohamed Nadjib Bouaziz

Abstract:

High Global Warming Potential refrigerants (HydroFluroCarbons) are one of the worst greenhouse gases used in a wide variety of applications, including refrigeration and air-conditioning. Nanotechnology is a promising field in sustainable energy to reduce energy and ecological resource consumption for HVACR (heat, ventilation, air conditioning, and refrigeration) systems. Most researchers reported an improvement in heat transfer coefficient, Coefficient of performance. In this report, a brief summary has been done on the performance enhancement of the Vapor Compression Refrigeration system using HFC134a with nano refrigerants.

Keywords: nanorefrigerant, HFCs, greenhouse gases, GWP, HVACR systems, energy saving

Procedia PDF Downloads 85
23533 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging

Authors: Chang Liu, John Nash, Stephen D. Prior

Abstract:

This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, the aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infrared video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.

Keywords: unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video

Procedia PDF Downloads 329
23532 Constructal Enhancement of Fins Design Integrated to Phase Change Materials

Authors: Varun Joshi, Manish K. Rathod

Abstract:

The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.

Keywords: constructal theory, enthalpy porosity approach, phase change materials, fins

Procedia PDF Downloads 181
23531 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation

Authors: Yongjian Gu

Abstract:

Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.

Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ

Procedia PDF Downloads 198
23530 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology

Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen

Abstract:

Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.

Keywords: absorption chillers (AC), turbine inlet air cooling (TIC), power purchase agreement (PPA), multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution (CDDE)

Procedia PDF Downloads 312
23529 Study of Heat Transfer by Natural Convection in Overhead Storage Tank of LNG

Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed

Abstract:

During the period storage of liquefied natural gas, stability is necessarily affected by natural convection along the walls of the tank with thermal insulation is not perfectly efficient. In this paper, we present the numerical simulation of heat transfert by natural convection double diffusion,in unsteady laminar regime in a storage tank. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The gas is just on the surface of the liquid phase. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.

Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas

Procedia PDF Downloads 483
23528 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 119
23527 Development of Blast Vibration Equation Considering the Polymorphic Characteristics of Basaltic Ground

Authors: Dong Wook Lee, Seung Hyun Kim

Abstract:

Geological structure formed by volcanic activities shows polymorphic characteristics due to repeated cooling and hardening of lava. The Jeju region is showing polymorphic characteristics in which clinker layers are irregularly distributed along with vesicular basalt due to volcanic activities. Accordingly, resident damages and environmental disputes occur frequently in the Jeju region due to blasting. The purpose of this study is to develop a blast vibration equation considering the polymorphic characteristics of basaltic ground in Jeju. The blast vibration equation consists of a functional formula of the blasting vibration constant K that changes according to ground characteristics, and attenuation index n. The case study results in Jeju showed that if there are clinker layers, attenuation index n showed a distribution of -1.11~-1.87, whereas if there are no clinker layers, n was -2.79. Moreover, if there are no clinker layers, the frequency of blast vibration showed a high frequency band from 30Hz to 100Hz, while in rocks with clinker layers it showed a low frequency band from 10Hz to 20Hz.

Keywords: blast vibration equation, basaltic ground, clinker layer, blasting vibration constant, attenuation index

Procedia PDF Downloads 409
23526 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics

Procedia PDF Downloads 485
23525 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 197
23524 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device

Authors: Long Kim Vu

Abstract:

The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.

Keywords: CFD, FPGA, heat transfer, thermal analysis

Procedia PDF Downloads 184
23523 Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations.

Keywords: heat transfer, magnetically assisted reactor, dynamical analysis, transient function

Procedia PDF Downloads 173
23522 Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes

Authors: Mohammadreza Salek Faramarzi, Touraj Taghikhany

Abstract:

In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively.

Keywords: IDA, near-fault, probabilistic performance assessment, seismic fragility, strongback system, uncertainty

Procedia PDF Downloads 116
23521 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities

Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra

Abstract:

Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.

Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics

Procedia PDF Downloads 146
23520 Numerical Study on the Urea Melting and Induced Natural Convection in a Urea Sender Module

Authors: Doo Ki Lee, Man Young Kim

Abstract:

The Urea-Selective Catalytic Reduction (SCR) system is considered to be the most promising technology to fulfill the stringent emission regulation. In the Urea-SCR system, the urea solutions are used as the reducing agent, which is a eutectic composition (32.5wt% of urea). The advantage of this eutectic compositions is that it has a low freezing point approximately at -11 ℃, however, the problem of freezing occurs at low-temperature levels below that freezing point. To prevent freezing of urea solutions, we need heating systems that can melt by heating the frozen urea solutions in urea storage tank at low-temperature environment. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to find the melting characteristics of the urea solutions on melting process. In this work, it can be found that the urea melting initiated by heat conduction from the heater is enhanced by the natural convection inside the melted liquid urea solutions due to the temperature difference. Also, liquid urea solutions are initially concentrated on the upper parts of the urea sender module.

Keywords: urea solution, melting, heat conduction, natural convection, liquid fraction, phase change

Procedia PDF Downloads 271
23519 Searching for Health-Related Information on the Internet: A Case Study on Young Adults

Authors: Dana Weimann Saks

Abstract:

This study aimed to examine the use of the internet as a source of health-related information (HRI), as well as the change in attitudes following the online search for HRI. The current study sample included 88 participants, randomly divided into two experimental groups. One was given the name of an unfamiliar disease and told to search for information about it using various search engines, and the second was given a text about the disease from a credible scientific source. The study findings show a large percentage of participants used the internet as a source of HRI. Likewise, no differences were found in the extent to which the internet was used as a source of HRI when demographics were compared. Those who searched for the HRI on the internet had more negative opinions and believed symptoms of the disease were worse than the average opinion among those who obtained the information about the disease from a credible scientific source. The Internet clearly influences the participants’ beliefs, regardless of demographic differences.

Keywords: health-related information, internet, young adults, HRI

Procedia PDF Downloads 130
23518 Application of Homer Optimization to Investigate the Prospects of Hybrid Renewable Energy System in Rural Area: Case of Rwanda

Authors: Emile Niringiyimana, LI Ji Qing, Giovanni Dushimimana, Virginie Umwere

Abstract:

The development and utilization of renewable energy (RE) can not only effectively reduce carbon dioxide (CO2) emissions, but also became a solution to electricity shortage mitigation in rural areas. Hybrid RE systems are promising ways to provide consistent and continuous power for isolated areas. This work investigated the prospect and cost effectiveness of hybrid system complementarity between a 100kW solar PV system and a small-scale 200kW hydropower station in the South of Rwanda. In order to establish the optimal size of a RE system with adequate sizing of system components, electricity demand, solar radiation, hydrology, climate data are utilized as system input. The average daily solar radiation in Rukarara is 5.6 kWh/m2 and average wind speed is 3.5 m/s. The ideal integrated RE system, according to Homer optimization, consists of 91.21kW PV, 146kW hydropower, 12 x 24V li-ion batteries with a 20kW converter. The method of enhancing such hybrid systems control, sizing and choice of components is to reduce the Net present cost (NPC) of the system, unmet load, the cost of energy and reduction of CO2. The power consumption varies according to dominant source of energy in the system by controlling the energy compensation depending on the generation capacity of each power source. The initial investment of the RE system is $977,689.25, and its operation and maintenance expenses is $142,769.39 over a 25-year period. Although the investment is very high, the targeted profits in future are huge, taking into consideration of high investment in rural electrification structure implementations, tied with an increase of electricity cost and the 5 years payback period. The study outcomes suggest that the standalone hybrid PV-Hydropower system is feasible with zero pollution in Rukara community.

Keywords: HOMER optimization, hybrid power system, renewable energy, NPC and solar pv systems

Procedia PDF Downloads 62
23517 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture

Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho

Abstract:

Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.

Keywords: bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer

Procedia PDF Downloads 261
23516 Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships

Authors: Li Chin Law, Epaminondas Mastorakos, Mohd Roslee Othman, Antonis Trakakis

Abstract:

The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties.

Keywords: shipping, decarbonisation, alternative fuels, low carbon, hydrogen, carbon capture

Procedia PDF Downloads 78