Search results for: TensorFlow probability
212 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications
Procedia PDF Downloads 94211 Factors Associated with Increase of Diabetic Foot Ulcers in Diabetic Patients in Nyahururu County Hospital
Authors: Daniel Wachira
Abstract:
The study aims to determine factors contributing to increasing rates of DFU among DM patients attending clinics in Nyahururu County referral hospital, Lakipia County. The study objectives include;- To determine the demographic factors contributing to increased rates of DFU among DM patients, determining the sociocultural factors that contribute to increased rates of DFU among DM patients and determining the health facility factors contributing to increased rates of DFU among DM patients attending DM clinic at Nyahururu county referral hospital, Laikipia County. This study will adopt a descriptive cross-sectional study design. It involves the collection of data at a one-time point without follow-up. This method is fast and inexpensive, there is no loss to follow up as the data is collected at one time point and associations between variables can be determined. The study population includes all DM patients with or without DFU. The sampling technique that will be used is the probability sampling method, a simple random method of sampling will be used. The study will employ the use of questionnaires to collect the required information. Questionnaires will be a research administered questionnaires. The questionnaire developed was done in consultation with other research experts (supervisor) to ensure reliability. The questionnaire designed will be pre-tested by hand delivering them to a sample 10% of the sample size at J.M Kariuki Memorial hospital, Nyandarua county and thereafter collecting them dully filled followed by refining of errors to ensure it is valid for collection of data relevant for this study. Refining of errors on the questionnaires to ensure it was valid for collection of data relevant for this study. Data collection will begin after the approval of the project. Questionnaires will be administered only to the participants who met the selection criteria by the researcher and those who agreed to participate in the study to collect key information with regard to the objectives of the study. The study's authority will be obtained from the National Commission of Science and Technology and Innovation. Permission will also be obtained from the Nyahururu County referral hospital administration staff. The purpose of the study will be explained to the respondents in order to secure informed consent, and no names will be written on the questionnaires. All the information will be treated with maximum confidentiality by not disclosing who the respondent was and the information.Keywords: diabetes, foot ulcer, social factors, hospital factors
Procedia PDF Downloads 23210 Oral Hygiene Behaviors among Pregnant Women with Diabetes Who Attend Primary Health Care Centers at Baghdad City
Authors: Zena F. Mushtaq, Iqbal M. Abbas
Abstract:
Background: Diabetes mellitus during pregnancy is one of the major medical and social problems with increasing prevalence in last decades and may lead to more vulnerable to dental problems and increased risk for periodontal diseases. Objectives: To assess oral hygiene behaviors among pregnant women with diabetes who attended primary health care centers and find out the relationship between oral hygiene behaviors and studied variables. Methodology: A cross sectional design was conducted from 7 July to 30 September 2014 on non probability (convenient sample) of 150 pregnant women with diabetes was selected from twelve Primary Health Care Centers at Baghdad city. Questionnaire format is tool for data collection which had designed and consisted of three main parts including: socio demographic, reproductive characteristics and items of oral hygiene behaviors among pregnant women with diabetes. Reliability of the questionnaire was determined through internal consistency of correlation coefficient (R= 0.940) and validity of content was determined through reviewing it by (12) experts in different specialties and was determined through pilot study. Descriptive and inferential statistics were used to analyze collected data. Result: Result of study revealed that (35.3%) of study sample was (35-39) years old with mean and SD is (X & SD = 33.57 ± 5.54) years, and (34.7%) of the study sample was graduated from primary school and less, half of the study sample was government employment and self employed, (42.7%) of the study sample had moderate socioeconomic status, the highest percentage (70.0%) of the study sample was nonsmokers, The result indicates that oral hygiene behaviors have moderate mean score in all items. There are no statistical significant association between oral hygiene domain and studied variables. Conclusions: All items related to health behavior concerning oral hygiene is in moderate mean of score, which may expose pregnant women with diabetes to high risk of periodontal diseases. Recommendations: Dental care provider should perform a dental examination at least every three months for each pregnant woman with diabetes, explanation of the effect of DM on periodontal health, oral hygiene instruction, oral prophylaxis, professional cleaning and treatment of periodontal diseases(scaling and root planing) when needed.Keywords: diabetes, health behavior, pregnant women, oral hygiene
Procedia PDF Downloads 287209 Time Fetching Water and Maternal Childcare Practices: Comparative Study of Women with Children Living in Ethiopia and Malawi
Authors: Davod Ahmadigheidari, Isabel Alvarez, Kate Sinclair, Marnie Davidson, Patrick Cortbaoui, Hugo Melgar-Quiñonez
Abstract:
The burden of collecting water tends to disproportionately fall on women and girls in low-income countries. Specifically, women spend between one to eight hours per day fetching water for domestic use in Sub-Saharan Africa. While there has been research done on the global time burden for collecting water, it has been mainly focused on water quality parameters; leaving the relationship between water fetching and health outcomes understudied. There is little available evidence regarding the relationship between water fetching and maternal child care practices. The main objective of this study was to help fill the aforementioned gap in the literature. Data from two surveys in Ethiopia and Malawi conducted by CARE Canada in 2016-2017 were used. Descriptive statistics indicate that women were predominantly responsible for collecting water in both Ethiopia (87%) and Malawi (99%) respectively, with the majority spending more than 30 minutes per day on water collection. With regards to child care practices, in both countries, breastfeeding was relatively high (77% and 82%, respectively); and treatment for malnutrition was low (15% and 8%, respectively). However, the same consistency was not found for weighing; in Ethiopia only 16% took their children for weighting in contrast to 94% in Malawi. These three practices were summed to create one variable for regressions analyses. Unadjusted logistic regression findings showed that only in Ethiopia was time fetching water significantly associated with child care practices. Once adjusted for covariates, this relationship was no longer found to be significant. Adjusted logistic regressions also showed that the factors that did influence child care practices differed slightly between the two countries. In Ethiopia, a lack of access to community water supply (OR= 0.668; P=0.010), poor attitudes towards gender equality (OR= 0.608; P=0.001), no access to land and (OR=0.603; P=0.000), significantly decreased a women’s odd of using positive childcare practices. Notably, being young women between 15-24 years (OR=2.308; P=0.017), and 25-29 (OR=2.065; P=0.028) increased probability of using positive childcare practices. Whereas in Malawi, higher maternal age, low decision-making power, significantly decreased a women’s odd of using positive childcare practices. In conclusion, this study found that even though amount of time spent by women fetching water makes a difference for childcare practices, it is not significantly related to women’s child care practices when controlling the covariates. Importantly, women’s age contributes to child care practices in Ethiopia and Malawi.Keywords: time fetching water, community water supply, women’s child care practices, Ethiopia, Malawi
Procedia PDF Downloads 203208 Simulated Translator-Client Relations in Translator Training: Translator Behavior around Risk Management
Authors: Maggie Hui
Abstract:
Risk management is not a new concept; however, it is an uncharted area as applied to the translation process and translator training. Risk managers are responsible for managing risk, i.e. adopting strategies with the intention to minimize loss and maximize gains in spite of uncertainty. Which risk strategy to use often depends on the frequency of an event (i.e. probability) and the severity of its outcomes (i.e. impact). This is basically the way translation/localization project managers handle risk management. Although risk management could involve both positive and negative impacts, impact seems to be always negative in professional translators’ management models, e.g. how many days of project time are lost or how many clients are lost. However, for analysis of translation performance, the impact should be possibly positive (e.g. increased readability of the translation) or negative (e.g. loss of source-text information). In other words, the straight business model of risk management is not directly applicable to the study of risk management in the rendition process. This research aims to explore trainee translators’ risk managing while translating in a simulated setting that involves translator-client relations. A two-cycle experiment involving two roles, the translator and the simulated client, was carried out with a class of translation students to test the effects of the main variable of peer-group interaction. The researcher made use of a user-friendly screen-voice recording freeware to record subjects’ screen activities, including every word the translator typed and every change they made to the rendition, the websites they browsed and the reference tools they used, in addition to the verbalization of their thoughts throughout the process. The research observes the translation procedures subjects considered and finally adopted, and looks into the justifications for their procedures, in order to interpret their risk management. The qualitative and quantitative results of this study have some implications for translator training: (a) the experience of being a client seems to reinforce the translator’s risk aversion; (b) there is a wide gap between the translator’s internal risk management and their external presentation of risk; and (c) the use of role-playing simulation can empower students’ learning by enhancing their attitudinal or psycho-physiological competence, interpersonal competence and strategic competence.Keywords: risk management, role-playing simulation, translation pedagogy, translator-client relations
Procedia PDF Downloads 262207 Understanding Complexity at Pre-Construction Stage in Project Planning of Construction Projects
Authors: Mehran Barani Shikhrobat, Roger Flanagan
Abstract:
The construction planning and scheduling based on using the current tools and techniques is resulted deterministic in nature (Gantt chart, CPM) or applying a very little probability of completion (PERT) for each task. However, every project embodies assumptions and influences and should start with a complete set of clearly defined goals and constraints that remain constant throughout the duration of the project. Construction planners continue to apply the traditional methods and tools of “hard” project management that were developed for “ideal projects,” neglecting the potential influence of complexity on the design and construction process. The aim of this research is to investigate the emergence and growth of complexity in project planning and to provide a model to consider the influence of complexity on the total project duration at the post-contract award pre-construction stage of a project. The literature review showed that complexity originates from different sources of environment, technical, and workflow interactions. They can be divided into two categories of complexity factors, first, project tasks, and second, project organisation management. Project tasks may originate from performance, lack of resources, or environmental changes for a specific task. Complexity factors that relate to organisation and management refer to workflow and interdependence of different parts. The literature review highlighted the ineffectiveness of traditional tools and techniques in planning for complexity. However, this research focus on understanding the fundamental causes of the complexity of construction projects were investigated through a questionnaire with industry experts. The results were used to develop a model that considers the core complexity factors and their interactions. System dynamics were used to investigate the model to consider the influence of complexity on project planning. Feedback from experts revealed 20 major complexity factors that impact project planning. The factors are divided into five categories known as core complexity factors. To understand the weight of each factor in comparison, the Analytical Hierarchy Process (AHP) analysis method is used. The comparison showed that externalities are ranked as the biggest influence across the complexity factors. The research underlines that there are many internal and external factors that impact project activities and the project overall. This research shows the importance of considering the influence of complexity on the project master plan undertaken at the post-contract award pre-construction phase of a project.Keywords: project planning, project complexity measurement, planning uncertainty management, project risk management, strategic project scheduling
Procedia PDF Downloads 140206 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 94205 Behavioral Analysis of Stock Using Selective Indicators from Fundamental and Technical Analysis
Authors: Vish Putcha, Chandrasekhar Putcha, Siva Hari
Abstract:
In the current digital era of free trading and pandemic-driven remote work culture, markets worldwide gained momentum for retail investors to trade from anywhere easily. The number of retail traders rose to 24% of the market from 15% at the pre-pandemic level. Most of them are young retail traders with high-risk tolerance compared to the previous generation of retail traders. This trend boosted the growth of subscription-based market predictors and market data vendors. Young traders are betting on these predictors, assuming one of them is correct. However, 90% of retail traders are on the losing end. This paper presents multiple indicators and attempts to derive behavioral patterns from the underlying stocks. The two major indicators that traders and investors follow are technical and fundamental. The famous investor, Warren Buffett, adheres to the “Value Investing” method that is based on a stock’s fundamental Analysis. In this paper, we present multiple indicators from various methods to understand the behavior patterns of stocks. For this research, we picked five stocks with a market capitalization of more than $200M, listed on the exchange for more than 20 years, and from different industry sectors. To study the behavioral pattern over time for these five stocks, a total of 8 indicators are chosen from fundamental, technical, and financial indicators, such as Price to Earning (P/E), Price to Book Value (P/B), Debt to Equity (D/E), Beta, Volatility, Relative Strength Index (RSI), Moving Averages and Dividend yields, followed by detailed mathematical Analysis. This is an interdisciplinary paper between various disciplines of Engineering, Accounting, and Finance. The research takes a new approach to identify clear indicators affecting stocks. Statistical Analysis of the data will be performed in terms of the probabilistic distribution, then follow and then determine the probability of the stock price going over a specific target value. The Chi-square test will be used to determine the validity of the assumed distribution. Preliminary results indicate that this approach is working well. When the complete results are presented in the final paper, they will be beneficial to the community.Keywords: stock pattern, stock market analysis, stock predictions, trading, investing, fundamental analysis, technical analysis, quantitative trading, financial analysis, behavioral analysis
Procedia PDF Downloads 87204 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis
Authors: Asowata Osamede
Abstract:
Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.Keywords: power-conversion, meteonorm, PV panels, DC-DC converters
Procedia PDF Downloads 149203 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops
Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann
Abstract:
The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule
Procedia PDF Downloads 152202 Optimal Data Selection in Non-Ergodic Systems: A Tradeoff between Estimator Convergence and Representativeness Errors
Authors: Jakob Krause
Abstract:
Past Financial Crisis has shown that contemporary risk management models provide an unjustified sense of security and fail miserably in situations in which they are needed the most. In this paper, we start from the assumption that risk is a notion that changes over time and therefore past data points only have limited explanatory power for the current situation. Our objective is to derive the optimal amount of representative information by optimizing between the two adverse forces of estimator convergence, incentivizing us to use as much data as possible, and the aforementioned non-representativeness doing the opposite. In this endeavor, the cornerstone assumption of having access to identically distributed random variables is weakened and substituted by the assumption that the law of the data generating process changes over time. Hence, in this paper, we give a quantitative theory on how to perform statistical analysis in non-ergodic systems. As an application, we discuss the impact of a paragraph in the last iteration of proposals by the Basel Committee on Banking Regulation. We start from the premise that the severity of assumptions should correspond to the robustness of the system they describe. Hence, in the formal description of physical systems, the level of assumptions can be much higher. It follows that every concept that is carried over from the natural sciences to economics must be checked for its plausibility in the new surroundings. Most of the probability theory has been developed for the analysis of physical systems and is based on the independent and identically distributed (i.i.d.) assumption. In Economics both parts of the i.i.d. assumption are inappropriate. However, only dependence has, so far, been weakened to a sufficient degree. In this paper, an appropriate class of non-stationary processes is used, and their law is tied to a formal object measuring representativeness. Subsequently, that data set is identified that on average minimizes the estimation error stemming from both, insufficient and non-representative, data. Applications are far reaching in a variety of fields. In the paper itself, we apply the results in order to analyze a paragraph in the Basel 3 framework on banking regulation with severe implications on financial stability. Beyond the realm of finance, other potential applications include the reproducibility crisis in the social sciences (but not in the natural sciences) and modeling limited understanding and learning behavior in economics.Keywords: banking regulation, non-ergodicity, risk management, semimartingale modeling
Procedia PDF Downloads 149201 High Performance Liquid Cooling Garment (LCG) Using ThermoCore
Authors: Venkat Kamavaram, Ravi Pare
Abstract:
Modern warfighters experience extreme environmental conditions in many of their operational and training activities. In temperatures exceeding 95°F, the body’s temperature regulation can no longer cool through convection and radiation. In this case, the only cooling mechanism is evaporation. However, evaporative cooling is often compromised by excessive humidity. Natural cooling mechanisms can be further compromised by clothing and protective gear, which trap hot air and moisture close to the body. Creating an efficient heat extraction apparel system that is also lightweight without hindering dexterity or mobility of personnel working in extreme temperatures is a difficult technical challenge and one that needs to be addressed to increase the probability for the future success of the US military. To address this challenge, Oceanit Laboratories, Inc. has developed and patented a Liquid Cooled Garment (LCG) more effective than any on the market today. Oceanit’s LCG is a form-fitting garment with a network of thermally conductive tubes that extracts body heat and can be worn under all authorized and chemical/biological protective clothing. Oceanit specifically designed and developed ThermoCore®, a thermally conductive polymer, for use in this apparel, optimizing the product for thermal conductivity, mechanical properties, manufacturability, and performance temperatures. Thermal Manikin tests were conducted in accordance with the ASTM test method, ASTM F2371, Standard Test Method for Measuring the Heat Removal Rate of Personal Cooling Systems Using a Sweating Heated Manikin, in an environmental chamber using a 20-zone sweating thermal manikin. Manikin test results have shown that Oceanit’s LCG provides significantly higher heat extraction under the same environmental conditions than the currently fielded Environmental Control Vest (ECV) while at the same time reducing the weight. Oceanit’s LCG vests performed nearly 30% better in extracting body heat while weighing 15% less than the ECV. There are NO cooling garments in the market that provide the same thermal extraction performance, form-factor, and reduced weight as Oceanit’s LCG. The two cooling garments that are commercially available and most commonly used are the Environmental Control Vest (ECV) and the Microclimate Cooling Garment (MCG).Keywords: thermally conductive composite, tubing, garment design, form fitting vest, thermocore
Procedia PDF Downloads 115200 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus
Procedia PDF Downloads 186199 Assessing Empathy of Deliquent Adolescents
Authors: Stephens Oluyemi Adetunji, Nel Norma Margaret, Naidu Narainsamy
Abstract:
Empathy has been identified by researchers to be a crucial factor in helping adolescents to refrain from delinquent behavior. Adolescent delinquent behavior is a social problem that has become a source of concern to parents, psychologists, educators, correctional services, researchers as well as governments of nations. Empathy is a social skill that enables an individual to understand and to share another’s emotional state. An individual with a high level of empathy will avoid any act or behavior that will affect another person negatively. The need for this study is predicated on the fact that delinquent adolescent behavior could lead to adult criminality. This, in the long run, has the potential of resulting in an increase in crime rate thereby threatening public safety. It has therefore become imperative to explore the level of empathy of delinquent adolescents who have committed crime and are awaiting trial. It is the conjecture of this study that knowledge of the empathy level of delinquent adolescents will provide an opportunity to design an intervention strategy to remediate the deficit. This study was therefore designed to determine the level of empathy of delinquent adolescents. In addition, this study provides a better understanding of factors that may prevent adolescents from developing delinquent behavior, in this case, delinquents’ empathy levels. In the case of participants who have a low level of empathy, remediation strategies to improve their empathy level would be designed. Two research questions were raised to guide this study. A mixed methods research design was employed for the study. The sample consists of fifteen male adolescents who are between 13-18 years old with a mean age of 16.5 years old. The participants are adolescents who are awaiting trial. The non-probability sampling technique was used to obtain the sample for the quantitative study while purposive sampling was used in the case of the qualitative study. A self–report questionnaire and structured interview were used to assess the level of empathy of participants. The data obtained was analysed using the simple percentages for the quantitative data and transcribing the qualitative data. The result indicates that most of the participants have low level of empathy. It is also revealed that there is a difference in the empathy level on the basis of whether they are from parents living together and those whose parents are separated. Based on the findings of this study, it is recommended that the level of empathy of participants be improved through training and emphasizing the importance of stimulating family environment for children. It is also recommended that programs such as youth mentoring and youth sheltering be established by the government of South Africa to address the menace of delinquent adolescents.Keywords: adolescents, behavior, delinquents, empathy
Procedia PDF Downloads 463198 Hydrodynamics and Hydro-acoustics of Fish Schools: Insights from Computational Models
Authors: Ji Zhou, Jung Hee Seo, Rajat Mittal
Abstract:
Fish move in groups for foraging, reproduction, predator protection, and hydrodynamic efficiency. Schooling's predator protection involves the "many eyes" theory, which increases predator detection probability in a group. Reduced visual signature in a group scales with school size, offering per-capita protection. The ‘confusion effect’ makes it hard for predators to target prey in a group. These benefits, however, all focus on vision-based sensing, overlooking sound-based detection. Fish, including predators, possess sophisticated sensory systems for pressure waves and underwater sound. The lateral line system detects acoustic waves, while otolith organs sense infrasound, and sharks use an auditory system for low-frequency sounds. Among sound generation mechanisms of fish, the mechanism of dipole sound relates to hydrodynamic pressure forces on the body surface of the fish and this pressure would be affected by group swimming. Thus, swimming within a group could affect this hydrodynamic noise signature of fish and possibly serve as an additional protection afforded by schooling, but none of the studies to date have explored this effect. BAUVs with fin-like propulsors could reduce acoustic noise without compromising performance, addressing issues of anthropogenic noise pollution in marine environments. Therefore, in this study, we used our in-house immersed-boundary method flow and acoustic solver, ViCar3D, to simulate fish schools consisting of four swimmers in the classic ‘diamond’ configuration and discussed the feasibility of yielding higher swimming efficiency and controlling far-field sound signature of the school. We examine the effects of the relative phase of fin flapping of the swimmers and the simulation results indicate that the phase of the fin flapping is a dominant factor in both thrust enhancement and the total sound radiated into the far-field by a group of swimmers. For fish in the “diamond” configuration, a suitable combination of the relative phase difference between pairs of leading fish and trailing fish can result in better swimming performance with significantly lower hydroacoustic noise.Keywords: fish schooling, biopropulsion, hydrodynamics, hydroacoustics
Procedia PDF Downloads 64197 Minimizing Unscheduled Maintenance from an Aircraft and Rolling Stock Maintenance Perspective: Preventive Maintenance Model
Authors: Adel A. Ghobbar, Varun Raman
Abstract:
The Corrective maintenance of components and systems is a problem plaguing almost every industry in the world today. Train operators’ and the maintenance repair and overhaul subsidiary of the Dutch railway company is also facing this problem. A considerable portion of the maintenance activities carried out by the company are unscheduled. This, in turn, severely stresses and stretches the workforce and resources available. One possible solution is to have a robust preventive maintenance plan. The other possible solution is to plan maintenance based on real-time data obtained from sensor-based ‘Health and Usage Monitoring Systems.’ The former has been investigated in this paper. The preventive maintenance model developed for train operator will subsequently be extended, to tackle the unscheduled maintenance problem also affecting the aerospace industry. The extension of the model to the aerospace sector will be dealt with in the second part of the research, and it would, in turn, validate the soundness of the model developed. Thus, there are distinct areas that will be addressed in this paper, including the mathematical modelling of preventive maintenance and optimization based on cost and system availability. The results of this research will help an organization to choose the right maintenance strategy, allowing it to save considerable sums of money as opposed to overspending under the guise of maintaining high asset availability. The concept of delay time modelling was used to address the practical problem of unscheduled maintenance in this paper. The delay time modelling can be used to help with support planning for a given asset. The model was run using MATLAB, and the results are shown that the ideal inspection intervals computed using the extended from a minimal cost perspective were 29 days, and from a minimum downtime, perspective was 14 days. Risk matrix integration was constructed to represent the risk in terms of the probability of a fault leading to breakdown maintenance and its consequences in terms of maintenance cost. Thus, the choice of an optimal inspection interval of 29 days, resulted in a cost of approximately 50 Euros and the corresponding value of b(T) was 0.011. These values ensure that the risk associated with component X being maintained at an inspection interval of 29 days is more than acceptable. Thus, a switch in maintenance frequency from 90 days to 29 days would be optimal from the point of view of cost, downtime and risk.Keywords: delay time modelling, unscheduled maintenance, reliability, maintainability, availability
Procedia PDF Downloads 132196 Assessment of Incidence and Predictors of Mortality Among HIV Positive Children on Art in Public Hospitals of Harer Town Who Were Enrolled From 2011 to 2021
Authors: Getahun Nigusie Demise
Abstract:
Background; antiretroviral treatment reduce HIV-related morbidity, and prolonged survival of patients however, there is lack of up-to-date information concerning the treatment long term effect on the survival of HIV positive children especially in the study area. Objective: The aim of this study is to assess the incidence and predictors of mortality among HIV positive children on antiretroviral therapy (ART) in public hospitals of Harer town who were enrolled from 2011 to 2021. Methodology: Institution based retrospective cohort study was conducted among 429 HIV positive children enrolled in ART clinic from January 1st 2011 to December30th 2021. Data were collected from medical cards by using a data extraction form, Descriptive analyses were used to Summarized the results, and life table was used to estimate survival probability at specific point of time after introduction of ART. Kaplan Meier survival curve together with log rank test was used to compare survival between different categories of covariates, and Multivariate Cox-proportional hazard regression model was used to estimate adjusted Hazard rate. Variables with p-values ≤0.25 in bivariable analysis were candidates to the multivariable analysis. Finally, variables with p-values < 0.05 were considered as significant variables. Results: The study participants had followed for a total of 2549.6 child-years (30596 child months) with an overall mortality rate of 1.5 (95% CI: 1.1, 2.04) per 100 child-years. Their median survival time was 112 months (95% CI: 101–117). There were 38 children with unknown outcome, 39 deaths, and 55 children transfer out to different facility. The overall survival at 6, 12, 24, 48 months were 98%, 96%, 95%, 94% respectively. being in WHO clinical Stage four (AHR=4.55, 95% CI:1.36, 15.24), having anemia(AHR=2.56, 95% CI:1.11, 5.93), baseline low absolute CD4 count (AHR=2.95, 95% CI: 1.22, 7.12), stunting (AHR=4.1, 95% CI: 1.11, 15.42), wasting (AHR=4.93, 95% CI: 1.31, 18.76), poor adherence to treatment (AHR=3.37, 95% CI: 1.25, 9.11), having TB infection at enrollment (AHR=3.26, 95% CI: 1.25, 8.49),and no history of change their regimen(AHR=7.1, 95% CI: 2.74, 18.24), were independent predictors of death. Conclusion: more than half of death occurs within 2 years. Prevalent tuberculosis, anemia, wasting, and stunting nutritional status, socioeconomic factors, and baseline opportunistic infection were independent predictors of death. Increasing early screening and managing those predictors are required.Keywords: human immunodeficiency virus-positive children, anti-retroviral therapy, survival, treatment, Ethiopia
Procedia PDF Downloads 52195 Modeling the Impact of Aquaculture in Wetland Ecosystems Using an Integrated Ecosystem Approach: Case Study of Setiu Wetlands, Malaysia
Authors: Roseliza Mat Alipiah, David Raffaelli, J. C. R. Smart
Abstract:
This research is a new approach as it integrates information from both environmental and social sciences to inform effective management of the wetlands. A three-stage research framework was developed for modelling the drivers and pressures imposed on the wetlands and their impacts to the ecosystem and the local communities. Firstly, a Bayesian Belief Network (BBN) was used to predict the probability of anthropogenic activities affecting the delivery of different key wetland ecosystem services under different management scenarios. Secondly, Choice Experiments (CEs) were used to quantify the relative preferences which key wetland stakeholder group (aquaculturists) held for delivery of different levels of these key ecosystem services. Thirdly, a Multi-Criteria Decision Analysis (MCDA) was applied to produce an ordinal ranking of the alternative management scenarios accounting for their impacts upon ecosystem service delivery as perceived through the preferences of the aquaculturists. This integrated ecosystem management approach was applied to a wetland ecosystem in Setiu, Terengganu, Malaysia which currently supports a significant level of aquaculture activities. This research has produced clear guidelines to inform policy makers considering alternative wetland management scenarios: Intensive Aquaculture, Conservation or Ecotourism, in addition to the Status Quo. The findings of this research are as follows: The BBN revealed that current aquaculture activity is likely to have significant impacts on water column nutrient enrichment, but trivial impacts on caged fish biomass, especially under the Intensive Aquaculture scenario. Secondly, the best fitting CE models identified several stakeholder sub-groups for aquaculturists, each with distinct sets of preferences for the delivery of key ecosystem services. Thirdly, the MCDA identified Conservation as the most desirable scenario overall based on ordinal ranking in the eyes of most of the stakeholder sub-groups. Ecotourism and Status Quo scenarios were the next most preferred and Intensive Aquaculture was the least desirable scenario. The methodologies developed through this research provide an opportunity for improving planning and decision making processes that aim to deliver sustainable management of wetland ecosystems in Malaysia.Keywords: Bayesian belief network (BBN), choice experiments (CE), multi-criteria decision analysis (MCDA), aquaculture
Procedia PDF Downloads 295194 A Network Economic Analysis of Friendship, Cultural Activity, and Homophily
Authors: Siming Xie
Abstract:
In social networks, the term homophily refers to the tendency of agents with similar characteristics to link with one another and is so robustly observed across many contexts and dimensions. The starting point of my research is the observation that the “type” of agents is not a single exogenous variable. Agents, despite their differences in race, religion, and other hard to alter characteristics, may share interests and engage in activities that cut across those predetermined lines. This research aims to capture the interactions of homophily effects in a model where agents have two-dimension characteristics (i.e., race and personal hobbies such as basketball, which one either likes or dislikes) and with biases in meeting opportunities and in favor of same-type friendships. A novel feature of my model is providing a matching process with biased meeting probability on different dimensions, which could help to understand the structuring process in multidimensional networks without missing layer interdependencies. The main contribution of this study is providing a welfare based matching process for agents with multi-dimensional characteristics. In particular, this research shows that the biases in meeting opportunities on one dimension would lead to the emergence of homophily on the other dimension. The objective of this research is to determine the pattern of homophily in network formations, which will shed light on our understanding of segregation and its remedies. By constructing a two-dimension matching process, this study explores a method to describe agents’ homophilous behavior in a social network with multidimension and construct a game in which the minorities and majorities play different strategies in a society. It also shows that the optimal strategy is determined by the relative group size, where society would suffer more from social segregation if the two racial groups have a similar size. The research also has political implications—cultivating the same characteristics among agents helps diminishing social segregation, but only if the minority group is small enough. This research includes both theoretical models and empirical analysis. Providing the friendship formation model, the author first uses MATLAB to perform iteration calculations, then derives corresponding mathematical proof on previous results, and last shows that the model is consistent with empirical evidence from high school friendships. The anonymous data comes from The National Longitudinal Study of Adolescent Health (Add Health).Keywords: homophily, multidimension, social networks, friendships
Procedia PDF Downloads 172193 Nurses' Knowledge and Practice Regarding Care of Patients Connected to Intra-Aortic Balloon Pump at Cairo University Hospitals
Authors: Tharwat Ibrahim Rushdy, Warda Youssef Mohammed Morsy, Hanaa Ali Ahmed Elfeky
Abstract:
Background: Intra-aortic balloon pump (IABP) is the first and the most commonly used mechanical circulatory support for patients with acute coronary syndromes and cardiogenic shock. Therefore, critical care nurses not only have to know how to monitor and operate the IABP, but also to provide interventions for preventing possible complications. Aim of the study: To assess nurses' knowledge and practices regarding care of patients connected to IABP at the ICUs of Cairo University Hospitals. Research design: A descriptive exploratory design was utilized. Sample: Convenience samples of 40 nurses were included in the current study. Setting: This study was carried out at the Intensive Care Units of Cairo University Hospitals. Tools of data collection: Three tools were developed, tested for clarity, and feasibility: a- Nurses' personal background sheet, b- IABP nurses' knowledge self-administered questionnaire, and c- IABP Nurses' practice observational checklist. Results: The majority of the studied sample had unsatisfactory knowledge and practice level (88% & 95%) respectively with a mean of 9.45+2.94 and 30.5+8.7, respectively. Unsatisfactory knowledge was found regarding description and physiological effects, nursing care, indications, contraindications, complications, weaning, and removal of IABP in percentage of 95%, 90%, 72.5%, and 57.5%, respectively, with a mean total knowledge score of 9.45 +2.94. In addition, unsatisfactory practice was found regarding about preparation and initiation of IABP therapy, nursing practice during therapy, weaning, and removal of IABP in percentages of (97.5%, 97.5%, and 90%), respectively. Finally, knowledge level was found to differ significantly in relation to gender (t = 2.46 at P ≤ 0.018). However, gender didn't play a role in relation to practice (t = 0.086 at P≤ 0.932). Conclusion: In spite of having vital role in assessment and management of critically ill patients, critical care nurses in the current study had in general unsatisfactory knowledge and practice regarding care of patients connected to IABP. Recommendation: updating knowledge and practice of ICU nurses through carrying out continuing educational programs about IABP; strict observation of nurses' practice when caring for patients connected to IABP and provision of guidance to correct of poor practices and replication of this study on larger probability sample selected from different geographical locations.Keywords: knowledge, practice, intra-aortic balloon pump (IABP), ICU nurses, intensive care unit (ICU), introduction
Procedia PDF Downloads 502192 Modelling Distress Sale in Agriculture: Evidence from Maharashtra, India
Authors: Disha Bhanot, Vinish Kathuria
Abstract:
This study focusses on the issue of distress sale in horticulture sector in India, which faces unique challenges, given the perishable nature of horticulture crops, seasonal production and paucity of post-harvest produce management links. Distress sale, from a farmer’s perspective may be defined as urgent sale of normal or distressed goods, at deeply discounted prices (way below the cost of production) and it is usually characterized by unfavorable conditions for the seller (farmer). The small and marginal farmers, often involved in subsistence farming, stand to lose substantially if they receive lower prices than expected prices (typically framed in relation to cost of production). Distress sale maximizes price uncertainty of produce leading to substantial income loss; and with increase in input costs of farming, the high variability in harvest price severely affects profit margin of farmers, thereby affecting their survival. The objective of this study is to model the occurrence of distress sale by tomato cultivators in the Indian state of Maharashtra, against the background of differential access to set of factors such as - capital, irrigation facilities, warehousing, storage and processing facilities, and institutional arrangements for procurement etc. Data is being collected using primary survey of over 200 farmers in key tomato growing areas of Maharashtra, asking information on the above factors in addition to seeking information on cost of cultivation, selling price, time gap between harvesting and selling, role of middleman in selling, besides other socio-economic variables. Farmers selling their produce far below the cost of production would indicate an occurrence of distress sale. Occurrence of distress sale would then be modelled as a function of farm, household and institutional characteristics. Heckman-two-stage model would be applied to find the probability/likelihood of a famer falling into distress sale as well as to ascertain how the extent of distress sale varies in presence/absence of various factors. Findings of the study would recommend suitable interventions and promotion of strategies that would help farmers better manage price uncertainties, avoid distress sale and increase profit margins, having direct implications on poverty.Keywords: distress sale, horticulture, income loss, India, price uncertainity
Procedia PDF Downloads 246191 Developing Commitment to Change in Egyptian Modern Bureaucracies
Authors: Nada Basset
Abstract:
Purpose: To examine the nature of the civil service sector as an employer through identifying the likely ways to develop employees’ commitment towards change in the civil service sector. Design/Methodology/Approach: a qualitative research approach was followed. Data was collected via a triangulation of interviews, non-participant observation and archival documents analysis. Non-probability sampling took place with a case-study method applied on a sample of 33 civil servants working in the Egyptian Ministry of State for Administrative Development (MSAD) which is the civil service entity acting as the change agent responsible for managing the government administrative reforms plan in the civil service sector. All study participants were actually working in one of the change projects/programmes and had a minimum of 12 months of service in the civil service. Interviews were digitally recorded and transcribed in the form of MS-Word documents, and data transcripts were analyzed manually using MS-Excel worksheets and main research themes were developed and statistics drawn using those Excel worksheets. Findings: The results demonstrate that developing the civil servant’s commitment towards change may require a number of suggested solutions like (1) employee involvement and participation in the planning and implementation processes, (2) linking the employee support to change to some tangible rewards and incentives, (3) appointing some inspirational change leaders that should act as role models, and (4) as a last resort, enforcing employee’s commitment towards change by coercion and authoritarianism. Practical Implications: it is clear that civil servants’ lack of organizational commitment is not directly related to their level of commitment towards change. The research findings showed that civil servants’ commitment towards change can be raised and promoted by getting them involved in the planning and implementation processes, as this develops some sense of belongingness and ownership, thus there is a fair chance that low organizationally committed civil servants can develop high commitment towards change; given they are provided a favorable environment where they are invited to participate and get involved into the move of change. Originality/Value: the research addresses a relatively new area of ‘developing organizational commitment in modern bureaucracies’ by virtue of investigating the levels of civil servants’ commitment towards their jobs and/or organizations -on one hand- and suggesting different ways of developing their commitment towards administrative reform and change initiatives in the Egyptian civil service sector.Keywords: change, commitment, Egypt, bureaucracy
Procedia PDF Downloads 484190 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization
Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman
Abstract:
In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization
Procedia PDF Downloads 241189 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs
Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello
Abstract:
MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction
Procedia PDF Downloads 452188 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods
Authors: Sohyoung Won, Heebal Kim, Dajeong Lim
Abstract:
Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium
Procedia PDF Downloads 141187 Land Degradation Vulnerability Modeling: A Study on Selected Micro Watersheds of West Khasi Hills Meghalaya, India
Authors: Amritee Bora, B. S. Mipun
Abstract:
Land degradation is often used to describe the land environmental phenomena that reduce land’s original productivity both qualitatively and quantitatively. The study of land degradation vulnerability primarily deals with “Environmentally Sensitive Areas” (ESA) and the amount of topsoil loss due to erosion. In many studies, it is observed that the assessment of the existing status of land degradation is used to represent the vulnerability. Moreover, it is also noticed that in most studies, the primary emphasis of land degradation vulnerability is to assess its sensitivity to soil erosion only. However, the concept of land degradation vulnerability can have different objectives depending upon the perspective of the study. It shows the extent to which changes in land use land cover can imprint their effect on the land. In other words, it represents the susceptibility of a piece of land to degrade its productive quality permanently or in the long run. It is also important to mention that the vulnerability of land degradation is not a single factor outcome. It is a probability assessment to evaluate the status of land degradation and needs to consider both biophysical and human induce parameters. To avoid the complexity of the previous models in this regard, the present study has emphasized on to generate a simplified model to assess the land degradation vulnerability in terms of its current human population pressure, land use practices, and existing biophysical conditions. It is a “Mixed-Method” termed as the land degradation vulnerability index (LDVi). It was originally inspired by the MEDALUS model (Mediterranean Desertification and Land Use), 1999, and Farazadeh’s 2007 revised version of it. It has followed the guidelines of Space Application Center, Ahmedabad / Indian Space Research Organization for land degradation vulnerability. The model integrates the climatic index (Ci), vegetation index (Vi), erosion index (Ei), land utilization index (Li), population pressure index (Pi), and cover management index (CMi) by giving equal weightage to each parameter. The final result shows that the very high vulnerable zone primarily indicates three (3) prominent circumstances; land under continuous population pressure, high concentration of human settlement, and high amount of topsoil loss due to surface runoff within the study sites. As all the parameters of the model are amalgamated with equal weightage further with the help of regression analysis, the LDVi model also provides a strong grasp of each parameter and how far they are competent to trigger the land degradation process.Keywords: population pressure, land utilization, soil erosion, land degradation vulnerability
Procedia PDF Downloads 168186 Employment Mobility and the Effects of Wage Level and Tenure
Authors: Idit Kalisher, Israel Luski
Abstract:
One result of the growing dynamicity of labor markets in recent decades is a wider scope of employment mobility – i.e., transitions between employers, either within or between careers. Employment mobility decisions are primarily affected by the current employment status of the worker, which is reflected in wage and tenure. Using 34,328 observations from the National Longitudinal Survey of Youth 1979 (NLS79), which were derived from the USA population between 1990 and 2012, this paper aims to investigate the effects of wage and tenure over employment mobility choices, and additionally to examine the effects of other personal characteristics, individual labor market characteristics and macroeconomic factors. The estimation strategy was designed to address two challenges that arise from the combination of the model and the data: (a) endogeneity of the wage and the tenure in the choice equation; and (b) unobserved heterogeneity, as the data of this research is longitudinal. To address (a), estimation was performed using two-stage limited dependent variable procedure (2SLDV); and to address (b), the second stage was estimated using femlogit – an implementation of the multinomial logit model with fixed effects. Among workers who have experienced at least one turnover, the wage was found to have a main effect on career turnover likelihood of all workers, whereas the wage effect on job turnover likelihood was found to be dependent on individual characteristics. The wage was found to negatively affect the turnover likelihood and the effect was found to vary across wage level: high-wage workers were more affected compared to low-wage workers. Tenure was found to have a main positive effect on both turnover types’ likelihoods, though the effect was moderated by the wage. The findings also reveal that as their wage increases, women are more likely to turnover than men, and academically educated workers are more likely to turnover within careers. Minorities were found to be as likely as Caucasians to turnover post wage-increase, but less likely to turnover with each additional tenure year. The wage and the tenure effects were found to vary also between careers. The difference in attitude towards money, labor market opportunities and risk aversion could explain these findings. Additionally, the likelihood of a turnover was found to be affected by previous unemployment spells, age, and other labor market and personal characteristics. The results of this research could assist policymakers as well as business owners and employers. The former may be able to encourage women and older workers’ employment by considering the effects of gender and age on the probability of a turnover, and the latter may be able to assess their employees’ likelihood of a turnover by considering the effects of their personal characteristics.Keywords: employment mobility, endogeneity, femlogit, turnover
Procedia PDF Downloads 152185 Breast Cancer Incidence Estimation in Castilla-La Mancha (CLM) from Mortality and Survival Data
Authors: C. Romero, R. Ortega, P. Sánchez-Camacho, P. Aguilar, V. Segur, J. Ruiz, G. Gutiérrez
Abstract:
Introduction: Breast cancer is a leading cause of death in CLM. (2.8% of all deaths in women and 13,8% of deaths from tumors in womens). It is the most tumor incidence in CLM region with 26.1% from all tumours, except nonmelanoma skin (Cancer Incidence in Five Continents, Volume X, IARC). Cancer registries are a good information source to estimate cancer incidence, however the data are usually available with a lag which makes difficult their use for health managers. By contrast, mortality and survival statistics have less delay. In order to serve for resource planning and responding to this problem, a method is presented to estimate the incidence of mortality and survival data. Objectives: To estimate the incidence of breast cancer by age group in CLM in the period 1991-2013. Comparing the data obtained from the model with current incidence data. Sources: Annual number of women by single ages (National Statistics Institute). Annual number of deaths by all causes and breast cancer. (Mortality Registry CLM). The Breast cancer relative survival probability. (EUROCARE, Spanish registries data). Methods: A Weibull Parametric survival model from EUROCARE data is obtained. From the model of survival, the population and population data, Mortality and Incidence Analysis MODel (MIAMOD) regression model is obtained to estimate the incidence of cancer by age (1991-2013). Results: The resulting model is: Ix,t = Logit [const + age1*x + age2*x2 + coh1*(t – x) + coh2*(t-x)2] Where: Ix,t is the incidence at age x in the period (year) t; the value of the parameter estimates is: const (constant term in the model) = -7.03; age1 = 3.31; age2 = -1.10; coh1 = 0.61 and coh2 = -0.12. It is estimated that in 1991 were diagnosed in CLM 662 cases of breast cancer (81.51 per 100,000 women). An estimated 1,152 cases (112.41 per 100,000 women) were diagnosed in 2013, representing an increase of 40.7% in gross incidence rate (1.9% per year). The annual average increases in incidence by age were: 2.07% in women aged 25-44 years, 1.01% (45-54 years), 1.11% (55-64 years) and 1.24% (65-74 years). Cancer registries in Spain that send data to IARC declared 2003-2007 the average annual incidence rate of 98.6 cases per 100,000 women. Our model can obtain an incidence of 100.7 cases per 100,000 women. Conclusions: A sharp and steady increase in the incidence of breast cancer in the period 1991-2013 is observed. The increase was seen in all age groups considered, although it seems more pronounced in young women (25-44 years). With this method you can get a good estimation of the incidence.Keywords: breast cancer, incidence, cancer registries, castilla-la mancha
Procedia PDF Downloads 311184 Heat Transfer and Trajectory Models for a Cloud of Spray over a Marine Vessel
Authors: S. R. Dehghani, G. F. Naterer, Y. S. Muzychka
Abstract:
Wave-impact sea spray creates many droplets which form a spray cloud traveling over marine objects same as marine vessels and offshore structures. In cold climates such as Arctic reigns, sea spray icing, which is ice accretion on cold substrates, is strongly dependent on the wave-impact sea spray. The rate of cooling of droplets affects the process of icing that can yield to dry or wet ice accretion. Trajectories of droplets determine the potential places for ice accretion. Combining two models of trajectories and heat transfer for droplets can predict the risk of ice accretion reasonably. The majority of the cooling of droplets is because of droplet evaporations. In this study, a combined model using trajectory and heat transfer evaluate the situation of a cloud of spray from the generation to impingement. The model uses some known geometry and initial information from the previous case studies. The 3D model is solved numerically using a standard numerical scheme. Droplets are generated in various size ranges from 7 mm to 0.07 mm which is a suggested range for sea spray icing. The initial temperature of droplets is considered to be the sea water temperature. Wind velocities are assumed same as that of the field observations. Evaluations are conducted using some important heading angles and wind velocities. The characteristic of size-velocity dependence is used to establish a relation between initial sizes and velocities of droplets. Time intervals are chosen properly to maintain a stable and fast numerical solution. A statistical process is conducted to evaluate the probability of expected occurrences. The medium size droplets can reach the highest heights. Very small and very large droplets are limited to lower heights. Results show that higher initial velocities create the most expanded cloud of spray. Wind velocities affect the extent of the spray cloud. The rate of droplet cooling at the start of spray formation is higher than the rest of the process. This is because of higher relative velocities and also higher temperature differences. The amount of water delivery and overall temperature for some sample surfaces over a marine vessel are calculated. Comparing results and some field observations show that the model works accurately. This model is suggested as a primary model for ice accretion on marine vessels.Keywords: evaporation, sea spray, marine icing, numerical solution, trajectory
Procedia PDF Downloads 220183 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones
Authors: Mohamed Abdelkareem
Abstract:
Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.Keywords: GIS, remote sensing, groundwater, Egypt
Procedia PDF Downloads 98