Search results for: shell chemical properties
1617 Biochemical Studies on the Effects of Cymbopogon citratus (Lemon Grass) on Wistar Albino Rats
Authors: Adegbegi Ademuyiwa Joshua, Onoagbe Iyare
Abstract:
Medicinal plants have been recognized to have therapeutic effects and they may also have toxic side effects. The present study was undertaken to investigate the effect of extracts of Cymbopogon citratus on normal rats. Blood glucose levels of all animals were determined. Biochemical studies carried out to determine the oxidative status by measuring activities of superoxide dismutase (SOD) and catalase (CAT), and in the liver, kidney and pancrease. Oral administration of ethanolic and aqueous extract of C. citratus at a doses of 200 mg/kg body weight, for a period of 30 days, caused a significant (p<0.05) reduction in blood glucose levels. Effect on hormonal profile (TSH, T3, and T4) was also determined, and was found to be significantly higher in all the administered groups when compared with control. Lipid profiles levels; Total cholesterols, triglycerides, high density lipoprotein-cholesterol and low density lipoprotein-cholesterol were significantly (p>0.05) higher for all treated rats as compared against control. SOD, catalase, GSH and Vitamin C activities in the tissues (liver, kidney and pancrease) of the rats treated with the medicinal plants were generally higher or statistical slightly similar to control. Histopathology result showed that both ethanolic and aqueous extracts (200 mg/kg body weight) of C. citratus was safer as no adverse effects were observed in the organs examined. Findings in this study showed that this plant has hypoglycemic properties and did not exert oxidative damage; in some instances, particularly in the liver, kidney and pancreas as well as its relative safety and possible use for weight gain.Keywords: medicinal plants, blood glucose, cymbopogon citratus, hypoglycaemic, oxidative status
Procedia PDF Downloads 4711616 A Study on Al-Riba Al-Hukmi and Its Instances from View of Islam
Authors: Abolfazl Alishahi Ghalehjoughi, Bi Bi Zeinab Hoseni
Abstract:
Islam is a comprehensive religion, and has rules for any thing. Islam attaches respect and importance to properties as well, and outlaws some types of transaction. A type of transaction that is strictly forbidden by the Islam is riba (usury), for which special punishments is considered in the Qur’an and hadiths. Usury is divided into (riba qarzi) loan usury and riba muamili (transaction usury); sometimes, in transaction and interest free loan contracts, ziyadah aini (interest in kind and of the same kind as that of the object of transaction) is not stipulated, but performance of work, provision of an advantage or a service, or a respite is stipulated, in which case although no ziyadah aini is in place, the transaction still constitutes usury and is outlaw. For instance, if a bank stipulates in an interest free loan contract that it pays a person the interest free loan only if he/she deposits a sum in the bank, this is an instance of riba hukmi. Or, for muamilah sarfi (transaction is which object of transaction and consideration is gold or silver) to be legitimate, it necessary that both the object of transaction and the consideration be handed over between the parties, because if a party takes delivery of the considered or object of transaction while the other party does not, the party who has taken delivery will accrue a benefit, as he/she wins time until he/she makes delivery to the other party, and this tantamount to usury in muamilah sarfi. Or, if a person lends a sum to another person, while the lender is indebted to the borrower, if the lender stipulates that he/she lends such amount only if the borrower postpones the maturity date of the lender’s debt to borrower, which is in one month, for a particular period of time, such loan will constitute usury. This research first provides views on riba hukmi, and then proceeds to analysis of views, trying to study fundamentals and proof regarding prohibition of riba hukmi, and to analyze instances of riba hukmi according to religious and hadith books.Keywords: Islam, riba, prohibition, riba hukmi
Procedia PDF Downloads 3701615 Anti-Inflammatory Effect of Carvedilol 1% Ointment in Topical Application to the Animal Model
Authors: Berina Pilipović, Saša Pilipović, Maja Pašić-Kulenović
Abstract:
Inflammation is the body's response to impaired homeostasis caused by infection, injury or trauma resulting in systemic and local effects. Inflammation causes the body's response to injury and is characterized by a series of events including inflammatory response, response to pain receptors and the recovery process. Inflammation can be acute and chronic. The inflammatory response is described in three different phases. Free radical is an atom or molecule that has the unpaired electron and is therefore generally very reactive chemical species. Biologically important example of reaction with free radicals is called Lipid peroxidation (LP). Lipid peroxidation reactions occur in biological membranes, and if at the outset is not stopped with the action of antioxidants, it will bring damage to the membrane, which results in partial or complete loss of their physiological functions. Calcium antagonists and beta-adrenergic receptor antagonists are known drugs, and for many years and widely used in the treatment of cardiovascular diseases. Some of these compounds also show antioxidant activity. The mechanism of antioxidant activities of calcium antagonists and beta-blockers is unknown, since their structure varies widely. This research investigated the possible local anti-inflammatory activity of ointments containing 1% carvedilol in the white petrolatum USP. Ear inflammation was induced by 3% croton oil acetone solution, in quantity of 10 µl on both mouse ears. Albino Swiss mouse (n = 8) are treated with 2.5 mg/ear ointment, and control group was treated on the same way as previous with hydrocortisone 1% ointment (2.5 mg/ear). The other ear of the same animal was used as control one. Ointments were administered once per day, on the left ear. After treatment, ears were observed for three days. After three days, we measured mass (mg) of 6 mm ear punch of treated and controlled ears. The results of testing anti-inflammatory effects of ointments with carvedilol in the mouse ear model show stronger observed effect than ointment with 1% hydrocortisone in the same basis. Identical results were confirmed by the difference between the mass of 6 mm ears punch. The results were also confirmed by histological examination. Ointments with carvedilol showed significant reduction of the inflammation process caused by croton oil on the mouse inflammation model.Keywords: antioxidant, carvedilol, inflammation, mouse ear
Procedia PDF Downloads 2321614 Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor
Authors: Jorge Prada, Christina Cordes, Carsten Harms, Walter Lang
Abstract:
The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process.Keywords: biosensor, cyclo-olefin copolymer, hot embossing, thermal bonding, thermoplastics
Procedia PDF Downloads 2381613 Peculiar Mineralogical and Chemical Evolution of Contaminated Igneous Rocks at a Gabbro-Carbonate Contact, Wadai Bayhan, Yemen
Authors: Murad Ali, Shoji Arai, Mohamed Khedr, Mukhtar Nasher, Shawki Nasr
Abstract:
The Wadi Bayhan area of southeastern Yemen is about 60 km NW of Al-Bayda city in the Al-Bayda uplift terrane at the southeast margin of the Arabian-Nubian Shield. Intrusion of alkali gabbro into carbonate rocks apparently produced an 8m to 10 m thick reaction zone at the contact. This had been identified as nepheline pyroxenite. We have observed this to be mineralogically zoned with calc-silicate assemblages (e.g. pyroxene, calcite, spinel, garnet and melilite). The presence of melilite implies a skarn. The sinuous embayed pyroxenite-skarn contact, the presence of skarn minerals in pyroxenite, and textural evidence for growth of calc-silicate skarn by replacement of both carbonate rocks and solid pyroxenite indicate that reaction involved assimilation of carbonate wall rock by magma and loss of Al and Si to the skarn. Textural relationships between minerals provide evidence for a metasomatic development of the skarn at the expense of the pyroxenite. This process, related to the circulation of fluids equilibrated with carbonates, is responsible for those pyroxenite-spinel (± calcite) skarns. The uneven modal distribution of euhedral pyroxenite and enveloping nepheline in pyroxenite, the restricted occurrence of alkali gabbro as dikes in pyroxenite and skarn and the leucocratic matrix of pyroxenite suggest that pyroxenite represents an accumulation of titanaugite cemented by an alkali-rich residual magma and that alkali gabbro represents a part of the residual contaminated magma that was squeezed out of the pyroxene crystal mush. Carbonate assimilation is modeled by reaction of calcite and magmatic plagioclase, which results in resorption of plagioclase, growth of pyroxene enriched in Ca, Fe, Ti, and Al, and solution of nepheline in residual contaminated magma. The composition of nepheline pyroxenite evolved by addition of Ca from dissolved carbonate rocks, loss of Al and Si to skarn, and local segregation of solid pyroxene and alkali gabbro magma. The predominance of pyroxenite among contaminated rocks and their restriction to a large zone along the intrusive contact provide little evidence for the genesis of a significant volume of alkaline magmatic surroundings by carbonate assimilation.Keywords: Yemen, Wadi Bayhan, skarn, pyroxenite, carbonatite, metasomatic
Procedia PDF Downloads 3221612 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents
Authors: Neha Budhwani
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsor¬bents of natural origin including sawdust (shiham), coconut fiber, neem bark, chitin, activated charcol. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.Keywords: natural adsorbent, PAHs, TPO, coconut fiber, wood powder (shisham), naphthalene, acenaphthene, biphenyl and anthracene
Procedia PDF Downloads 2301611 Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process
Authors: Sandra H. Fukurozaki, Andre L. N. Silva, Joao B. F. Neto, Fernando J. G. Landgraf
Abstract:
Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective.Keywords: didymium electrolysis, environmental impacts, life cycle assessment, rare earth metals
Procedia PDF Downloads 1851610 Effect of Exit Annular Area on the Flow Field Characteristics of an Unconfined Premixed Annular Swirl Burner
Authors: Vishnu Raj, Chockalingam Prathap
Abstract:
The objective of this study was to explore the impact of variation in the exit annular area on the local flow field features and the flame stability of an annular premixed swirl burner (unconfined) operated with premixed n-butane air mixture at equivalence ratio (ϕ) = 1, 1 bar, and 300K. A swirl burner with an axial swirl generator having a swirl number of 1.5 was used. Three different burner heads were chosen to have the exit area increased from 100%, 160%, and 220% resulting in inner and outer diameters and cross-sectional areas as (1) 10mm&15mm, 98mm2 (2) 17.5mm&22.5mm, 157mm2 and (3) 25mm & 30mm, 216mm2. The bulk velocity and Reynolds number based on the hydraulic diameter and unburned gas properties were kept constant at 12 m/s and 4000. (i) Planar PIV with TiO2 seeding particles and (ii) OH* chemiluminescence were used to measure the velocity fields and reaction zones of the swirl flames at 5Hz, respectively. Velocity fields and the jet spreading rates measured at the isothermal and reactive conditions revealed that the presence of a flame significantly altered the flow field in the radial direction due to the gas expansion. Important observations from the flame measurements were: the height and maximum width of the recirculation bubbles normalized by the hydraulic diameter, and the jet spreading angles for the flames for the three exit area cases were: (a) 4.52, 1.95, 28ᵒ, (b) 6.78, 2.37, 34ᵒ, and (c) 8.73, 2.32, 37ᵒ. The lean blowout was also measured, and the respective equivalence ratios were: 0.80, 0.92, and 0.82. LBO was relatively narrow for the 157mm2 case. For this case, particle image velocimetry (PIV) measurements showed that Turbulent Kinetic Energy and turbulent intensity were relatively high compared to the other two cases, resulting in higher stretch rates and narrower lean blowout (LBO).Keywords: chemiluminescence, jet spreading rate, lean blowout, swirl flow
Procedia PDF Downloads 661609 Gold Nanoparticle Conjugated with Andrographolide Ameliorates Viper Venom-Induced Inflammatory Response and Organ Toxicity in Animal Model
Authors: Sourav Ghosh, Antony Gomes
Abstract:
Since 1894 anti-snake venom serum (ASVS) is the only available treatment against snake envenomation, although there are many side effects and limitations. The need for a supportive treatment was felt for a long time to overcome the side effects and limitations of ASVS. Andrographolide conjugated with gold nanoparticle (A-GNP) has been found to antagonize viper venom-induced local damages. The present study was aimed to study the protective efficacy of A-GNP against Viper venom-induced inflammatory response and organ toxicity in animal model. Ethical clearance was obtained from animal experiments. Physico-chemical characterization of A-GNP was done by DLS (diameter and zeta potential), FE-SEM and XRD. Swiss albino male mice were divided into 4 groups: Gr.1-Sham control, Gr.2- Russell’s Viper venom (RVV) control, Gr.3- andrographolide treated and Gr.4- A-GNP treated. The 1/5th minimum lethal dose of RVV (500µg/kg, s.c.) was induced in animals of group 2, 3 & 4 animals, followed by treatment with andrographolide (100mg/kg, i.p.) and A-GNP (100mg/kg, i.v.) in group 3 & 4 animals, respectively. Blood was collected after 18 h, serum was prepared, and inflammatory markers (IL 1β, 6, 17a, 10, TNF α) and biochemical markers (AST, ACP, LDH, urea, creatinine) were assessed. Values were expressed as mean±SEM (n=4), one way ANOVA was done, P<0.05 was considered as statistically significant. DLS size showed the hydrodynamic diameter of A-GNP to be 230-260nm with polydispersity index of 0.103 and zeta potential was -18.32mV. XRD data confirmed the presence of crystalline gold in A-GNP, and FESEM indicated the presence of nearly spherical particle with size18-24nm.Treatment with A-GNP significantly decreased viper venom-induced proinflammatory markers (IL 1β, 6, 17, TNF α) increased anti-inflammatory markers (IL 10) and decreased organ toxicity markers (AST, ACP, LDH, urea, creatinine) in animal model. Venom neutralization efficacy of A-GNP was > andrographolide, which confirmed the increased efficacy of andrographolide after gold nanoparticle conjugation. Venom neutralization by A-GNP was due to anti-oxidant/anti-inflammatory activity of andrographolide, which showed increased efficacy after gold nanoparticle tagging. Thus, A-GNP may serve as a supportive therapy in snake-bite (against inflammatory response and organ toxicity) subject to further detail studies.Keywords: andrographolide, gold nanoparticle, inflammatory response, organ toxicity, snake venom, snake venom neutralization, viper venom
Procedia PDF Downloads 3721608 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition
Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos
Abstract:
Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region
Procedia PDF Downloads 2011607 An EBSD Investigation of Ti-6Al-4Nb Alloy Processed by Plan Strain Compression Test
Authors: Anna Jastrzebska, K. S. Suresh, T. Kitashima, Y. Yamabe-Mitarai, Z. Pakiela
Abstract:
Near α titanium alloys are important materials for aerospace applications, especially in high temperature applications such as jet engine. Mechanical properties of Ti alloys strongly depends on their processing route, then it is very important to understand micro-structure change by different processing. In our previous study, Nb was found to improve oxidation resistance of Ti alloys. In this study, micro-structure evolution of Ti-6Al-4Nb (wt %) alloy was investigated after plain strain compression test in hot working temperatures in the α and β phase region. High-resolution EBSD was successfully used for precise phase and texture characterization of this alloy. 1.1 kg of Ti-6Al-4Nb ingot was prepared using cold crucible levitation melting. The ingot was subsequently homogenized in 1050 deg.C for 1h followed by cooling in the air. Plate like specimens measuring 10×20×50 mm3 were cut from an ingot by electrical discharge machining (EDM). The plain strain compression test using an anvil with 10 x 35 mm in size was performed with 3 different strain rates: 0.1s-1, 1s-1and 10s-1 in 700 deg.C and 1050 deg.C to obtain 75% of deformation. The micro-structure was investigated by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) detector. The α/β phase ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over the middle and the edge of sample areas. The deformation mechanism in each working temperature was discussed. The evolution of texture changes with strain rate was investigated. The micro-structure obtained by plain strain compression test was heterogeneous with a wide range of grain sizes. This is because deformation and dynamic recrystallization occurred during deformation at temperature in the α and β phase. It was strongly influenced by strain rate.Keywords: EBSD, plain strain compression test, Ti alloys
Procedia PDF Downloads 3791606 Managing of Cobalt and Chromium Ions by Patients with Metal-on-Metal Hip Prosthesis
Authors: Alina Beraudi, Simona Catalani, Dalila De Pasquale, Eva Bianconi, Umberto Santoro, Susanna Stea, Pietro Apostoli
Abstract:
Recently the European Community, in line with the international scientific community such as with the Consensus Statement, has determined to stop the use of metal-on-metal big head stemmed hip prosthesis. Among the factors accounted as responsible for the high failure rates of these hip implants are the release and accumulation of metal ions. Many studies have correlated the presence of these ions, besides other factors, with the induction of oxidative stress response. In our study on 12 subjects, we observed the patient specific capability to eliminate metal ions after revision surgery. While for cobalt all the patients were able to completely excrete cobalt ions within 5-7 months after metal-on-metal bearing removal, for chromium ions it didn’t happen. If on the one hand the toxicokinetic differences between the two types of ions are confirmed by toxicological and occupational studies, on the other hand, this peculiar way of exposition represents a novel and important point of view. Thus, two different approaches were performed to better understand the subject specific capability to transport metal ions (albumin study) and to manage the response to them (heme-oxygenase-1 study): - a mutational screening of ALBUMIN gene was conducted in 30 MoM prosthetic patients resulting in the absence of nucleotidic changes compared with the ALB reference sequence. To this study was also added the analysis of expression of modified albumin protein; - a gene and protein expression study on 44 patients of heme-oxygenase-1, that is one of the most important antioxidant enzyme induced by metallic ions, was performed. This study resulted in no statistically significant differences in the expression of the gene and protein heme-oxygenase-1 between prosthetic and non-prosthetic patients, as well as between patients with high and low ions levels. Our results show that the protein studied (albumin and heme-oxygenase-1) seem to be not involved in determining chromium and cobalt ions level. On the other hand, achromium and cobalt elimination rates are different, but similar in all patients analyzed, suggesting that this process could be not patient-related. We support the importance of researching more about ions transport within the organism once released by hip prosthesis, about the chemical species involved, the districts where they are contained and the mechanisms of elimination, not excluding the existence of a subjective susceptibility to these metals ions.Keywords: chromium, cobalt, hip prosthesis, individual susceptibility
Procedia PDF Downloads 3801605 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol
Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov
Abstract:
The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.Keywords: liquid crystals, polymers, small-angle scattering, optical properties
Procedia PDF Downloads 6161604 Elaboration and Validation of a Survey about Research on the Characteristics of Mentoring of University Professors’ Lifelong Learning
Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile
Abstract:
This paper outlines the design and development of the MENDEPRO questionnaire, designed to analyze mentoring performance within a professional development process carried out with professors at the University of the Basque Country, Spain. The study took into account the international research carried out over the past two decades into teachers' professional development, and was also based on a thorough review of the most common instruments used to identify and analyze mentoring styles, many of which fail to provide sufficient psychometric guarantees. The present study aimed to gather empirical data in order to verify the metric quality of the questionnaire developed. To this end, the process followed to validate the theoretical construct was as follows: The formulation of the items and indicators in accordance with the study variables; the analysis of the validity and reliability of the initial questionnaire; the review of the second version of the questionnaire and the definitive measurement instrument. Content was validated through the formal agreement and consensus of 12 university professor training experts. A reduced sample of professors who had participated in a lifelong learning program was then selected for a trial evaluation of the instrument developed. After the trial, 18 items were removed from the initial questionnaire. The final version of the instrument, comprising 33 items, was then administered to a sample group of 99 participants. The results revealed a five-dimensional structure matching theoretical expectations. Also, the reliability data for both the instrument as a whole (.98) and its various dimensions (between .91 and .97) were very high. The questionnaire was thus found to have satisfactory psychometric properties and can therefore be considered apt for studying the performance of mentoring in both induction programs for young professors and lifelong learning programs for senior faculty members.Keywords: higher education, mentoring, professional development, university teaching
Procedia PDF Downloads 1791603 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics
Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo
Abstract:
The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing
Procedia PDF Downloads 1301602 Potentials of Henna Leaves as Dye and Its Fastness Properties on Fabric
Authors: Nkem Angela Udeani
Abstract:
Despite the widespread use of synthetic dyes, natural dyes are still exploited and used to enhance its inherent aesthetic qualities as a major material for the beautification of the body. Centuries before the discovery of synthetic dye, natural dyes were the only source of dye open to mankind. Dyes are extracted from plant - leaves, roots, and barks, insect secretions, and minerals. However, research findings have made it clear that of all, plant- leaves, roots, barks or flowers are the most explored and exploited. Henna (Lawsonia innermis) is one of those plants. The experiment has also shown that henna is used in body painting in conjunction with an alkaline (Ammonium Sulphate) as a fixing agent. This of course gives a clue that if colour derived from henna is properly investigated, it may not only be used as body decoration but possibly, may have affinity to fibre substrate. This paper investigates the dyeing potentials - dyeing ability and fastness qualities of henna dye extract on cotton and linen fibres using mordants like ammonium sulphate and other alkalies (hydrosulphate and caustic soda, potash, common salt and alum). Hot and cold water and ethanol solvent were used in the extraction of the dye to investigate the most effective method of extraction, dyeing ability and fastness qualities of these extracts under room temperature. The results of the experiment show that cotton have a high rate of dye intake than linen fibre. On a similar note, the colours obtained depend most on the solvent and or the mordant used. In conclusion, hot water extraction appear more effective. While the colours obtained from ethanol and both cold and hot method of extraction range from light to dark yellow, light green to army green, there are to some extent shades of brown hues.Keywords: dye, fabrics, henna leaves, potential
Procedia PDF Downloads 4721601 Emerging Therapeutic Approach with Dandelion Phytochemicals in Breast Cancer Treatment
Authors: Angel Champion, Sadia Kanwal, Rafat Siddiqui
Abstract:
Harnessing phytochemicals from plant sources presents a novel opportunity to prevent or treat malignant diseases, including breast cancer. Chemotherapy lacks precision in targeting cancerous cells while sparing normal cells, but a phytopharmaceutical approach may offer a solution. Dandelion, a common weed plant, is rich in phytochemicals and provides a safer, more cost-effective alternative with lower toxicity than traditional pharmaceuticals for conditions such as breast cancer. In this study, an in-vitro experiment will be conducted using the ethanol extract of Dandelion on triple-negative MDA-231 breast cancer cell lines. The polyphenolic analysis revealed that the Dandelion extract, particularly from the root and leaf (both cut and sifted), had the most potent antioxidant properties and exhibited the most potent antioxidation activity from the powdered leaf extract. The extract exhibits prospective promising effects for inducing cell proliferation and apoptosis in breast cancer cells, highlighting its potential for targeted therapeutic interventions. Standardizing methods for Dandelion use is crucial for future clinical applications in cancer treatment. Combining plant-derived compounds with cancer nanotechnology holds the potential for effective strategies in battling malignant diseases. Utilizing liposomes as carriers for phytoconstituent anti-cancer agents offers improved solubility, bioavailability, immunoregulatory effects, advancing anticancer immune function, and reducing toxicity. This integrated approach of natural products and nanotechnology has significant potential to revolutionize healthcare globally, especially in underserved communities where herbal medicine is prevalent.Keywords: apoptosis, antioxidant activity, cancer nanotechnology, phytopharmaceutical
Procedia PDF Downloads 531600 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media
Authors: Naila Nasreen, Dianchen Lu
Abstract:
This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena
Procedia PDF Downloads 981599 Failure to React Positively to Flood Early Warning Systems: Lessons Learned by Flood Victims from Flash Flood Disasters: the Malaysia Experience
Authors: Mohamad Sukeri Khalid, Che Su Mustaffa, Mohd Najib Marzuki, Mohd Fo’ad Sakdan, Sapora Sipon, Mohd Taib Ariffin, Shazwani Shafiai
Abstract:
This paper describes the issues relating to the role of the flash flood early warning system provided by the Malaysian Government to the communities in Malaysia, specifically during the flash flood disaster in the Cameron Highlands, Malaysia. Normally, flash flood disasters can occur as a result of heavy rainfall in an area, and that water may possibly cause flooding via streams or narrow channels. For this study, the flash flood disaster in the Cameron Highlands occurred on 23 October 2013, and as a result the Sungai Bertam overflowed after the release of water from the Sultan Abu Bakar Dam. This release of water from the dam caused flash flooding which led to damage to properties and also the death of residents and livestock in the area. Therefore, the effort of this study is to identify the perceptions of the flash flood victims on the role of the flash flood early warning system. For the purposes of this study, data collection was gathered from those flood victims who were willing to participate in this study through face-to-face interviews. This approach helped the researcher to glean in-depth information about their feeling and perceptions on the role of the flash flood early warning system offered by the government. The data were analysed descriptively and the findings show that the respondents of 22 flood victims believe strongly that the flash flood early warning system was confusing and dysfunctional, and communities had failed to response positively to it. Therefore, most of the communities were not well prepared for the releasing of water from the dam that caused property damage and 3 people were killed in Cameron Highland flash flood disaster.Keywords: communities affected, disaster management, early warning system, flash flood disaster
Procedia PDF Downloads 7021598 Removal of Methylene Blue from Aqueous Solution by Adsorption onto Untreated Coffee Grounds
Authors: N. Azouaou, H. Mokaddem, D. Senadjki, K. Kedjit, Z. Sadaoui
Abstract:
Introduction: Water contamination caused by dye industries, including food, leather, textile, plastic, cosmetics, paper-making, printing and dye synthesis, has caused more and more attention, since most dyes are harmful to human being and environments. Untreated coffee grounds were used as a high-efficiency adsorbent for the removal of a cationic dye (methylene blue, MB) from aqueous solution. Characterization of the adsorbent was performed using several techniques such as SEM, surface area (BET), FTIR and pH zero charge. The effects of contact time, adsorbent dose, initial solution pH and initial concentration were systematically investigated. Results showed the adsorption kinetics followed the pseudo-second-order kinetic model. Langmuir isotherm model is in good agreement with the experimental data as compared to Freundlich and D–R models. The maximum adsorption capacity was found equal to 52.63mg/g. In addition, the possible adsorption mechanism was also proposed based on the experimental results. Experimental: The adsorption experiments were carried out in batch at room temperature. A given mass of adsorbent was added to methylene blue (MB) solution and the entirety was agitated during a certain time. The samples were carried out at quite time intervals. The concentrations of MB left in supernatant solutions after different time intervals were determined using a UV–vis spectrophotometer. The amount of MB adsorbed per unit mass of coffee grounds (qt) and the dye removal efficiency (R %) were evaluated. Results and Discussion: Some chemical and physical characteristics of coffee grounds are presented and the morphological analysis of the adsorbent was also studied. Conclusions: The good capacity of untreated coffee grounds to remove MB from aqueous solution was demonstrated in this study, highlighting its potential for effluent treatment processes. The kinetic experiments show that the adsorption is rapid and maximum adsorption capacities qmax= 52.63mg/g achieved in 30min. The adsorption process is a function of the adsorbent concentration, pH and metal ion concentration. The optimal parameters found are adsorbent dose m=5g, pH=5 and ambient temperature. FTIR spectra showed that the principal functional sites taking part in the sorption process included carboxyl and hydroxyl groups.Keywords: adsorption, methylene blue, coffee grounds, kinetic study
Procedia PDF Downloads 2291597 Toxicity, Analgesic, and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus’ Leaves in Albinos Rats
Authors: Yahia Massinissa, Afaf Benhouda, Mouloud Yahia
Abstract:
Objective: The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. Methods: The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by Brewer’s yeast induced fever in rats. Results: For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of H.albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of 'H. albus' was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast-induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. Conclusion: The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity.Keywords: Hyoscyamus albus, Umbilicus rupestris, secondary metabolites, NMR with protons, pharmacobiologic activities, methanolic extract
Procedia PDF Downloads 4211596 An Assessment on the Impact of Community Policing in Crime Prevention and Control in Fagge Local Government Area, Kano State, Nigeria
Authors: Aliyu Shitu Said
Abstract:
One of the major setbacks of every society is the proliferation of crimes that results in the inducement of fear, destruction of properties and loss of lives of people. The rising incidence of crime and general insecurity rate in the society and the inability of the policing agencies to curtail the menace necessitated the introduction of community policing in order to have a collaborative effort with community members in addressing the problem of crime. Thus, this study assessed the impact of community policing in crime prevention and control in Fagge Local Government area, Kano State, Nigeria. The study also examined the elements, roles, and challenges of community policing in crime prevention and control in the study area. The study adopted Broken Window and Routine Activity theories as frame of analysis. Mixed methods of data collection (quantitative and qualitative) were utilized for the study. Multi stage and purposive sampling techniques were adopted in selection of the study population. A total of 308 respondents were sampled for the study. These include 300 members of the public who were sampled through a multi stage sampling for questionnaire administration and 8 other respondents who were purposively sampled for in-depth interview. Findings of the study revealed that community policing has significant impact on crime prevention and control in the study area. Findings of the study further revealed that the elements and roles of community policing are effective and fully utilized, and there is cordial relationship between the police and the community members in the study area. This study therefore recommends that government should provide adequate support to community policing programmes and give more awareness to public, so as to boost the morale of the community in having a collaborative effort with the police in crime prevention and control.Keywords: community, policing, crime, prevention, control
Procedia PDF Downloads 751595 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on
Authors: Mahesh Kumar Jat, Manisha Choudhary
Abstract:
Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.Keywords: remote sensing, GIS, object based, classification
Procedia PDF Downloads 1281594 Curcumin Derivatives as Potent Inhibitors of Inducible Nitric Oxide Synthase in Osteoarthritis: A Molecular Docking Study
Authors: F. Ambreen, A.Naheed
Abstract:
Osteoarthritis (OA) is a degenerative disorder affecting millions of people worldwide. Nitric oxide (NO) was found to play a catabolic role in the development of osteoarthritis. It is a toxic free radical gas generated during the metabolism of L-arginine by the enzyme Nitric oxide synthase (NOS). Inducible Nitric Oxide Synthase (iNOS) is one of the isoform of NOS, and its overexpression leads to the excessive formation of NO that results in pathophysiological joint conditions. Several synthetic anti-inflammatory drugs and inhibitors are present to date, but all showed side effects and complications. Therefore, the pursuit of natural disease-modifying drugs remains a top priority. Curcumin is an active component of turmeric, and the past few decades have witnessed intense research devoted to the antioxidant and anti-inflammatory properties of curcumin. The present study focused on curcumin and its derivatives in the search for new iNOS inhibitors for the treatment of osteoarthritis. We conducted a molecular docking study on curcumin and its four derivatives; cyclocurcumin, tetrahydrocurcumin, demethoxycurcumin and curcumin monoglucoside with iNOS using CLC Drug discovery work bench 3.02. We selected two co-crystallized ligands for this study; tetrahydrobiopterin and N-omega-propyl-L-arginine present in complex with the enzyme iNOS. Results showed the best binding affinity of N-omega-propyl-L-arginine with cyclocurcumin and curcumin monoglucoside that exhibit binding energies of -65.2 kcal/mol and -68 kcal/mol respectively. Whereas with tetrahydrobiopterin, best binding scores of -64.7 kcal/mol and -62.2 kcal/mol were found with tetrahydrocurcumin and demethoxycurcumin respectively. This information could open doors of research for the designing of novel drugs using herbs such as curcumin for the treatment of inflammatory joint diseases.Keywords: curcumin, iNOS, molecular docking, osteoarthritis
Procedia PDF Downloads 1281593 Theoretical Evaluation of Minimum Superheat, Energy and Exergy in a High-Temperature Heat Pump System Operating with Low GWP Refrigerants
Authors: Adam Y. Sulaiman, Donal F. Cotter, Ming J. Huang, Neil J. Hewitt
Abstract:
Suitable low global warming potential (GWP) refrigerants that conform to F-gas regulations are required to extend the operational envelope of high-temperature heat pumps (HTHPs) used for industrial waste heat recovery processes. The thermophysical properties and characteristics of these working fluids need to be assessed to provide a comprehensive understanding of operational effectiveness in HTHP applications. This paper presents the results of a theoretical simulation to investigate a range of low-GWP refrigerants and their suitability to supersede refrigerants HFC-245fa and HFC-365mfc. A steady-state thermodynamic model of a single-stage HTHP with an internal heat exchanger (IHX) was developed to assess system cycle characteristics at temperature ranges between 50 to 80 °C heat source and 90 to 150 °C heat sink. A practical approach to maximize the operational efficiency was examined to determine the effects of regulating minimum superheat within the process and subsequent influence on energetic and exergetic efficiencies. A comprehensive map of minimum superheat across the HTHP operating variables were used to assess specific tipping points in performance at 30 and 70 K temperature lifts. Based on initial results, the refrigerants HCFO-1233zd(E) and HFO-1336mzz(Z) were found to be closely aligned matches for refrigerants HFC-245fa and HFC-365mfc. The overall results show effective performance for HCFO-1233zd(E) occurs between 5-7 K minimum superheat, and HFO-1336mzz(Z) between 18-21 K dependant on temperature lift. This work provides a method to optimize refrigerant selection based on operational indicators to maximize overall HTHPs system performance.Keywords: high-temperature heat pump, minimum superheat, energy & exergy efficiency, low GWP refrigerants
Procedia PDF Downloads 1801592 Antioxidant and Cytotoxic Effects of Different Extracts of Fruit Peels Against Three Cancer Cell Lines
Authors: Emad A. Shalaby
Abstract:
Cancer is a disease that causes abnormal cell proliferation and invades nearby tissues. Lung cancer is the second most frequent cancer worldwide. Natural anti-cancer drugs have been developed with low side effects and toxicity. Citrus peels and extracts have been demonstrated to have significant pharmacological and physiological effects as a result of the high concentration of phenolic compounds found in citrus fruits, particularly peels. Tangerine peels can serve as an effective source of bioactive substances such as phenolics, flavonoids, and catechins, which have antioxidant, antibacterial, anticancer, and anti-inflammatory properties. Consequently, this work aims to determine the anticancer activity of ethanol extract of Tangerine peels against the A549 cell line and identify the phenolic compound profile (19 compounds) by using HPLC. Anticancer and antioxidant potentials of the extract were evaluated by MTT assay and TLC- TLC-bioautography sprayed with DPPH reagent, respectively. The obtained results revealed that tangerine peel extract showed significant activity against the A549 cell line with IC50 of 97.66 μg/mL. HPLC analysis proved that the highest concentration is naringenin 464.05 mg/g. More studies indicate that naringenin has significant anticancer potential on A549 cancer cells. The results showed that naringenin binds t0 EGFR protein in A549 with high binding affinity and thus may reduce lung cancer cell migration and enhance the apoptosis of cancer cells. From the obtained results it could be concluded that tangerine peel extract is an effective anti-cancer agent that may potentially serve as a natural therapeutic option for lung cancer treatment.Keywords: tangerine peel, A549 cell line, anticancer, naringenin, HPLC analysis, naringenin, TLC bioautography
Procedia PDF Downloads 601591 Arothron Stellatus Fish Skin Collagen Based Composite Biosheet Incorporated with Mupirocin as a Potential Dermal Substitute for Skin Tissue Regeneration
Authors: Giriprasath Ramanathan, Sivakumar Singaravelu, M. D. Raja, Uma Tirichurapalli Sivagnanam
Abstract:
Collagen is the abundant protein found in the skin of the animal body that has been designed to provide adequate structural support for the adhesion of cells. The dressing material widely used for tissue engineering and biomedical application has to posses good swelling and biological property for the absorption of exudates and cell proliferation. Acid solubilised collagen from the fish skin of the Arothron stellatus was extracted. The collagen with hydroxypropyl and carboxy methyl cellulose has the better biological property to enhance the healing efficiency. The inter property of collagen with interesting perspectives in the tissue engineering process leads to the development of biomaterial with natural polymer with biologically derived collagen. Keeping this as an objective, the composite biomaterial was fabricated to improve the wound healing and biological properties. In this study the collagen from Arothron stellatus fish skin (ACO) was uniformly blended separately with hydroxypropyl methyl cellulose (HPMC) and carboxyl methyl cellulose (CMC) as biosheets. The casted biosheets were impregnated with mupirocin to get rid of infection from the microbes. Further, the results obtained from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile studies and biocompatibility of the biosheets were assessed. The swelling, porosity and degradation of the casted biosheets were studied to make the biosheets as a suitable wound dressing material. ACO-HPMC and ACO-CMC biosheets both showed good results, but ACO-HPMC biosheet showed better results than ACO-CMC and hence it can be used as a potential dermal substitute in skin tissue engineering.Keywords: arothron stellatus, biocompatibility, collagen, tensile strenght
Procedia PDF Downloads 3191590 NeuroBactrus, a Novel, Highly Effective, and Environmentally Friendly Recombinant Baculovirus Insecticide
Authors: Yeon Ho Je
Abstract:
A novel recombinant baculovirus, NeuroBactrus, was constructed to develop an improved baculovirus insecticide with additional beneficial properties, such as a higher insecticidal activity and improved recovery, compared to wild-type baculovirus. For the construction of NeuroBactrus, the Bacillus thuringiensis crystal protein gene (here termed cry1-5) was introduced into the Autographa californica nucleopolyhedrovirus (AcMNPV) genome by fusion of the polyhedrin–cry1-5–polyhedrin genes under the control of the polyhedrin promoter. In the opposite direction, an insect-specific neurotoxin gene, AaIT, from Androctonus australis was introduced under the control of an early promoter from Cotesia plutellae bracovirus by fusion of a partial fragment of orf603. The polyhedrin–Cry1-5–polyhedrin fusion protein expressed by the NeuroBactrus was not only occluded into the polyhedra, but it was also activated by treatment with trypsin, resulting in an_65-kDa active toxin. In addition, quantitative PCR revealed that the neurotoxin was expressed from the early phase of infection. NeuroBactrus showed a high level of insecticidal activity against Plutella xylostella larvae and a significant reduction in the median lethal time against Spodoptera exigua larvae compared to those of wild-type AcMNPV. Rerecombinant mutants derived from NeuroBactrus in which AaIT and/or cry1-5 were deleted were generated by serial passages in vitro. Expression of the foreign proteins (B. thuringiensis toxin and AaIT) was continuously reduced during the serial passage of the NeuroBactrus. Moreover, polyhedra collected from S. exigua larvae infected with the serially passaged NeuroBactrus showed insecticidal activity similar to that of wild-type AcMNPV. These results suggested that NeuroBactrus could be recovered to wild-type AcMNPV through serial passaging.Keywords: baculovirus, insecticide, neurotoxin, neurobactrus
Procedia PDF Downloads 3171589 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning
Authors: Gaurav D. Sonawane, Vikas G. Sargade
Abstract:
The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity
Procedia PDF Downloads 1311588 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor
Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles
Procedia PDF Downloads 313