Search results for: tomato peel powder
195 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents
Authors: Neha Budhwani
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsor¬bents of natural origin including sawdust (shiham), coconut fiber, neem bark, chitin, activated charcol. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.Keywords: natural adsorbent, PAHs, TPO, coconut fiber, wood powder (shisham), naphthalene, acenaphthene, biphenyl and anthracene
Procedia PDF Downloads 230194 Direct Approach in Modeling Particle Breakage Using Discrete Element Method
Authors: Ebrahim Ghasemi Ardi, Ai Bing Yu, Run Yu Yang
Abstract:
Current study is aimed to develop an available in-house discrete element method (DEM) code and link it with direct breakage event. So, it became possible to determine the particle breakage and then its fragments size distribution, simultaneous with DEM simulation. It directly applies the particle breakage inside the DEM computation algorithm and if any breakage happens the original particle is replaced with daughters. In this way, the calculation will be followed based on a new updated particles list which is very similar to the real grinding environment. To validate developed model, a grinding ball impacting an unconfined particle bed was simulated. Since considering an entire ball mill would be too computationally demanding, this method provided a simplified environment to test the model. Accordingly, a representative volume of the ball mill was simulated inside a box, which could emulate media (ball)–powder bed impacts in a ball mill and during particle bed impact tests. Mono, binary and ternary particle beds were simulated to determine the effects of granular composition on breakage kinetics. The results obtained from the DEM simulations showed a reduction in the specific breakage rate for coarse particles in binary mixtures. The origin of this phenomenon, commonly known as cushioning or decelerated breakage in dry milling processes, was explained by the DEM simulations. Fine particles in a particle bed increase mechanical energy loss, and reduce and distribute interparticle forces thereby inhibiting the breakage of the coarse component. On the other hand, the specific breakage rate of fine particles increased due to contacts associated with coarse particles. Such phenomenon, known as acceleration, was shown to be less significant, but should be considered in future attempts to accurately quantify non-linear breakage kinetics in the modeling of dry milling processes.Keywords: particle bed, breakage models, breakage kinetic, discrete element method
Procedia PDF Downloads 197193 Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production
Authors: Oluwatoyin Joseph Gbadeyan, Sarp Adali, Bright Glen, Bruce Sithole
Abstract:
Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement.Keywords: sodium lauryl surfactant, mechanical properties , achatina fulica snail shel, calcium carbonate nanopowder
Procedia PDF Downloads 141192 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor
Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles
Procedia PDF Downloads 313191 Plant Growth, Symbiotic Performance and Grain Yield of 63 Common Bean Genotypes Grown Under Field Conditions at Malkerns Eswatini
Authors: Rotondwa P. Gunununu, Mustapha Mohammed, Felix D. Dakora
Abstract:
Common bean is the most importantly high protein grain legume grown in Southern Africa for human consumption and income generation. Although common bean can associate with rhizobia to fix N₂ for bacterial use and plant growth, it is reported to be a poor nitrogen fixer when compared to other legumes. N₂ fixation can vary with legume species, genotype and rhizobial strain. Therefore, screening legume germplasm can reveal rhizobia/genotype combinations with high N₂-fixing efficiency for use by farmers. This study assessed symbiotic performance and N₂ fixation in 63 common bean genotypes under field conditions at Malkerns Station in Eswatini, using the ¹⁵N natural abundance technique. The shoots of common bean genotypes were sampled at a pod-filling stage, oven-dried (65oC for 72h), weighed, ground into a fine powder (0.50 mm sieve), and subjected to ¹⁵N/¹⁴N isotopic analysis using mass spectrometry. At maturity, plants from the inner rows were harvested for the determination of grain yield. The results revealed significantly higher modulation (p≤0.05) in genotypes MCA98 and CIM-RM01-97-8 relative to the other genotypes. Shoot N concentration was highest in genotype MCA 98, followed by KAB 10 F2.8-84, with most genotypes showing shoot N concentrations below 2%. Percent N derived from atmospheric N₂ fixation (%Ndfa) differed markedly among genotypes, with CIM-RM01-92-3 and DAB 174, respectively, recording the highest values of 66.65% and 66.22 % N derived from fixation. There were also significant differences in grain yield, with CIM-RM02-79-1 producing the highest yield (3618.75 kg/ha). These results represent an important contribution in the profiling of symbiotic functioning of common bean germplasm for improved N₂ fixation.Keywords: nitrogen fixation, %Ndfa, ¹⁵N natural abundance, grain yield
Procedia PDF Downloads 216190 Effect of Microstructure on Wear Resistance of Polycrystalline Diamond Composite Cutter of Bit
Authors: Fanyuan Shao, Wei Liu, Deli Gao
Abstract:
Polycrystalline diamond composite (PDC) cutter is made of diamond powder as raw material, cobalt metal or non-metallic elements as a binder, mixed with WC cemented carbide matrix assembly, through high temperature and high-pressure sintering. PDC bits with PDC cutters are widely used in oil and gas drilling because of their high hardness, good wear resistance and excellent impact toughness. And PDC cutter is the main cutting tool of bit, which seriously affects the service of the PDC bit. The wear resistance of the PDC cutter is measured by cutting granite with a vertical turret lathe (VTL). This experiment can achieve long-distance cutting to obtain the relationship between the wear resistance of the PDC cutter and cutting distance, which is more closely to the real drilling situation. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively, which can also characterize the damage and wear of the PDC cutter. PDC cutters were cut via electrical discharge machining (EDM) and then flattened and polished. A scanning electron microscope (SEM) was used to observe the distribution of binder cobalt and the size of diamond particles in a diamond PDC cutter. The cutting experimental results show that the wear area of the PDC cutter has a good linear relationship with the cutting distance. Simultaneously, the larger the wear area is and the greater the cutting forces are required to maintain the same cutting state. The size and distribution of diamond particles in the polycrystalline diamond layer have a great influence on the wear resistance of the diamond layer. And PDC cutter with fine diamond grains shows more wear resistance than that with coarse grains. The deep leaching process is helpful to reduce the effect of binder cobalt on the wear resistance of the polycrystalline diamond layer. The experimental study can provide an important basis for the application of PDC cutters in oil and gas drilling.Keywords: polycrystalline diamond compact, scanning electron microscope, wear resistance, cutting distance
Procedia PDF Downloads 197189 Study on Shifting Properties of CVT Rubber V-belt
Authors: Natsuki Tsuda, Kiyotaka Obunai, Kazuya Okubo, Hideyuki Tashiro, Yoshinori Yamaji, Hideyuki Kato
Abstract:
The objective of this study is to investigate the effect of belt stiffness on the performance of the CVT unit, such as the required pulley thrust force and the ratio coverage. The CVT unit consists of the V-grooved pulleys and the rubber CVT belt. The width of the driving pulley groove was controlled by the stepper motor, while that of the driven pulley was controlled by the hydraulic pressure. The generated mechanical power on the motor was transmitted from the driving axis to the driven axis through the CVT unit. The rotational speed and the transmitting torque of both axes were measured by the tachometers and the torque meters attached with these axes, respectively. The transmitted, mechanical power was absorbed by the magnetic powder brake. The thrust force acting on both pulleys and the force between both shafts were measured by the load cell. The back face profile of the rubber CVT belt along with width direction was measured by the 2-dimensional laser displacement meter. This paper found that when the stiffness of the rubber CVT belt in the belt width direction was reduced, the thrust force required for shifting was reduced. Moreover, when the stiffness of the rubber CVT belt in the belt width direction was reduced, the ratio coverage of the CVT unit was reduced. Due to the decrement of stiffness in belt width direction, the excessive concave deformation of belt in pulley groove was confirmed. Because of this excessive concave deformation, apparent wrapping radius of belt would have been reduced. Proposed model could be effectively estimated the difference of ratio coverage due to concave deformation. The proposed model could also be utilized for designing the rubber CVT belt with optimal bending stiffness in width direction.Keywords: CVT, countinuously variable transmission, rubber, belt stiffness, transmission
Procedia PDF Downloads 141188 Studying the Effect of Different Sizes of Carbon Fiber on Locally Developed Copper Based Composites
Authors: Tahir Ahmad, Abubaker Khan, Muhammad Kamran, Muhammad Umer Manzoor, Muhammad Taqi Zahid Butt
Abstract:
Metal Matrix Composites (MMC) is a class of weight efficient structural materials that are becoming popular in engineering applications especially in electronic, aerospace, aircraft, packaging and various other industries. This study focuses on the development of carbon fiber reinforced copper matrix composite. Keeping in view the vast applications of metal matrix composites,this specific material is produced for its unique mechanical and thermal properties i.e. high thermal conductivity and low coefficient of thermal expansion at elevated temperatures. The carbon fibers were not pretreated but coated with copper by electroless plating in order to increase the wettability of carbon fiber with the copper matrix. Casting is chosen as the manufacturing route for the C-Cu composite. Four different compositions of the composite were developed by varying the amount of carbon fibers by 0.5, 1, 1.5 and 2 wt. % of the copper. The effect of varying carbon fiber content and sizes on the mechanical properties of the C-Cu composite is studied in this work. The tensile test was performed on the tensile specimens. The yield strength decreases with increasing fiber content while the ultimate tensile strength increases with increasing fiber content. Rockwell hardness test was also performed and the result followed the increasing trend for increasing carbon fibers and the hardness numbers are 30.2, 37.2, 39.9 and 42.5 for sample 1, 2, 3 and 4 respectively. The microstructures of the specimens were also examined under the optical microscope. Wear test and SEM also done for checking characteristic of C-Cu marix composite. Through casting may be a route for the production of the C-Cu matrix composite but still powder metallurgy is better to follow as the wettability of carbon fiber with matrix, in that case, would be better.Keywords: copper based composites, mechanical properties, wear properties, microstructure
Procedia PDF Downloads 363187 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor
Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis
Procedia PDF Downloads 271186 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique
Authors: Rafid Doulab
Abstract:
Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration
Procedia PDF Downloads 115185 Natural Enemies of the Fall Armyworm (Spodoptera frugiperda, Smith) and Comparing Neem Aqueous Extracts against Its Larvae in Gurage Zone, Central Ethiopia
Authors: Abera Hailu Degaga, Emana Getu Degaga
Abstract:
Spodoptera frugiperda is an invasive insect pest that infests and feeds various crops, particularly affecting maize yields. However, nature has its own way of maintaining balance, and in this case, natural enemies play a crucial role in regulating the population of S. frugiperda. Locally available and easily prepared botanical sources, bio-pesticides, are also important. The objectives of the study were to investigate the natural enemies of S. frugiperda in the Gurage zone and to compare Neem aqueous extracts against its larvae in central Ethiopia. S. frugiperda larvae and egg masses were collected randomly from smallholder maize farms infested with pests between June and August 2023. Our findings revealed the existence of diverse types of parasitoids, predators, and entomopathogenic fungi associated with S. frugiperda. Notably, we documented three species of parasitoids, namely Exorista xanthaspis and Tachina spp. (Diptera: Tachinidae) and Charops annulipes (Hymenoptera: Ichneumonidae). All three species of parasitoids were recorded from Ethiopia for the first time. The overall parasitism rate was 5.3%, with individual rates ranging from 1.3 to 4%. Additionally, we identified ten species of predator insects from four different orders, including Hemiptera, Dermaptera, Coleoptera, and Mantodea, in the maize farms infested with S. frugiperda. Aqueous extract of Neem seed and leaf powder and green leaf exhibited similar mortality rates of S. frugiperda larvae at 72 hours even though there was a significant difference at 24 and 48 hours of the test. For effective management of S. frugiperda further research is necessary to fully exploit the potential of these natural enemies and additionally to use botanical source pesticides like Azadirachta indica.Keywords: bio-pesticide, natural enemy, parasitoids, predators, Tachinid flies
Procedia PDF Downloads 64184 Adsorption of Atmospheric Gases Using Atomic Clusters
Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko
Abstract:
First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.Keywords: catalyst, gaussian, nanoparticles, oxidation
Procedia PDF Downloads 94183 Investigating Pack Boriding as a Surface Treatment for WC-Co Cold Forming Die Materials
Authors: Afshin Zohdi, Selçuk Özdemir, Mustafa Aksoy
Abstract:
Tungsten carbide-cobalt (WC-Co) is a widely utilized material for cold forming dies, including those employed in fastener production. In this study, we investigated the effectiveness of the pack boriding method in improving the surface properties of WC-Co cold forging dies. The boriding process involved embedding WC-Co samples, along with a steel control sample, within a chamber made of H13 tool steel. A boriding powder mixture was introduced into the chamber, which was then sealed using a paste. Subsequently, the samples were subjected to a temperature of 700°C for 5 hours in a furnace. Microstructural analysis, including cross-sectional examination and scanning electron microscopy (SEM), confirmed successful boron diffusion and its presence on the surface of the borided samples. The microhardness of the borided layer was significantly increased (3980 HV1) compared to the unborided sample (1320 HV3), indicating enhanced hardness. The borided layer exhibited an acceptable thickness of 45 microns, with a diffusion coefficient of 1.125 × 10-7 mm²/s, signifying a moderate diffusion rate. Energy-dispersive X-ray spectroscopy (EDS) mapping revealed an increase in boron content, desirable for the intended purpose, while an undesired increase in oxygen content was observed. Furthermore, the pin-on-disk wear test demonstrated a reduction in friction coefficient, indicating improved mechanical and tribological properties of the surface. The successful implementation of the pack boriding process highlights its potential for enhancing the performance of WC-Co cold forging dies.Keywords: WC-Co, cold forging dies, pack boriding, surface hardness, wear resistance, microhardness, diffusion coefficient, scanning electron microscopy, energy-dispersive X-ray spectroscopy
Procedia PDF Downloads 70182 Preparation and Characterization of Calcium Phosphate Cement
Authors: W. Thepsuwan, N. Monmaturapoj
Abstract:
Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution.Keywords: calcium phosphate cements, TTCP, DCPA, hydroxyapatite, properties
Procedia PDF Downloads 389181 Fluoride as Obturating Material in Primary Teeth
Authors: Syed Ameer Haider Jafri
Abstract:
The primary goal of a root canal treatment in deciduous teeth is to eliminate infection and to retain the tooth in a functional state until it gets physiologically exfoliated and replaced by permanent successor. Important requisite of a root canal filling material for primary teeth is that, it should resorb at a similar rate as the roots of primary tooth, be harmless to the periapical tissue and to the permanent tooth germ, resorb readily if pushed beyond the apex, be antiseptic, radio-opaque, should not shrink, adhere to the walls, not discolor the tooth and easy to fill & remove, if required at any stage. Presently available, commonly used obturating materials for primary teeth are zinc oxide eugenol, calcium hydroxide and iodoform based pastes. None of these materials so far meet the ideal requirement of root canal filling material. So in search of ideal obturating material, this study was planed, in which mixture of calcium hydroxide, zinc oxide & sodium fluoride and mixture of calcium hydroxide & sodium fluoride was compared clinically and radiographically with calcium hydroxide for the obturation of root canals of 75 carious exposed primary mandibular second molars of 59 children aged 4-9 years. All the three material shows good results, but after a follow-up of 9 months mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide powder closely follow the resorption of root, mixture of calcium hydroxide, two percent sodium fluoride follow resorption of root in the beginning but later on majority of cases shows faster resorption whereas calcium hydroxide starts depleting from the canal from the beginning even as early as 3 months. Thus mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide found to be best obturaring material for primary tooth.Keywords: obturating material, primary teeth, root canal treatment, success rate
Procedia PDF Downloads 304180 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications
Authors: S. Koul, Joshua Adedamola
Abstract:
Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.Keywords: ICP, dopant, EMI, shielding
Procedia PDF Downloads 79179 Effects of Pre-Storage Invigoration Treatments on Ageing Dendrocalamus hamiltonii Seeds
Authors: Geetika Richa, M. L. Sharma
Abstract:
Bamboo as an ancient herbal medicine has been used for thousands of years in Asia and goes by many names such as tabashir, banslochan etc. It is often used for its tonic and astringent properties. Modern analysis of bamboos show high amount of vitamins and minerals which makes them valuable as a curative. Bamboo leaf decoction and young shoots are known as remedy for intestinal worms, healing of ulcers and stomach disorders. Bamboos are known to be propagated by large scale plantations but propagation through seeds occurs very limited as they have very short viability of few months. Seeds loses viability over a period of time even under controlled conditions and important factors that affect seed viability is the decline in reserve food material, decrease in membrane integrity and fall in endogenous level of growth hormones. Invigoration treatments that include hydration, dehydration, incorporation of bioactive chemicals such as growth regulators, nutrients and antioxidants etc. improve the seed performance. Our studies were aimed to determine the most effective invigoration treatments to enhance vigour and viability of seeds by following invigoration treatments, i.e., hardening. Treated seeds were stored at controlled temperature and humidity (in desiccators at 4°C). In hardening, chemicals were applied in 3 different concentrations to three replicates of 10 seeds. Hardening was done withGA3, IAA, (each with concentrations of 10 ppm, 20 ppm and 50 ppm), calcium oxychloride, neem leaf powder and clay (each with concentrations of 2%, 5% and 10%). Statistically all the hardening materials were effective but GA3 50 ppm was the most effective one in maintaining germination percentage and vigour index. Hardening treatments increased the germination percentage of seeds, i.e. 86.2%, over control which showed germination percentage of 80.2%. It was concluded that in order to maintain seed viability during storage for longer period of time, invigoration treatments have been found to be very effective.Keywords: invigoration, seed quality, viability, hardening, membrane integrity, decoction
Procedia PDF Downloads 319178 The Effect of Inulin on Aflatoxin M1 Binding Ability of Probiotic Bacteria in Yoghurt
Authors: Sumeyra Sevim, Gulsum Gizem Topal, Mercan Merve Tengilimoglu-Metin, Banu Sancak, Mevlude Kizil
Abstract:
Aflatoxin M1 (AFM1) represents mutagenic, carcinogenic, hepatotoxic and immunosuppressive properties, and shows adverse effect on human health. Recently the use of probiotics are focused on AFM1 detoxification because of the fact that probiotic strains have a binding ability to AFM1. Moreover, inulin is a prebiotic to improve the ability of probiotic bacteria. Therefore, the aim of the study is to investigate the effect of inulin on AFM1 binding ability of some probiotic bacteria. Yoghurt samples were manufactured by using skim milk powder artificially contaminated with AFM1 at concentration 100 pg/ml. Different samples were prepared for the study as: first sample consists of yoghurt starter bacteria (L. bulgaricus and S. thermophilus), the second sample consists of starter and L. plantarum, starter and B. bifidum ATCC were added to the third sample, starter and B. animalis ATCC 27672 were added to the forth sample, and the fifth sample is a binary culture consisted of starter and B. bifidum and B. animalis. Moreover, the same work groups were prepared with inulin (4%). The samples were incubated at 42°C for 4 hours, then stored for three different time interval (1,5 and 10 days). The toxin was measured by the ELISA. When inulin was added to work groups, there was significant change on AFM1 binding ability at least one sample in all groups except the one with L. plantarum (p<0.05). The highest levels of AFM1 binding ability (68.7%) in samples with inulin were found in the group which B. bifidum was added, whereas the lowest levels of AFM1 binding ability (44.4%) in samples with inulin was found in the fifth sample. The most impressive effect of inulin was found on B.bifidum. In this study, it was obtained that there was a significant effect of storage on AFM1 binding ability in the all groups with inulin except the one with L. plantarum (p<0.05). Consequently, results show that AFM1 detoxification by probiotics have a potential application to reduce toxin concentrations in yoghurt. Besides, inulin has different effects on AFM1 binding ability of each probiotic bacteria strain.Keywords: aflatoxin M1, inulin, probiotics, storage
Procedia PDF Downloads 314177 PLGA Nanoparticles Entrapping dual anti-TB drugs of Amikacin and Moxifloxacin as a Potential Host-Directed Therapy for Multidrug Resistant Tuberculosis
Authors: Sharif Abdelghany
Abstract:
Polymeric nanoparticles have been widely investigated as a controlled release drug delivery platform for the treatment of tuberculosis (TB). These nanoparticles were also readily internalised into macrophages, leading to high intracellular drug concentration. In this study two anti-TB drugs, amikacin and moxifloxacin were encapsulated into PLGA nanoparticles. The novelty of this work appears in: (1) the efficient encapsulation of two hydrophilic second-line anti-TB drugs, and (2) intramacrophage delivery of this synergistic combination potentially for rapid treatment of multi-drug resistant TB (MDR-TB). Two water-oil-water (w/o/w) emulsion strategies were employed in this study: (1) alginate coated PLGA nanoparticles, and (2) alginate entrapped PLGA nanoparticles. The average particle size and polydispersity index (PDI) of the alginate coated PLGA nanoparticles were found to be unfavourably high with values of 640 ± 32 nm and 0.63 ± 0.09, respectively. In contrast, the alginate entrapped PLGA nanoparticles were within the desirable particle size range of 282 - 315 nm and the PDI was 0.08 - 0.16, and therefore were chosen for subsequent studies. Alginate entrapped PLGA nanoparticles yielded a drug loading of over 10 µg/mg powder for amikacin, and more than 5 µg/mg for moxifloxacin and entrapment efficiencies range of approximately 25-31% for moxifloxacin and 51-59% for amikacin. To study macrophage uptake efficiency, the nanoparticles of alginate entrapped nanoparticle formulation were loaded with acridine orange as a marker, seeded to THP-1 derived macrophages and viewed under confocal microscopy. The particles were readily internalised into the macrophages and highly concentrated in the nucleus region. Furthermore, the anti-mycobacterial activity of the drug-loaded particles was evaluated using M. tuberculosis-infected macrophages, which revealed a significant reduction (4 log reduction) of viable bacterial count compared to the untreated group. In conclusion, the amikacin-moxifloxacin alginate entrapped PLGA nanoparticles are promising for further in vivo studies.Keywords: moxifloxacin and amikacin, nanoparticles, multidrug resistant TB, PLGA
Procedia PDF Downloads 365176 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach
Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri
Abstract:
In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications
Procedia PDF Downloads 59175 Bio-Hub Ecosystems: Profitability through Circularity for Sustainable Forestry, Energy, Agriculture and Aquaculture
Authors: Kimberly Samaha
Abstract:
The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding biomass as a feedstock for power plants. Yet the lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. This study analyzed data and submittals to the Born Global Maine Innovation Challenge. The Innovation Challenge was a global innovation challenge to identify process innovations that could address a ‘whole-tree’ approach of maximizing the products, byproducts, energy value and process slip-streams into a circular zero-waste design. Participating companies were at various stages of developing bioproducts and included biofuels, lignin-based products, carbon capture platforms and biochar used as both a filtration medium and as a soil amendment product. This case study shows the QCA (Qualitative Comparative Analysis) methodology of the prequalification process and the resulting techno-economic model that was developed for the maximizing profitability of the Bio-Hub Ecosystem through continuous expansion of system waste streams into valuable process inputs for co-hosts. A full site plan for the integration of co-hosts (biorefinery, land-based shrimp and salmon aquaculture farms, a tomato green-house and a hops farm) at an operating forestry-based biomass to energy plant in West Enfield, Maine USA. This model and process for evaluating the profitability not only proposes models for integration of forestry, aquaculture and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. In this particular study, profitability is assessed at two levels CAPEX (Capital Expenditures) and in OPEX (Operating Expenditures). Given that these projects start with repurposing facilities where the industrial level infrastructure is already built, permitted and interconnected to the grid, the addition of co-hosts first realizes a dramatic reduction in permitting, development times and costs. In addition, using the biomass energy plant’s waste streams such as heat, hot water, CO₂ and fly ash as valuable inputs to their operations and a significant decrease in the OPEX costs, increasing overall profitability to each of the co-hosts bottom line. This case study utilizes a proprietary techno-economic model to demonstrate how utilizing waste streams of a biomass energy plant and/or biorefinery, results in significant reduction in OPEX for both the biomass plants and the agriculture and aquaculture co-hosts. Economically viable Bio-Hubs with favorable environmental and community impacts may prove critical in garnering local and federal government support for pilot programs and more wide-scale adoption, especially for those living in severely economically depressed rural areas where aging industrial sites have been shuttered and local economies devastated.Keywords: bio-economy, biomass energy, financing, zero-waste
Procedia PDF Downloads 133174 Influence of Magnetic Field on Microstructure and Properties of Copper-Silver Composites
Authors: Engang Wang
Abstract:
The Cu-alloy composites are a kind of high-strength and high-conductivity Cu-based alloys, which have excellent mechanical and electrical properties and is widely used in electronic, electrical, machinery industrial fields. However, the solidification microstructure of the composites, such as the primary or second dendrite arm spacing, have important rule to its tensile strength and conductivity, and that is affected by its fabricating method. In this paper, two kinds of directional solidification methods; the exothermic powder method (EP method) and liquid metal cooling method (LMC method), were used to fabricate the Cu-alloy composites with applied different magnetic fields to investigate their influence on the solidifying microstructure of Cu-alloy, and further the fabricated Cu-alloy composites was drawn to wires to investigate the influence of fabricating method and magnetic fields on the drawing microstructure of fiber-reinforced Cu-alloy composites and its properties. The experiment of Cu-Ag alloy under directional solidification and horizontal magnetic fields with different processing parameters show that: 1) For the Cu-Ag alloy with EP method, the dendrite is directionally developed in the cooling copper mould and the solidifying microstructure is effectively refined by applying horizontal magnetic fields. 2) For the Cu-Ag alloy with LMC method, the primary dendrite arm spacing is decreased and the content of Ag in the dendrite increases as increasing the drawing velocity of solidification. 3) The dendrite is refined and the content of Ag in the dendrite increases as increasing the magnetic flux intensity; meanwhile, the growth direction of dendrite is also affected by magnetic field. The research results of Cu-Ag alloy in situ composites by drawing deforming process show that the micro-hardness of alloy is higher by decreasing dendrite arm spacing. When the dendrite growth orientation is consistent with the axial of the samples. the conductivity of the composites increases with the second dendrite arm spacing increases. However, its conductivity reduces with the applied magnetic fields owing to disrupting the dendrite growth orientation.Keywords: Cu-Ag composite, magnetic field, microstructure, solidification
Procedia PDF Downloads 212173 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials
Authors: O. Alelweet, S. Pavia
Abstract:
In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.Keywords: alkali activated materials, alkali-activated binders, sustainable building materials, recycled ceramic brick, bauxite, red mud, clay, fly ash, metallurgical slags, particle size, chemical and mineral composition and amorphousness, water demand, particle density
Procedia PDF Downloads 125172 Development of Innovative Nuclear Fuel Pellets Using Additive Manufacturing
Authors: Paul Lemarignier, Olivier Fiquet, Vincent Pateloup
Abstract:
In line with the strong desire of nuclear energy players to have ever more effective products in terms of safety, research programs on E-ATF (Enhanced-Accident Tolerant Fuels) that are more resilient, particularly to the loss of coolant, have been launched in all countries with nuclear power plants. Among the multitude of solutions being developed internationally, carcinoembryonic antigen (CEA) and its partners are investigating a promising solution, which is the realization of CERMET (CERamic-METal) type fuel pellets made of a matrix of fissile material, uranium dioxide UO2, which has a low thermal conductivity, and a metallic phase with a high thermal conductivity to improve heat evacuation. Work has focused on the development by powder metallurgy of micro-structured CERMETs, characterized by networks of metallic phase embedded in the UO₂ matrix. Other types of macro-structured CERMETs, based on concepts proposed by thermal simulation studies, have been developed with a metallic phase with a specific geometry to optimize heat evacuation. This solution could not be developed using traditional processes, so additive manufacturing, which revolutionizes traditional design principles, is used to produce these innovative prototype concepts. At CEA Cadarache, work is first carried out on a non-radioactive surrogate material, alumina, in order to acquire skills and to develop the equipment, in particular the robocasting machine, an additive manufacturing technique selected for its simplicity and the possibility of optimizing the paste formulations. A manufacturing chain was set up, with the pastes production, the 3D printing of pellets, and the associated thermal post-treatment. The work leading to the first elaborations of macro-structured alumina/molybdenum CERMETs will be presented. This work was carried out with the support of Framatome and EdF.Keywords: additive manufacturing, alumina, CERMET, molybdenum, nuclear safety
Procedia PDF Downloads 77171 Delivery of Ginseng Extract Containing Phytosome Loaded Microsphere System: A Preclinical Approach for Treatment of Neuropathic Pain in Rodent Model
Authors: Nitin Kumar
Abstract:
Purpose: The current research work focuses mainly on evolving a delivery system for ginseng extract (GE), which in turn will ameliorate the neuroprotective potential by means of enhancing the ginsenoside (Rb1) bio-availability (BA). For more noteworthy enhancement in oral bioavailability (OBA) along with pharmacological properties, the drug carriers’ performance can be strengthened by utilizing phytosomes-loaded microspheres (PM) delivery system. Methods: For preparing the disparate phytosome complexes (F1, F2, and F3), an aqueous extract of ginseng roots (GR) along with phospholipids were reacted in disparate ratio. Considering the outcomes, F3 formulation (spray-dried) was chosen for preparing the phytosomes powder (PP), PM, and extract microspheres (EM). PM was made by means of loading of F3 into Gum Arabic (GA) in addition to maltodextrin polymer mixture, whereas EM was prepared by means of the addition of extract directly into the same polymer mixture. For investigating the neuroprotective effect (NPE) in addition to their pharmacokinetic (PK) properties, PP, PM, and EM formulations were assessed. Results: F3 formulation gave enhanced entrapment efficiency (EE) (i.e., 50.61%) along with good homogeneity of spherical shaped particle size (PS) (42.58 ± 1.4 nm) with least polydispersity index (PDI) (i.e., 0.193 ± 0.01). The sustained release (up to 24 h) of ginsenoside Rb1 (GRb1) is revealed by the dissolution study of PM. A significantly (p < 0.05) greater anti-oxidant (AO) potential of PM can well be perceived as of the diminution in the lipid peroxidase level in addition to the rise in the glutathione superoxide dismutase (SOD) in addition to catalase levels. It also showed a greater neuroprotective potential exhibiting significant (p < 0.05) augmentation in the nociceptive threshold together with the diminution in damage to nerves. A noteworthy enhancement in the relative BA (157.94%) of GRb1 through the PM formulation can well be seen in the PK studies. Conclusion: It is exhibited that the PM system is an optimistic and feasible strategy to enhance the delivery of GE for the effectual treatment of neuropathic pain.Keywords: ginseng, neuropathic, phytosome, pain
Procedia PDF Downloads 186170 Comparison of Tribological and Mechanical Properties of White Metal Produced by Laser Cladding and Conventional Methods
Authors: Jae-Il Jeong, Hoon-Jae Park, Jung-Woo Cho, Yang-Gon Kim, Jin-Young Park, Joo-Young Oh, Si-Geun Choi, Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim
Abstract:
Bearing component has strongly required to decrease vibration and wear to achieve high durability and life time. In the industry field, bearing durability is improved by surface treatment on the bearing surface by centrifugal casting or gravity casting production method. However, this manufacturing method has caused problems such as long processing time, defect rate, and health harmful effect. To solve this problem, there is a laser cladding deposition treatment, which provides fast processing and food adhesion. Therefore, optimum conditions of white metal laser deposition should be studied to minimize bearing contact axis wear using laser cladding techniques. In this study, we deposit a soft white metal layer on SCM440, which is mainly used for shaft and bolt. On laser deposition process, the laser power and powder feed rate and laser head speed factors are controlled to find out the optimal conditions. We also measure hardness using micro Vickers, analyze FE-SEM (Field Emission Scanning Electron Microscope) and EDS (Energy Dispersive Spectroscopy) to study the mechanical properties and surface characteristics with various parameters change. Furthermore, this paper suggests the optimum condition of laser cladding deposition to apply in industrial fields. This work was supported by the Industrial Innovation Project of the Korea Evaluation Institute of Industrial Technology (KEIT) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (Research no. 10051653).Keywords: laser deposition, bearing, white metal, mechanical properties
Procedia PDF Downloads 261169 Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution
Authors: Hasan Türe, Kader Terzioglu, Evren Tunca
Abstract:
Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146).Keywords: alginate, adsorption, beads, perlite
Procedia PDF Downloads 287168 Simulating Studies on Phosphate Removal from Laundry Wastewater Using Biochar: Dudinin Approach
Authors: Eric York, James Tadio, Silas Owusu Antwi
Abstract:
Laundry wastewater contains a diverse range of chemical pollutants that can have detrimental effects on human health and the environment. In this study, simulation studies by Spyder Python software v 3.2 to assess the efficacy of biochar in removing PO₄³⁻ from wastewater were conducted. Through modeling and simulation, the mechanisms involved in the adsorption process of phosphate by biochar were studied by altering variables which is specific to the phosphate from common laundry phosphate detergents, such as the aqueous solubility, initial concentration, and temperature using the Dudinin Approach (DA). Results showed that the concentration equilibrate at near the highest concentrations for Sugar beet-120 mgL⁻¹, Tailing-85 mgL⁻¹, CaO- rich-50 mgL⁻¹, Eggshell and rice straw-48 mgL⁻¹, Undaria Pinnatifida Roots-190 mgL⁻¹, Ca-Alginate Granular Beads -240 mgL⁻¹, Laminaria Japonica Powder -900 mgL⁻¹, Pinesaw dust-57 mgL⁻¹, Ricehull-190 mgL⁻¹, sesame straw- 470 mgL⁻¹, Sugar Bagasse-380 mgL⁻¹, Miscanthus Giganteus-240 mgL⁻¹, Wood Bc-130 mgL⁻¹, Pine-25 mgL⁻¹, Sawdust-6.8 mgL⁻¹, Sewage Sludge-, Rice husk-12 mgL⁻¹, Corncob-117 mgL⁻¹, Maize straw- 1800 mgL⁻¹ while Peanut -Eucalyptus polybractea-, Crawfish equilibrated at near concentration. CO₂ activated Thalia, sewage sludge biochar, Broussonetia Papyrifera Leaves equilibrated just at the lower concentration. Only Soyer bean Stover exhibited a sharp rise and fall peak in mid-concentration at 2 mgL⁻¹ volume. The modelling results were consistent with experimental findings from the literature, ensuring the accuracy, repeatability, and reliability of the simulation study. The simulation study provided insights into adsorption for PO₄³⁻ from wastewater by biochar using concentration per volume that can be adsorbed ideally under the given conditions. Studies showed that applying the principle experimentally in real wastewater with all its complexity is warranted and not far-fetched.Keywords: simulation studies, phosphate removal, biochar, adsorption, wastewater treatment
Procedia PDF Downloads 137167 Formulation, Nutritive Value Assessment And Effect On Weight Gain Of Infant Formulae Prepared From Locally Available Materia
Authors: J. T. Johnson, R. A. Atule, E. Gbodo
Abstract:
The widespread problem of infant malnutrition in developing countries has stirred efforts in research, development and extension by both local and international organizations. As a result, the formulation and development of nutritious weaning foods from local and readily available raw materials which are cost effective has become imperative in many developing countries. Thus, local and readily available raw materials where used to compound and develop nutritious new infant formulae. The materials used for this study include maize, millet, cowpea, pumpkin, fingerlings, and fish bone. The materials where dried and blended to powder. The powders were weighed in the ratio of 4:4:4:3:1:1 respectively and were then mixed properly. Analysis of nutritive value was conducted on the formulae and compared with NAN-2 standard and results reveals that the formulae had reasonable amount of moisture, lipids, carbohydrate, protein, and fibre. Although NAN-2 was superior in both carbohydrate and protein, the new infant formula was higher in mineral elements, vitamins, fibre, and lipids. All the essentials vitamins and both macro and micro minerals where found in appreciable quantity capable of meeting the biochemical and physiological demand of the body while the anti-nutrients composition were significantly below FAO and WHO safe limits. Finally, the compounded infant formulae was feed to a set of albino Wistar rats while some other set of rats was feed with NAN-2 for the period of twenty seven (27) days and body weight was measure at three days intervals. The results of body weight changes was spectacular as their body weight over shot or almost double that of those animals that were feed with NAN-2 at each point of measurement. The results suggest that the widespread problem of infant malnutrition in the developing world especially among the low income segment of the society can now be reduced if not totally eradicated since nutritive and cost effective weaning formulae can be prepared locally from common readily available materials.Keywords: formulation, nutritive value, local, materials
Procedia PDF Downloads 377166 Determination of the Cooling Rate Dependency of High Entropy Alloys Using a High-Temperature Drop-on-Demand Droplet Generator
Authors: Saeedeh Imani Moqadam, Ilya Bobrov, Jérémy Epp, Nils Ellendt, Lutz Mädler
Abstract:
High entropy alloys (HEAs), having adjustable properties and enhanced stability compared with intermetallic compounds, are solid solution alloys that contain more than five principal elements with almost equal atomic percentage. The concept of producing such alloys pave the way for developing advanced materials with unique properties. However, the synthesis of such alloys may require advanced processes with high cooling rates depending on which alloy elements are used. In this study, the micro spheres of different diameters of HEAs were generated via a drop-on-demand droplet generator and subsequently solidified during free-fall in an argon atmosphere. Such droplet generators can generate individual droplets with high reproducibility regarding droplet diameter, trajectory and cooling while avoiding any interparticle momentum or thermal coupling. Metallography as well as X-ray diffraction investigations for each diameter of the generated metallic droplets where then carried out to obtain information about the microstructural state. To calculate the cooling rate of the droplets, a droplet cooling model was developed and validated using model alloys such as CuSn%6 and AlCu%4.5 for which a correlation of secondary dendrite arm spacing (SDAS) and cooling rate is well-known. Droplets were generated from these alloys and their SDAS was determined using quantitative metallography. The cooling rate was then determined from the SDAS and used to validate the cooling rates obtained from the droplet cooling model. The application of that model on the HEA then leads to the cooling rate dependency and hence to the identification of process windows for the synthesis of these alloys. These process windows were then compared with cooling rates obtained in processes such as powder production, spray forming, selective laser melting and casting to predict if a synthesis is possible with these processes.Keywords: cooling rate, drop-on-demand, high entropy alloys, microstructure, single droplet generation, X-ray Diffractometry
Procedia PDF Downloads 209