Search results for: predictive biomarker
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1253

Search results for: predictive biomarker

233 Postural Balance And Falls Risk In Persons With Multiple Sclerosis: Effect Of Gender Differences

Authors: Sonda Jallouli, Sameh Ghroubi, Salma Sakka, Abdelmoneem Yahia, Mohamed Habib Elleuch, Imen Ben Dhia, Chokri Mhiri, Omar Hammouda

Abstract:

The pathophysiology, prevalence, and progression of MS are gender dependent. Indeed, the inflammation is more pronounced in women, but the neurodegeneration is more important in men. In addition, women have more sleep disorders while men suffer more from cognitive decline. These non-physical disorders can negatively affect postural balance and fall risk. However, no study has examined the difference between men and women in those physical parameters in MS. Our objective was to determine the effect gender difference on postural balance and fall risk in MS persons. Methods: Eight men and twelve women with relapsing remitting-MS participated in this study. The assessment includes a posturographic examination to assess static (with eyes opened (EO) and eyes closed (EC)) and dynamic (with EO) postural balance. Unipedal balance and fall risk were assessed by a clinical unipedal balance test and the Four Square Step Test, respectively. Sleep quality was assessed using Spiegel's questionnaire, and cognitive assessment was performed using the Montreal Cognitive Assessment (MoCA) and the Simple Reaction Time Test. Results: Compared to men, women showed an increase in CdPVm in static bipedal condition with EC (p=0.037; d=0.71) and a decrease in MoCA scores (p=0.028; d=1.06). No gender differences were found in the other tests. Discussion: Static postural balance was more impaired in women compared to men. This result could be explained by the more pronounced cognitive decline observed in women compared to men. Indeed, cognitive disorders have been shown to be predictive factors of postural balance impairment. Conclusion: women were less stable than men in the static condition, possibly due to their lower cognitive performance. This gender difference could be taken into account by therapists in training programs.

Keywords: multiple sclerosis, bipedal postural balance, fall risk, sleep disturbance, cognitive deficiency

Procedia PDF Downloads 99
232 Relationship of Oxidative Stress to Elevated Homocysteine and DNA Damage in Coronary Artery Disease Patients

Authors: Shazia Anwer Bukhari, Madiha Javeed Ghani, Muhammad Ibrahim Rajoka

Abstract:

Objective: Biochemical, environmental, physical and genetic factors have a strong effect on the development of coronary disease (CAD). Plasma homocysteine (Hcy) level and DNA damage play a pivotal role in its development and progression. The aim of this study was to investigate the predictive strength of an oxidative stress, clinical biomarkers and total antioxidant status (TAS) in CAD patients to find the correlation of homocysteine, TOS and oxidative DNA damage with other clinical parameters. Methods: Sixty confirmed patients with CAD and 60 healthy individuals as control were included in this study. Different clinical and laboratory parameters were studied in blood samples obtained from patients and control subjects using commercially available biochemical kits and statistical software Results: As compared to healthy individuals, CAD patients had significantly higher concentrations of indices of oxidative stress: homocysteine (P=0.0001), total oxidative stress (TOS) (P=0.0001), serum cholesterol (P=0.04), low density lipoprotein cholesterol (LDL) (P=0.01), high density lipoprotein-cholesterol (HDL) (P=0.0001), and malondialdehyde (MDA) (P=0.001) than those of healthy individuals. Plasma homocysteine level and oxidative DNA damage were positively correlated with cholesterol, triglycerides, systolic blood pressure, urea, total protein and albumin (P values= 0.05). Both Hcy and oxidative DNA damage were negatively correlated with TAS and proteins. Conclusion: Coronary artery disease patients had a significant increase in homocysteine level and DNA damage due to increased oxidative stress. In conclusion, our study shows a significantly increase in lipid peroxidation, TOS, homocysteine and DNA damage in the erythrocytes of patients with CAD. A significant decrease level of HDL-C and TAS was observed only in CAD patients. Therefore these biomarkers may be useful diagnosis of patients with CAD and play an important role in the pathogenesis of CAD.

Keywords: antioxidants, coronary artery disease, DNA damage, homocysteine, oxidative stress, malondialdehyde, 8-Hydroxy-2’deoxyguanosine

Procedia PDF Downloads 486
231 Agile Software Effort Estimation Using Regression Techniques

Authors: Mikiyas Adugna

Abstract:

Effort estimation is among the activities carried out in software development processes. An accurate model of estimation leads to project success. The method of agile effort estimation is a complex task because of the dynamic nature of software development. Researchers are still conducting studies on agile effort estimation to enhance prediction accuracy. Due to these reasons, we investigated and proposed a model on LASSO and Elastic Net regression to enhance estimation accuracy. The proposed model has major components: preprocessing, train-test split, training with default parameters, and cross-validation. During the preprocessing phase, the entire dataset is normalized. After normalization, a train-test split is performed on the dataset, setting training at 80% and testing set to 20%. We chose two different phases for training the two algorithms (Elastic Net and LASSO) regression following the train-test-split. In the first phase, the two algorithms are trained using their default parameters and evaluated on the testing data. In the second phase, the grid search technique (the grid is used to search for tuning and select optimum parameters) and 5-fold cross-validation to get the final trained model. Finally, the final trained model is evaluated using the testing set. The experimental work is applied to the agile story point dataset of 21 software projects collected from six firms. The results show that both Elastic Net and LASSO regression outperformed the compared ones. Compared to the proposed algorithms, LASSO regression achieved better predictive performance and has acquired PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The result implies LASSO regression algorithm trained model is the most acceptable, and higher estimation performance exists in the literature.

Keywords: agile software development, effort estimation, elastic net regression, LASSO

Procedia PDF Downloads 72
230 Cognitive Function and Coping Behavior in the Elderly: A Population-Based Cross-Sectional Study

Authors: Ryo Shikimoto, Hidehito Niimura, Hisashi Kida, Kota Suzuki, Yukiko Miyasaka, Masaru Mimura

Abstract:

Introduction: In Japan, the most aged country in the world, it is important to explore predictive factors of cognitive function among the elderly. Coping behavior relieves chronic stress and improves lifestyle, and consequently may reduce the risk of cognitive impairment. One of the most widely investigated frameworks evaluated in previous studies is approach-oriented and avoidance-oriented coping strategies. The purpose of this study is to investigate the relationship between cognitive function and coping strategies among elderly residents in urban areas of Japan. Method: This is a part of the cross-sectional Arakawa geriatric cohort study for 1,099 residents (aged 65 to 86 years; mean [SD] = 72.9 [5.2]). Participants were assessed for cognitive function using the Mini-Mental State Examination (MMSE) and diagnosed by psychiatrists in face-to-face interviews. They were then investigated for their each coping behaviors and coping strategies (approach- and avoidance-oriented coping) using stress and coping inventory. A multiple regression analysis was used to investigate the relationship between MMSE score and each coping strategy. Results: Of the 1,099 patients, the mean MMSE score of the study participants was 27.2 (SD = 2.7), and the numbers of the diagnosis of normal, mild cognitive impairment (MCI), and dementia were 815 (74.2%), 248 (22.6%), and 14 (1.3%), respectively. Approach-oriented coping score was significantly associated with MMSE score (B [partial regression coefficient] = 0.12, 95% confidence interval = 0.05 to 0.19) after adjusting for confounding factors including age, sex, and education. Avoidance-oriented coping did not show a significant association with MMSE score (B [partial regression coefficient] = -0.02, 95% confidence interval = -0.09 to 0.06). Conclusion: Approach-oriented coping was clearly associated with neurocognitive function in the Japanese population. A future longitudinal trial is warranted to investigate the protective effects of coping behavior on cognitive function.

Keywords: approach-oriented coping, cognitive impairment, coping behavior, dementia

Procedia PDF Downloads 130
229 A Collaborative Problem Driven Approach to Design an HR Analytics Application

Authors: L. Atif, C. Rosenthal-Sabroux, M. Grundstein

Abstract:

The requirements engineering process is a crucial phase in the design of complex systems. The purpose of our research is to present a collaborative problem-driven requirements engineering approach that aims at improving the design of a Decision Support System as an Analytics application. This approach has been adopted to design a Human Resource management DSS. The Requirements Engineering process is presented as a series of guidelines for activities that must be implemented to assure that the final product satisfies end-users requirements and takes into account the limitations identified. For this, we know that a well-posed statement of the problem is “a problem whose crucial character arises from collectively produced estimation and a formulation found to be acceptable by all the parties”. Moreover, we know that DSSs were developed to help decision-makers solve their unstructured problems. So, we thus base our research off of the assumption that developing DSS, particularly for helping poorly structured or unstructured decisions, cannot be done without considering end-user decision problems, how to represent them collectively, decisions content, their meaning, and the decision-making process; thus, arise the field issues in a multidisciplinary perspective. Our approach addresses a problem-driven and collaborative approach to designing DSS technologies: It will reflect common end-user problems in the upstream design phase and in the downstream phase these problems will determine the design choices and potential technical solution. We will thus rely on a categorization of HR’s problems for a development mirroring the Analytics solution. This brings out a new data-driven DSS typology: Descriptive Analytics, Explicative or Diagnostic Analytics, Predictive Analytics, Prescriptive Analytics. In our research, identifying the problem takes place with design of the solution, so, we would have to resort a significant transformations of representations associated with the HR Analytics application to build an increasingly detailed representation of the goal to be achieved. Here, the collective cognition is reflected in the establishment of transfer functions of representations during the whole of the design process.

Keywords: DSS, collaborative design, problem-driven requirements, analytics application, HR decision making

Procedia PDF Downloads 296
228 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 108
227 Exploring the Intersection of Accounting, Business, and Economics: Bridging Theory and Practice for Sustainable Growth

Authors: Stephen Acheampong Amoafoh

Abstract:

In today's dynamic economic landscape, businesses face multifaceted challenges that demand strategic foresight and informed decision-making. This abstract explores the pivotal role of financial analytics in driving business performance amidst evolving market conditions. By integrating accounting principles with economic insights, organizations can harness the power of data-driven strategies to optimize resource allocation, mitigate risks, and capitalize on emerging opportunities. This presentation will delve into the practical applications of financial analytics across various sectors, highlighting case studies and empirical evidence to underscore its efficacy in enhancing operational efficiency and fostering sustainable growth. From predictive modeling to performance benchmarking, attendees will gain invaluable insights into leveraging advanced analytics tools to drive profitability, streamline processes, and adapt to changing market dynamics. Moreover, this abstract will address the ethical considerations inherent in financial analytics, emphasizing the importance of transparency, integrity, and accountability in data-driven decision-making. By fostering a culture of ethical conduct and responsible stewardship, organizations can build trust with stakeholders and safeguard their long-term viability in an increasingly interconnected global economy. Ultimately, this abstract aims to stimulate dialogue and collaboration among scholars, practitioners, and policymakers, fostering knowledge exchange and innovation in the realms of accounting, business, and economics. Through interdisciplinary insights and actionable recommendations, participants will be equipped to navigate the complexities of today's business environment and seize opportunities for sustainable success.

Keywords: financial analytics, business performance, data-driven strategies, sustainable growth

Procedia PDF Downloads 55
226 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco

Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali

Abstract:

This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.

Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco

Procedia PDF Downloads 20
225 Predicting Suicidal Behavior by an Accurate Monitoring of RNA Editing Biomarkers in Blood Samples

Authors: Berengere Vire, Nicolas Salvetat, Yoann Lannay, Guillaume Marcellin, Siem Van Der Laan, Franck Molina, Dinah Weissmann

Abstract:

Predicting suicidal behaviors is one of the most complex challenges of daily psychiatric practices. Today, suicide risk prediction using biological tools is not validated and is only based on subjective clinical reports of the at-risk individual. Therefore, there is a great need to identify biomarkers that would allow early identification of individuals at risk of suicide. Alterations of adenosine-to-inosine (A-to-I) RNA editing of neurotransmitter receptors and other proteins have been shown to be involved in etiology of different psychiatric disorders and linked to suicidal behavior. RNA editing is a co- or post-transcriptional process leading to a site-specific alteration in RNA sequences. It plays an important role in the epi transcriptomic regulation of RNA metabolism. On postmortem human brain tissue (prefrontal cortex) of depressed suicide victims, Alcediag found specific alterations of RNA editing activity on the mRNA coding for the serotonin 2C receptor (5-HT2cR). Additionally, an increase in expression levels of ADARs, the RNA editing enzymes, and modifications of RNA editing profiles of prime targets, such as phosphodiesterase 8A (PDE8A) mRNA, have also been observed. Interestingly, the PDE8A gene is located on chromosome 15q25.3, a genomic region that has recurrently been associated with the early-onset major depressive disorder (MDD). In the current study, we examined whether modifications in RNA editing profile of prime targets allow identifying disease-relevant blood biomarkers and evaluating suicide risk in patients. To address this question, we performed a clinical study to identify an RNA editing signature in blood of depressed patients with and without the history of suicide attempts. Patient’s samples were drawn in PAXgene tubes and analyzed on Alcediag’s proprietary RNA editing platform using next generation sequencing technology. In addition, gene expression analysis by quantitative PCR was performed. We generated a multivariate algorithm comprising various selected biomarkers to detect patients with a high risk to attempt suicide. We evaluated the diagnostic performance using the relative proportion of PDE8A mRNA editing at different sites and/or isoforms as well as the expression of PDE8A and the ADARs. The significance of these biomarkers for suicidality was evaluated using the area under the receiver-operating characteristic curve (AUC). The generated algorithm comprising the biomarkers was found to have strong diagnostic performances with high specificity and sensitivity. In conclusion, we developed tools to measure disease-specific biomarkers in blood samples of patients for identifying individuals at the greatest risk for future suicide attempts. This technology not only fosters patient management but is also suitable to predict the risk of drug-induced psychiatric side effects such as iatrogenic increase of suicidal ideas/behaviors.

Keywords: blood biomarker, next-generation-sequencing, RNA editing, suicide

Procedia PDF Downloads 259
224 Optimization of Mechanical Cacao Shelling Parameters Using Unroasted Cocoa Beans

Authors: Jeffrey A. Lavarias, Jessie C. Elauria, Arnold R. Elepano, Engelbert K. Peralta, Delfin C. Suministrado

Abstract:

Shelling process is one of the primary processes and critical steps in the processing of chocolate or any product that is derived from cocoa beans. It affects the quality of the cocoa nibs in terms of flavor and purity. In the Philippines, small-scale food processor cannot really compete with large scale confectionery manufacturers because of lack of available postharvest facilities that are appropriate to their level of operation. The impact of this study is to provide the needed intervention that will pave the way for cacao farmers of engaging on the advantage of value-adding as way to maximize the economic potential of cacao. Thus, provision and availability of needed postharvest machines like mechanical cacao sheller will revolutionize the current state of cacao industry in the Philippines. A mechanical cacao sheller was developed, fabricated, and evaluated to establish optimum shelling conditions such as moisture content of cocoa beans, clearance where of cocoa beans passes through the breaker section and speed of the breaking mechanism on shelling recovery, shelling efficiency, shelling rate, energy utilization and large nib recovery; To establish the optimum level of shelling parameters of the mechanical sheller. These factors were statistically analyzed using design of experiment by Box and Behnken and Response Surface Methodology (RSM). By maximizing shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization, the optimum shelling conditions were established at moisture content, clearance and breaker speed of 6.5%, 3 millimeters and 1300 rpm, respectively. The optimum values for shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization were recorded at 86.51%, 99.19%, 21.85kg/hr, 89.75%, and 542.84W, respectively. Experimental values obtained using the optimum conditions were compared with predicted values using predictive models and were found in good agreement.

Keywords: cocoa beans, optimization, RSM, shelling parameters

Procedia PDF Downloads 360
223 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
222 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.

Keywords: agglomerate, blast furnace, permeability, softening-melting

Procedia PDF Downloads 253
221 The Effect of "Trait" Variance of Personality on Depression: Application of the Trait-State-Occasion Modeling

Authors: Pei-Chen Wu

Abstract:

Both preexisting cross-sectional and longitudinal studies of personality-depression relationship have suffered from one main limitation: they ignored the stability of the construct of interest (e.g., personality and depression) can be expected to influence the estimate of the association between personality and depression. To address this limitation, the Trait-State-Occasion (TSO) modeling was adopted to analyze the sources of variance of the focused constructs. A TSO modeling was operated by partitioning a state variance into time-invariant (trait) and time-variant (occasion) components. Within a TSO framework, it is possible to predict change on the part of construct that really changes (i.e., time-variant variance), when controlling the trait variances. 750 high school students were followed for 4 waves over six-month intervals. The baseline data (T1) were collected from the senior high schools (aged 14 to 15 years). Participants were given Beck Depression Inventory and Big Five Inventory at each assessment. TSO modeling revealed that 70~78% of the variance in personality (five constructs) was stable over follow-up period; however, 57~61% of the variance in depression was stable. For personality construct, there were 7.6% to 8.4% of the total variance from the autoregressive occasion factors; for depression construct there were 15.2% to 18.1% of the total variance from the autoregressive occasion factors. Additionally, results showed that when controlling initial symptom severity, the time-invariant components of all five dimensions of personality were predictive of change in depression (Extraversion: B= .32, Openness: B = -.21, Agreeableness: B = -.27, Conscientious: B = -.36, Neuroticism: B = .39). Because five dimensions of personality shared some variance, the models in which all five dimensions of personality were simultaneous to predict change in depression were investigated. The time-invariant components of five dimensions were still significant predictors for change in depression (Extraversion: B = .30, Openness: B = -.24, Agreeableness: B = -.28, Conscientious: B = -.35, Neuroticism: B = .42). In sum, the majority of the variability of personality was stable over 2 years. Individuals with the greater tendency of Extraversion and Neuroticism have higher degrees of depression; individuals with the greater tendency of Openness, Agreeableness and Conscientious have lower degrees of depression.

Keywords: assessment, depression, personality, trait-state-occasion model

Procedia PDF Downloads 177
220 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 117
219 Optimistic Expectations and Satisfaction with Life as Antecedents of Emigration Attitudes among Bulgarian Millennials and Zoomers

Authors: Diana Ivanova Bakalova, Ekaterina Evtimova Dimitrova

Abstract:

The purpose of this paper is to examine the predictive power of optimistic expectations and satisfaction with life in the country of origin and residence – Bulgaria, over the attitudes towards emigration among young Bulgarians with regard to their generational belonging and differences (i.e. Generation Y or Millennials, born between 1981-1995/6, and Generation Z or Zoomers, born between 1996/7-2012). Although the correlation between satisfaction with life and migration (attitudes) has been studied in some countries, it has neither been examined to date in Bulgaria – a sending rather than receiving Eastern European country, nor scrutinized in the light of generational differences. Within a national survey(N=1200), representative of young Bulgarians aged 18-35 years – Zoomers aged 18-25years (N=444) and Millennials aged 26-35 years (N=756), carried out in September-October 2021, optimistic expectations and satisfaction with life in Bulgaria were respectively measured by a 5-item and4-item scales. The scales were designed to measure optimistic expectations and satisfaction with life in the country, as both general constructs and in terms of specific areas of life (education, profession, career, and income). The findings suggest that the higher satisfaction with life in Bulgaria is associated with more optimistic expectations about one’s further professional, financial, and career growth in the country and reasonably, with more negative attitudes towards emigration of young Bulgarians. Although no significant differences were found between Millennials and Zoomers in their optimistic expectations and satisfaction with life in Bulgaria, Millennials are still significantly less likely to emigrate than Zoomers. Positively, the population of young Bulgarians demonstrates higher than average satisfaction with life and optimism for their prospects in the country combined with neutral to negative overall attitudes towards emigration. These findings have some important interdisciplinary psychological and demographic theoretical, applied, and policy implications. The survey is carried out under Project КП-06-Н35/4 “Psychological determinants of young people's attitudes to emigration and life planning in the context of demographic challenges in Bulgaria,” funded by the NSF - MES, Bulgaria.

Keywords: optimistic expectations, life satisfaction, emigration attitudes, young bulgerians

Procedia PDF Downloads 152
218 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization

Procedia PDF Downloads 509
217 Revolutionizing Project Management: A Comprehensive Review of Artificial Intelligence and Machine Learning Applications for Smarter Project Execution

Authors: Wenzheng Fu, Yue Fu, Zhijiang Dong, Yujian Fu

Abstract:

The integration of artificial intelligence (AI) and machine learning (ML) into project management is transforming how engineering projects are executed, monitored, and controlled. This paper provides a comprehensive survey of AI and ML applications in project management, systematically categorizing their use in key areas such as project data analytics, monitoring, tracking, scheduling, and reporting. As project management becomes increasingly data-driven, AI and ML offer powerful tools for improving decision-making, optimizing resource allocation, and predicting risks, leading to enhanced project outcomes. The review highlights recent research that demonstrates the ability of AI and ML to automate routine tasks, provide predictive insights, and support dynamic decision-making, which in turn increases project efficiency and reduces the likelihood of costly delays. This paper also examines the emerging trends and future opportunities in AI-driven project management, such as the growing emphasis on transparency, ethical governance, and data privacy concerns. The research suggests that AI and ML will continue to shape the future of project management by driving further automation and offering intelligent solutions for real-time project control. Additionally, the review underscores the need for ongoing innovation and the development of governance frameworks to ensure responsible AI deployment in project management. The significance of this review lies in its comprehensive analysis of AI and ML’s current contributions to project management, providing valuable insights for both researchers and practitioners. By offering a structured overview of AI applications across various project phases, this paper serves as a guide for the adoption of intelligent systems, helping organizations achieve greater efficiency, adaptability, and resilience in an increasingly complex project management landscape.

Keywords: artificial intelligence, decision support systems, machine learning, project management, resource optimization, risk prediction

Procedia PDF Downloads 22
216 Biodegradation Effects onto Source Identification of Diesel Fuel Contaminated Soils

Authors: Colin S. Chen, Chien-Jung Tien, Hsin-Jan Huang

Abstract:

For weathering studies, the change of chemical constituents by biodegradation effect in diesel-contaminated soils are important factors to be considered, especially when there is a prolonged period of weathering processes. The objective was to evaluate biodegradation effects onto hydrocarbon fingerprinting and distribution patterns of diesel fuels, fuel source screening and differentiation, source-specific marker compounds, and diagnostic ratios of diesel fuel constituents by laboratory and field studies. Biodegradation processes of diesel contaminated soils were evaluated by experiments lasting for 15 and 12 months, respectively. The degradation of diesel fuel in top soils was affected by organic carbon content and biomass of microorganisms in soils. Higher depletion of total petroleum hydrocarbon (TPH), n-alkanes, and polynuclear aromatic hydrocarbons (PAHs) and their alkyl homologues was observed in soils containing higher organic carbon content and biomass. Decreased ratio of selected isoprenoids (i.e., pristane (Pr) and phytane (Ph)) including n-C17/pristane and n-C18/phytane was observed. The ratio of pristane/phytane was remained consistent for a longer period of time. At the end of the experimental period, a decrease of pristane/phytane was observed. Biomarker compounds of bicyclic sesquiterpanes (BS) were less susceptible to the effects of biodegradation. The ratios of characteristic factors such as C15 sesquiterpane/ 8β(H)-drimane (BS3/BS5), C15 sesquiterpane/ 8β(H)-drimane (BS4/BS5), 8β(H)-drimane/8β(H)-homodrimane (BS5/BS10), and C15 sesquiterpane/8β(H)-homodrimane (BS3/BS10) could be adopted for source identification of diesel fuels in top soil. However, for biodegradation processes lasted for six months but shorter than nine months, only BS3/BS5 and BS3/BS10 could be distinguished in two diesel fuels. In subsoil experiments (contaminated soil located 50 cm below), the ratios of characteristic factors including BS3/BS5, BS4/BS5, and BS5/BS10 were valid for source identification of two diesel fuels for nine month biodegradation. At the early stage of contamination, biomass of soil decreased significantly. However, 6 and 7 dominant species were found in soils in top soil experiments, respectively. With less oxygen and nutrients in subsoil, less biomass of microorganisms was observed in subsoils. Only 2 and 4 diesel-degrading species of microorganisms were identified in two soils, respectively. Parameters of double ratio such as fluorene/C1-fluorene: C2-phenanthrene/C3-phenanthrene (C0F/C1F:C2P/C3P) in both top and subsoil, C2-naphthalene/C2-phenanthrene: C1-phenanthrene/C3-phenanthrene (C2N/C2P:C1P/C3P), and C1-phenanthrene/C1-fluorene: C3-naphthalene/C3-phenanthrene (C1P/C1F:C3N/C3P) in subsoil could serve as forensic indicators in diesel contaminated sites. BS3/BS10:BS4/BS5 could be used in 6 to 9 months of biodegradation processes. Results of principal component analysis (PCA) indicated that source identification of diesel fuels in top soil could only be perofrmed for weathering process less than 6 months. For subsoil, identification can be conducted for weathering process less than 9 months. Ratio of isoprenoids (pristane and phytane) and PAHs might be affected by biodegradation in spilled sites. The ratios of bicyclic sesquiterpanes could serve as forensic indicators in diesel-contaminated soils. Finally, source identification was attemped for samples collected from different fuel contaminated sites by using the unique pattern of sesquiterpanes. It was anticipated that the information generated from this study would be adopted by decision makers to evaluate the liability of cleanup in diesel contaminated sites.

Keywords: biodegradation, diagnostic ratio, diesel fuel, environmental forensics

Procedia PDF Downloads 228
215 Embryonic Aneuploidy – Morphokinetic Behaviors as a Potential Diagnostic Biomarker

Authors: Banafsheh Nikmehr, Mohsen Bahrami, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Mallory Pitts, Tolga B. Mesen, Tamer M. Yalcinkaya

Abstract:

The number of people who receive in vitro fertilization (IVF) treatment has increased on a startling trajectory over the past two decades. Despite advances in this field, particularly the introduction of intracytoplasmic sperm injection (ICSI) and the preimplantation genetic screening (PGS), the IVF success remains low. A major factor contributing to IVF failure is embryonic aneuploidy (abnormal chromosome content), which often results in miscarriage and birth defects. Although PGS is often used as the standard diagnostic tool to identify aneuploid embryos, it is an invasive approach that could affect the embryo development, and yet inaccessible to many patients due its high costs. As such, there is a clear need for a non-invasive cost-effective approach to identify euploid embryos for single embryo transfer (SET). The reported differences between morphokinetic behaviors of aneuploid and euploid embryos has shown promise to address this need. However, current literature is inconclusive and further research is urgently needed to translate current findings into clinical diagnostics. In this ongoing study, we found significant differences between morphokinetic behaviors of euploid and aneuploid embryos that provides important insights and reaffirms the promise of such behaviors for developing non-invasive methodologies. Methodology—A total of 242 embryos (euploid: 149, aneuploid: 93) from 74 patients who underwent IVF treatment in Carolinas Fertility Clinics in Winston-Salem, NC, were analyzed. All embryos were incubated in an EmbryoScope incubator. The patients were randomly selected from January 2019 to June 2021 with most patients having both euploid and aneuploid embryos. All embryos reached the blastocyst stage and had known PGS outcomes. The ploidy assessment was done by a third-party testing laboratory on day 5-7 embryo biopsies. The morphokinetic variables of each embryo were measured by the EmbryoViewer software (Uniesense FertiliTech) on time-lapse images using 7 focal depths. We compared the time to: pronuclei fading (tPNf), division to 2,3,…,9 cells (t2, t3,…,t9), start of embryo compaction (tSC), Morula formation (tM), start of blastocyst formation (tSC), blastocyst formation (tB), and blastocyst expansion (tEB), as well as intervals between them (e.g., c23 = t3 – t2). We used a mixed regression method for our statistical analyses to account for the correlation between multiple embryos per patient. Major Findings— The average age of the patients was 35.04 yrs. The average patient age associated with euploid and aneuploid embryos was not different (P = 0.6454). We found a significant difference in c45 = t5-t4 (P = 0.0298). Our results indicated this interval on average lasts significantly longer for aneuploid embryos - c45(aneuploid) = 11.93hr vs c45(euploid) = 7.97hr. In a separate analysis limited to embryos from the same patients (patients = 47, total embryos=200, euploid=112, aneuploid=88), we obtained the same results (P = 0.0316). The statistical power for this analysis exceeded 87%. No other variable was different between the two groups. Conclusion— Our results demonstrate the importance of morphokinetic variables as potential biomarkers that could aid in non-invasively characterizing euploid and aneuploid embryos. We seek to study a larger population of embryos and incorporate the embryo quality in future studies.

Keywords: IVF, embryo, euploidy, aneuploidy, morphokinteic

Procedia PDF Downloads 88
214 Reliability and Maintainability Optimization for Aircraft’s Repairable Components Based on Cost Modeling Approach

Authors: Adel A. Ghobbar

Abstract:

The airline industry is continuously challenging how to safely increase the service life of the aircraft with limited maintenance budgets. Operators are looking for the most qualified maintenance providers of aircraft components, offering the finest customer service. Component owner and maintenance provider is offering an Abacus agreement (Aircraft Component Leasing) to increase the efficiency and productivity of the customer service. To increase the customer service, the current focus on No Fault Found (NFF) units must change into the focus on Early Failure (EF) units. Since the effect of EF units has a significant impact on customer satisfaction, this needs to increase the reliability of EF units at minimal cost, which leads to the goal of this paper. By identifying the reliability of early failure (EF) units with regards to No Fault Found (NFF) units, in particular, the root cause analysis with an integrated cost analysis of EF units with the use of a failure mode analysis tool and a cost model, there will be a set of EF maintenance improvements. The data used for the investigation of the EF units will be obtained from the Pentagon system, an Enterprise Resource Planning (ERP) system used by Fokker Services. The Pentagon system monitors components, which needs to be repaired from Fokker aircraft owners, Abacus exchange pool, and commercial customers. The data will be selected on several criteria’s: time span, failure rate, and cost driver. When the selected data has been acquired, the failure mode and root cause analysis of EF units are initiated. The failure analysis approach tool was implemented, resulting in the proposed failure solution of EF. This will lead to specific EF maintenance improvements, which can be set-up to decrease the EF units and, as a result of this, increasing the reliability. The investigated EFs, between the time period over ten years, showed to have a significant reliability impact of 32% on the total of 23339 unscheduled failures. Since the EFs encloses almost one-third of the entire population.

Keywords: supportability, no fault found, FMEA, early failure, availability, operational reliability, predictive model

Procedia PDF Downloads 129
213 Developing Countries and the Entrepreneurial Intention of Postgraduates: A Study of Nigerian Postgraduates in UUM

Authors: Mahmoud Ahmad Mahmoud

Abstract:

The surge in unemployment among nations and the understanding of the important role played by entrepreneurship in job creation by researchers and policy makers have steered to the postulation that entrepreneurship activities can be spurred through the development of entrepreneurial intentions. Notwithstanding, entrepreneurial intention studies are very scarce in the developing world especially in the African continent. Even among the developed countries, studies of entrepreneurial intention were mostly focused on the undergraduate candidates. This paper therefore, aimed at filling the gap by employing the descriptive quantitative survey method to examine the entrepreneurial intention of 158 Nigerian postgraduate candidates of Universiti Utara Malaysia (UUM), comprising 46 Masters and 112 PhD candidates who are studying in the College of Business (COB), College of Arts and Sciences (CAS) and College of Legal, Government and International Studies (COLGIS), the theory of planned behaviour (TPB) model was used due its reputable validity, with attitudes, subjective norms and perceived behavioural control as the independent variables. Preliminary analysis and data screening were conducted which qualifies the data to the multivariate analysis assumptions. The reliability test was performed using the Cronbach Alpha method which shows all variables as reliable with a value of >0.70. However, the data is free from the multicollinearity issue with all factors in the Pearson correlation having <0.9 value and the VIF having <10. Regression analysis has shown the sufficiency and predictive capability of the TPB model to entrepreneurship intention with attitude, subjective norms and perceived behavioural control being positively and significantly related to the entrepreneurial intention of Nigerian postgraduates. Considering the Beta values, perceived behavioural control emerged as the strongest factor that influences the postgraduates entrepreneurial intention. Developing countries are therefore, recommended to make efforts in redesigning their entrepreneurship development policies to fit candidates of the highest level of academia. Further studies should replicate in a larger sample that comprises more than one university and more than one developing country.

Keywords: attitude, entrepreneurial intention, Nigeria, perceived behavioral control, postgraduates, subjective norms

Procedia PDF Downloads 435
212 The Psychosis Prodrome: Biomarkers of the Glutamatergic System and Their Potential Role in Prediction and Treatment

Authors: Peter David Reiss

Abstract:

The concept of the psychosis prodrome has allowed for the identification of adolescent and young adult patients who have a significantly elevated risk of developing schizophrenia spectrum disorders. A number of different interventions have been tested in order to prevent or delay progression of symptoms. To date, there has been no consistent meta-analytical evidence to support efficacy of antipsychotic treatment for patients in the prodromal state, and their use remains therefore inconclusive. Although antipsychotics may manage symptoms transiently, they have not been found to prevent or delay onset of psychotic disorders. Furthermore, pharmacological intervention in high-risk individuals remains controversial, because of the antipsychotic side effect profile in a population in which only about 20 to 35 percent will eventually convert to psychosis over a two-year period, with even after two years conversion rates not exceeding 30 to 40 percent. This general estimate is additionally problematic, in that it ignores the fact that there is significant variation in individual risk among clinical high-risk cases. The current lack of reliable tests for at-risk patients makes it difficult to justify individual treatment decisions. Preventive treatment should ideally be dictated by an individual’s risk while minimizing potentially harmful medication exposure. This requires more accurate predictive assessments by using valid and accessible prognostic markers. The following will compare prediction and risk modification potential of behavioral biomarkers such as disturbances of basic sense of self and emotion awareness, neurocognitive biomarkers such as attention, working and declarative memory, and neurophysiological biomarkers such as glutamatergic abnormalities and NMDA receptor dysfunction. Identification of robust biomarkers could therefore not only provide more reliable means of psychosis prediction, but also help test and develop new clinical interventions targeted at the prodromal state.

Keywords: at-risk mental state, biomarkers, glutamatergic system, NMDA receptor, psychosis prodrome, schizophrenia

Procedia PDF Downloads 195
211 Breast Cancer Therapy-Related Cardiac Dysfunction Identifying in Kazakhstan: Preliminary Findings of the Cohort Study

Authors: Saule Balmagambetova, Zhenisgul Tlegenova, Saule Madinova

Abstract:

Cardiotoxicity associated with anticancer treatment, now defined as cancer therapy-related cardiac dysfunction (CTRCD), accompanies cancer patients and negatively impacts their survivorship. Currently, a cardio-oncological service is being created in Kazakhstan based on the provisions of the European Society of Cardio-oncology (ESC) Guidelines. In the frames of a pilot project, a cohort study on CTRCD conditions was initiated at the Aktobe Cancer center. One hundred twenty-eight newly diagnosed breast cancer patients started on doxorubicin and/or trastuzumab were recruited. Echocardiography with global longitudinal strain (GLS) assessment, biomarkers panel (cardiac troponin (cTnI), brain natriuretic peptide (BNP), myeloperoxidase (MPO), galectin-3 (Gal-3), D-dimers, C-reactive protein (CRP)), and other tests were performed at baseline and every three months. Patients were stratified by the cardiovascular risks according to the ESC recommendations and allocated into the risk groups during the pre-treatment visit. Of them, 10 (7.8%) patients were assigned to the high-risk group, 48 (37.5%) to the medium-risk group, and 70 (54.7%) to the low-risk group, respectively. High-risk patients have been receiving their cardioprotective treatment from the outset. Patients were also divided by treatment - in the anthracycline-based 83 (64.8%), in trastuzumab- only 13 (10.2%), and in the mixed anthracycline/trastuzumab group 32 individuals (25%), respectively. Mild symptomatic CTRCD was revealed and treated in 2 (1.6%) participants, and a mild asymptomatic variant in 26 (20.5%). Mild asymptomatic conditions are defined as left ventricular ejection fraction (LVEF) ≥50% and further relative reduction in GLS by >15% from baseline and/or a further rise in cardiac biomarkers. The listed biomarkers were assessed longitudinally in repeated-measures linear regression models during 12 months of observation. The associations between changes in biomarkers and CTRCD and between changes in biomarkers and LVEF were evaluated. Analysis by risk groups revealed statistically significant differences in baseline LVEF scores (p 0.001), BNP (p 0.0075), and Gal-3 (p 0.0073). Treatment groups found no statistically significant differences at baseline. After 12 months of follow-up, only LVEF values showed a statistically significant difference by risk groups (p 0.0011). When assessing the temporal changes in the studied parameters for all treatment groups, there were statistically significant changes from visit to visit for LVEF (p 0.003); GLS (p 0.0001); BNP (p<0.00001); MPO (p<0.0001); and Gal-3 (p<0.0001). No moderate or strong correlations were found between the biomarkers values and LVEF, between biomarkers and GLS. Between the biomarkers themselves, a moderate, close to strong correlation was established between cTnI and D-dimer (r 0.65, p<0.05). The dose-dependent effect of anthracyclines has been confirmed: the summary dose has a moderate negative impact on GLS values: -r 0.31 for all treatment groups (p<0.05). The present study found myeloperoxidase as a promising biomarker of cardiac dysfunction in the mixed anthracycline/trastuzumab treatment group. The hazard of CTRCD increased by 24% (HR 1.21; 95% CI 1.01;1.73) per doubling in baseline MPO value (p 0.041). Increases in BNP were also associated with CTRCD (HR per doubling, 1.22; 95% CI 1.12;1.69). No cases of chemotherapy discontinuation due to cardiotoxic complications have been recorded. Further observations are needed to gain insight into the ability of biomarkers to predict CTRCD onset.

Keywords: breast cancer, chemotherapy, cardiotoxicity, Kazakhstan

Procedia PDF Downloads 92
210 Predicting Factors for Occurrence of Cardiac Arrest in Critical, Emergency and Urgency Patients in an Emergency Department

Authors: Angkrit Phitchayangkoon, Ar-Aishah Dadeh

Abstract:

Background: A key aim of triage is to identify the patients with high risk of cardiac arrest because they require intensive monitoring, resuscitation facilities, and early intervention. We aimed to identify the predicting factors such as initial vital signs, serum pH, serum lactate level, initial capillary blood glucose, and Modified Early Warning Score (MEWS) which affect the occurrence of cardiac arrest in an emergency department (ED). Methods: We conducted a retrospective data review of ED patients in an emergency department (ED) from 1 August 2014 to 31 July 2016. Significant variables in univariate analysis were used to create a multivariate analysis. Differentiation of predicting factors between cardiac arrest patient and non-cardiac arrest patients for occurrence of cardiac arrest in an emergency department (ED) was the primary outcome. Results: The data of 527 non-trauma patients with Emergency Severity Index (ESI) 1-3 were collected. The factors found to have a significant association (P < 0.05) in the non-cardiac arrest group versus the cardiac arrest group at the ED were systolic BP (mean [IQR] 135 [114,158] vs 120 [90,140] mmHg), oxygen saturation (mean [IQR] 97 [89,98] vs 82.5 [78,95]%), GCS (mean [IQR] 15 [15,15] vs 11.5 [8.815]), normal sinus rhythm (mean 59.8 vs 30%), sinus tachycardia (mean 46.7 vs 21.7%), pH (mean [IQR] 7.4 [7.3,7.4] vs 7.2 [7,7.3]), serum lactate (mean [IQR] 2 [1.1,4.2] vs 7 [5,10.8]), and MEWS score (mean [IQR] 3 [2,5] vs 5 [3,6]). A multivariate analysis was then performed. After adjusting for multiple factors, ESI level 2 patients were more likely to have cardiac arrest in the ER compared with ESI 1 (odds ratio [OR], 1.66; P < 0.001). Furthermore, ESI 2 patients were more likely than ESI 1 patients to have cardiovascular disease (OR, 1.89; P = 0.01), heart rate < 55 (OR, 6.83; P = 0.18), SBP < 90 (OR, 3.41; P = 0.006), SpO2 < 94 (OR, 4.76; P = 0.012), sinus tachycardia (OR, 4.32; P = 0.002), lactate > 4 (OR, 10.66; P = < 0.001), and MEWS > 4 (OR, 4.86; P = 0.028). These factors remained predictive of cardiac arrest at the ED. Conclusion: The factors related to cardiac arrest in the ED are ESI 1 patients, ESI 2 patients, patients diagnosed with cardiovascular disease, SpO2 < 94, lactate > 4, and a MEWS > 4. These factors can be used as markers in the event of simultaneous arrival of many patients and can help as a pre-state for patients who have a tendency to develop cardiac arrest. The hemodynamic status and vital signs of these patients should be closely monitored. Early detection of potentially critical conditions to prevent critical medical intervention is mandatory.

Keywords: cardiac arrest, predicting factor, emergency department, emergency patient

Procedia PDF Downloads 160
209 A Novel Upregulated circ_0032746 on Sponging with MIR4270 Promotes the Proliferation and Migration of Esophageal Squamous Cell Carcinoma

Authors: Sachin Mulmi Shrestha, Xin Fang, Hui Ye, Lihua Ren, Qinghua Ji, Ruihua Shi

Abstract:

Background: Esophageal squamous cell carcinoma (ESCC) is a tumor arising from esophageal epithelial cells and is one of the major disease subtype in Asian countries, including China. Esophageal cancer is the 7th highest incidence based on the 2020 data of GLOBOCAN. The pathogenesis of cancer is still not well understood as many molecular and genetic basis of esophageal carcinogenesis has yet to be clearly elucidated. Circular RNAs are RNA molecules that are formed by back-splicing covalently joined 3′- and 5′-endsrather than canonical splicing, and recent data suggest circular RNAs could sponge miRNAs and are enriched with functional miRNA binding sites. Hence, we studied the mechanism of circular RNA, its biological function, and the relationship between microRNA in the carcinogenesis of ESCC. Methods: 4 pairs of normal and esophageal cancer tissues were collected in Zhongda hospital, affiliated to Southeast University, and high-throughput RNA sequencing was done. The result revealed that circ_0032746 was upregulated, and thus we selected circ_0032746 for further study. The backsplice junction of circRNA was validated by sanger sequence, and stability was determined by RNASE R assay. The binding site of circRNA and microRNA was predicted by circinteractome,mirandaand RNAhybrid database. Furthermore, circRNA was silenced by siRNA and then by lentivirus. The regulatory axis of circ0032746/miR4270 was validated by shRNA, mimic, and inhibitor transfection. Then, in vitro experiments were performed to assess the role of circ0032746 on proliferation (CCK-8 assay and colon formation assay), migration and invasion (Transewell assay), and apoptosis of ESCC. Results: The upregulated circ0032746 was validated in 9 pairs of tissues and 5 types of cell lines by qPCR, which showed high expression and was statistically significant (P<0.005) ). Upregulated circ0032746 was silenced by shRNA, which showed significant knockdown in KYSE 30 and TE-1 cell lines expression compared to control. Nuclear and cytoplasmic mRNA fraction experiment displayed the cytoplasmic location of circ0032746. The sponging of miR4270 was validated by co-transfection of sh-circ0032746 and mimic or inhibitor. Transfection with mimic showed the decreased expression of circ_0032746, whereas inhibitor inhibited the result. In vitro experiments showed that silencing of circ_0032746 inhibited the proliferation, migration, and invasion compared to the negative control group. The apoptosis was seen higher in a knockdown group than in the control group. Furthermore, 11 common mircoRNA target mRNAs were predicted by Targetscan, MirTarbase, and miRanda database, which may further play role in the pathogenesis. Conclusion: Our results showed that novel circ_0032746 is upregulated in ESCC and plays role in itsoncogenicity. Silencing of circ_0032746 inhibits the proliferation and migration of ESCC whereas increases the apoptosis of cancer cells. Hence, circ0032746 acts as an oncogene in ESCC by sponging with miR4270 and could be a potential biomarker in the diagnosis of ESCC in the future.

Keywords: circRNA, esophageal squamous cell carcinoma, microRNA, upregulated

Procedia PDF Downloads 113
208 Revealing the Risks of Obstructive Sleep Apnea

Authors: Oyuntsetseg Sandag, Lkhagvadorj Khosbayar, Naidansuren Tsendeekhuu, Densenbal Dansran, Bandi Solongo

Abstract:

Introduction: Obstructive sleep apnea (OSA) is a common disorder affecting at least 2% to 4% of the adult population. It is estimated that nearly 80% of men and 93% of women with moderate to severe sleep apnea are undiagnosed. A number of screening questionnaires and clinical screening models have been developed to help identify patients with OSA, also it’s indeed to clinical practice. Purpose of study: Determine dependence of obstructive sleep apnea between for severe risk and risk factor. Material and Methods: A cross-sectional study included 114 patients presenting from theCentral state 3th hospital and Central state 1th hospital. Patients who had obstructive sleep apnea (OSA)selected in this study. Standard StopBang questionnaire was obtained from all patients.According to the patients’ response to the StopBang questionnaire was divided into low risk, intermediate risk, and high risk.Descriptive statistics were presented mean ± standard deviation (SD). Each questionnaire was compared on the likelihood ratio for a positive result, the likelihood ratio for a negative test result of regression. Statistical analyses were performed utilizing SPSS 16. Results: 114 patients were obtained (mean age 48 ± 16, male 57)that divided to low risk 54 (47.4%), intermediate risk 33 (28.9%), high risk 27 (23.7%). Result of risk factor showed significantly increasing that mean age (38 ± 13vs. 54 ± 14 vs. 59 ± 10, p<0.05), blood pressure (115 ± 18vs. 133 ± 19vs. 142 ± 21, p<0.05), BMI(24 IQR 22; 26 vs. 24 IQR 22; 29 vs. 28 IQR 25; 34, p<0.001), neck circumference (35 ± 3.4 vs. 38 ± 4.7 vs. 41 ± 4.4, p<0.05)were increased. Results from multiple logistic regressions showed that age is significantly independently factor for OSA (odds ratio 1.07, 95% CI 1.02-1.23, p<0.01). Predictive value of age was significantly higher factor for OSA (AUC=0.833, 95% CI 0.758-0.909, p<0.001). Our study showing that risk of OSA is beginning 47 years old (sensitivity 78.3%, specifity74.1%). Conclusions: According to most of all patients’ response had intermediate risk and high risk. Also, age, blood pressure, neck circumference and BMI were increased such as risk factor was increased for OSA. Especially age is independently factor and highest significance for OSA. Patients’ age one year is increased likelihood risk factor 1.1 times is increased.

Keywords: obstructive sleep apnea, Stop-Bang, BMI (Body Mass Index), blood pressure

Procedia PDF Downloads 310
207 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries

Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand

Abstract:

Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.

Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.

Procedia PDF Downloads 76
206 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease

Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette

Abstract:

Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.

Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment

Procedia PDF Downloads 338
205 Climate Change Adaptation: Methodologies and Tools to Define Resilience Scenarios for Existing Buildings in Mediterranean Urban Areas

Authors: Francesca Nicolosi, Teresa Cosola

Abstract:

Climate changes in Mediterranean areas, such as the increase of average seasonal temperatures, the urban heat island phenomenon, the intensification of solar radiation and the extreme weather threats, cause disruption events, so that climate adaptation has become a pressing issue. Due to the strategic role that the built heritage holds in terms of environmental impact and energy waste and its potentiality, it is necessary to assess the vulnerability and the adaptive capacity of the existing building to climate change, in order to define different mitigation scenarios. The aim of this research work is to define an optimized and integrated methodology for the assessment of resilience levels and adaptation scenarios for existing buildings in Mediterranean urban areas. Moreover, the study of resilience indicators allows us to define building environmental and energy performance in order to identify the design and technological solutions for the improvement of the building and its urban area potentialities. The methodology identifies step-by-step different phases, starting from the detailed study of characteristic elements of urban system: climatic, natural, human, typological and functional components are analyzed in their critical factors and their potential. Through the individuation of the main perturbing factors and the vulnerability degree of the system to the risks linked to climate change, it is possible to define mitigation and adaptation scenarios. They can be different, according to the typological, functional and constructive features of the analyzed system, divided into categories of intervention, and characterized by different analysis levels (from the single building to the urban area). The use of software simulations allows obtaining information on the overall behavior of the building and the urban system, to generate predictive models in the medium and long-term environmental and energy retrofit and to make a comparative study of the mitigation scenarios identified. The studied methodology is validated on a case study.

Keywords: climate impact mitigation, energy efficiency, existing building heritage, resilience

Procedia PDF Downloads 240
204 Psychological Factors Predicting Social Distance during the COVID-19 Pandemic: An Empirical Investigation

Authors: Calogero Lo Destro

Abstract:

Numerous nations around the world are facing exceptional challenges in employing measures to stop the spread of COVID-19. Following the recommendations of the World Health Organization, a series of preventive measures have been adopted. However, individuals must comply with these rules and recommendations in order to make these measures effective. While COVID-19 was climaxing, it seemed of crucial importance to analyze which psychosocial factors contribute to the acceptance of such preventive behavior, thus favoring the management of COVID-19 worldwide health crisis. In particular, the identification of aspects related to obstacles and facilitation of adherence to social distancing has been considered crucial in the containment of the virus spread. Since the virus was firstly detected in China, Asian people could be considered a relevant outgroup targeted for exclusion. We also hypothesized social distance could be influenced by characteristics of the target, such as smiling or coughing. 260 participants participated in this research on a voluntary basis. They filled a survey designed to explore a series of COVID-19 measures (such as exposure to virus and fear of infection). We also assessed participants state and trait anxiety. The dependent variable was social distance, based on a measure of seating distance designed ad hoc for the present work. Our hypothesis that participants could report greater distance in response to Asian people was not confirmed. On the other hand, significantly lower distance in response to smiling compared to coughing targets was reported. Adopting a regression analysis model, we found that participants' social distance, in response to both coughing and smiling targets, was predicted by fear of infection and by the perception COVID-19 could become a pandemic. Social distance in response to the coughing target was also significantly and positively predicted by age and state anxiety. In summary, the present work has sought to identify a set of psychological variables, which may still be predictive of social distancing.

Keywords: COVID-19, social distancing, health, preventive behaviors, risk of infection

Procedia PDF Downloads 125