Search results for: hydrogen loading
1474 An Eco-Friendly Preparations of Izonicotinamide Quaternary Salts in Deep Eutectic Solvents
Authors: Dajana Gašo-Sokač, Valentina Bušić
Abstract:
Deep eutectic solvents (DES) are liquids composed of two or three safe, inexpensive components, often interconnected by noncovalent hydrogen bonds which produce eutectic mixture whose melting point is lower than that of each component. No data in literature have been found on the quaternization reaction in DES. The use of DES have several advantages: they are environmentally benign and biodegradable, easy for purification and simple for preparation. An environmentally sustainable method for preparing quaternary salts of izonicotinamide and substituted 2-bromoacetophenones was demonstrated here using choline chloride-based DES. The quaternization reaction was carried out by three synthetic approaches: conventional method, microwave and ultrasonic irradiation. We showed that the highest yields were obtained by the microwave method.Keywords: deep eutectic solvents, izonicotinamide salts, microwave synthesis, ultrasonic irradiation
Procedia PDF Downloads 1301473 Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases
Authors: Jae-Yong Park, Yeo-Kyeong Lee, Hee-Sun Kim
Abstract:
Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth.Keywords: cranium, finite element analysis, mandible, masticatory action, occlusal force
Procedia PDF Downloads 3921472 Molecularly Imprinted Polymer and Computational Study of (E)-2-Cyano-3-(Dimethylamino)-N-(2,4-Dioxo-1,2,3,4-Tetrahydropyrimidin-5-Yl)Acrylam-Ide and Its Applications in Industrial Applications
Authors: Asmaa M. Fahim
Abstract:
In this investigation, the (E)-2-cyano-3-(dimethylamino)-N-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylam-ide (4) which used TAM as a template which interacts with Methacrylic Acid (MAA) monomer, in the presence of CH₃CN as progen. The TAM-MMA complex interactions are dependent on stable hydrogen bonding interaction between the carboxylic acid group of TAM(Template) and the hydroxyl group of MMA(methyl methacrylate) with minimal interference of porogen CH₃CN. The physical computational studies were used to optimize their structures and frequency calculations. The binding energies between TAM with different monomers showed the most stable molar ratio of 1:4, which was confirmed through experimental analysis. The optimized polymers were investigated in industrial applications.Keywords: molecular imprinted polymer, computational studies, SEM, spectral analysis, industrial applications
Procedia PDF Downloads 1621471 Awareness of Organic Products in Bangladesh: A Marketing Perspective
Authors: Sheikh Mohammed Rafiul Huque
Abstract:
Bangladesh since its inception has been an economy that is fuelled by agriculture and agriculture has significant contribution to the GDP of Bangladesh. The agriculture of Bangladesh predominantly and historically dependent on organic sources of raw material though the place has taken in decades by inorganic sources of raw materials due to the high demand of food for rapidly growing of population. Meanwhile, a new market segment, which is niche market, has been evolving in the urban area in favor of organic products, though 71.1% population living in rural areas is dependent mainly on conventional products. The new market segment is search of healthy and safer source of food and they could believe that organic products are the solution of that. In Bangladesh, food adulteration is very common practices among the shop-keepers to extend the shelf life of raw vegetables and fruits. The niche group of city dwellers is aware about the fact and gradually shifting their buying behavior to organic products. A recent survey on organic farming revealed that 16,200 hectares under organic farming in recent time, which was only 2,500 hectares in 2008. This study is focused on consumer awareness of organic products and tried to explore the factors affecting organic food consumption among high income group of people. The hypothesis is developed to explore the effect of gender (GENDER), ability to purchase (ABILITY) and health awareness (HEALTH) on purchase intention (INTENTION). A snowball sampling was administered among the high income group of people in Dhaka city among 150 respondents. In this sampling process the study could identify only those samples who has consume organic products. A Partial Least Square (PLS) method was used to analyze data using path analysis. It was revealed from the analysis that coefficient determination R2 is 0.829 for INTENTION endogenous latent variable. This means that three latent variables (GENDER, ABILITY, and HEALTH) significantly explain 82.9% of the variance in INTENTION of purchasing organic products. Moreover, GENDER solely explains 6.3% and 8.6% variability of ABILITY and HEALTH respectively. The inner model suggests that HEALTH has strongest negative effect on INTENTION (-0.647) followed by ABILITY (0.344) and GENDER (0.246). The hypothesized path relationship between ABILITY->INTENTION, HEALTH->INTENTION and GENDER->INTENTION are statistically significant. Furthermore, the hypothesized path relationship between GENDER->ABILITY (0.262) and GENDER->HEALTH (-0.292) also statistically significant. The purpose of the study is to demonstrate how an organic product producer can improve his participatory guarantee system (PGS) while marketing the products. The study focuses on understanding gender (GENDER), ability (ABILITY) and health (HEALTH) factors while positioning the products (INTENTION) in the mind of the consumer. In this study, the respondents are found to care about high price and ability to purchase variables with loading -0.920 and 0.898. They are good indicators of ability to purchase (ABILITY). The marketers should consider about price of organic comparing to conventional products while marketing, otherwise, that will create negative intention to buy with a loading of -0.939. Meanwhile, it is also revealed that believability of chemical free component in organic products and health awareness affects health (HEALTH) components with high loading -0.941 and 0.682. The study analyzes that low believability of chemical free component and high price of organic products affects intension to buy. The marketers should not overlook this point while targeting the consumers in Bangladesh.Keywords: health awareness, organic products, purchase ability, purchase intention
Procedia PDF Downloads 3771470 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application
Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander
Abstract:
The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.Keywords: dopolymer, ε-decalactone, indomethacin, micelles
Procedia PDF Downloads 2961469 Surface Defect-engineered Ceo₂−x by Ultrasound Treatment for Superior Photocatalytic H₂ Production and Water Treatment
Authors: Nabil Al-Zaqri
Abstract:
Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth, and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2₋ₓ nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsiccrystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO₂₋ₓ revealed higher crystallinity, as well as morphological optimization, and the presence of oxygen vacancies is verified through Raman, X-rayphotoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spinresonance analyses. Oxygen vacancies accelerate the redox cycle between Ce₄+ and Ce₃+ by prolongingphotogenerated charge recombination. The ultrasound-treated pristine CeO₂ sample achieved excellenthydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Ourpromising findings demonstrated that ultrasonic treatment causes the formation of surface oxygenvacancies and improves photocatalytic hydrogen evolution and pollution degradation. Conclusion: Defect engineering of the ceria nanoparticles with oxygen vacancies was achieved for the first time using low-frequency ultrasound treatment. The U-CeO₂₋ₓsample showed high crystallinity, and morphological changes were observed. Due to the acoustic cavitation effect, a larger surface area and small particle size were observed. The ultrasound treatment causes particle aggregation and surface defects leading to oxygen vacancy formation. The XPS, Raman spectroscopy, PL spectroscopy, and ESR results confirm the presence of oxygen vacancies. The ultrasound-treated sample was also examined for pollutant degradation, where 1O₂was found to be the major active species. Hence, the ultrasound treatment influences efficient photocatalysts for superior hydrogen evolution and an excellent photocatalytic degradation of contaminants. The prepared nanostructure showed excellent stability and recyclability. This work could pave the way for a unique post-synthesis strategy intended for efficient photocatalytic nanostructures.Keywords: surface defect, CeO₂₋ₓ, photocatalytic, water treatment, H₂ production
Procedia PDF Downloads 1411468 A Current Problem for Steel Bridges: Fatigue Assessment of Seams´ Repair
Authors: H. Pasternak, A. Chwastek
Abstract:
The paper describes the results from a research project about repair of welds. The repair was carried out by grinding the flawed seams and re-welding them. The main task was to determine the FAT classes of original state and after repair of seams according to the assessment procedures, such as nominal, structural and effective notch stress approach. The first part shows the results of the tests, the second part encloses numerical analysis and evaluation of results to determine the fatigue strength classes according to three assessment procedures.Keywords: cyclic loading, fatigue crack, post-weld treatment, seams’ repair
Procedia PDF Downloads 2601467 Sintering Atmosphere Effects on the Densification of Al-SiC Compacts
Authors: Tadeusz Pieczonka, Jan Kazior
Abstract:
The influence of SiC powder addition on densification of Al-SiC compacts during sintering in different atmospheres was investigated. It was performed in a dilatometer in flowing nitrogen, nitrogen/hydrogen (95/5 by volume) and argon. Fine, F500 grade of SiC powder was used. Mixtures containing 10 and 30 vol.% of SiC reinforcement were prepared in a Turbula mixer. Green compacts of about 82% of theoretical density were made of each mixture. For comparison, compacts made of pure aluminum powder were also investigated. It was shown that nitrogen is the best sintering atmosphere because only in this atmosphere did shrinkage take place. Its amount is lowered by ceramic powder addition, i.e. the more SiC the less densification occurs. Additionally, the formation of clusters enhanced in compacts containing 30 vol.% SiC, is also responsible for limiting the shrinkage. Microstructural examinations of sintered composites revealed that sintering of compacts occurs in the presence of the liquid phase exclusively in nitrogen.Keywords: Al-SiC composites, densification, sintering atmosphere, materials engineering
Procedia PDF Downloads 4041466 Exergy Analyses of Wind Turbine
Authors: Muhammad Abid
Abstract:
Utilization of renewable energy resources for energy conservation, pollution prevention, resource efficiency and systems integration is very important for sustainable development. In this study, we perform energy and exergy analyses of a wind turbine, located on the roof of Mechanical Engineering Department, King Saud University, and Riyadh, Saudi Arabia. The turbine is part of a hybrid photovoltaic (PV)-wind system with hydrogen storage. The power output from this turbine varies between 1.5 and 5.5 kW with a rated wind speed of 12 m/s and a cut-in wind speed of 2.4 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine energy and exergy efficiencies. The energy efficiency changes between 0% to 45% while the exergy efficiency varies between 0% and 31.3%. We also determined some of the exergoeconomic parameters that are the ratios of energy and exergy loss rates to the capital cost (R en and R ex), respectively. (R en) changes between 0.96% and 59.03% for different values of velocity while R ex has a maximum value of 53.62% for the highest wind speed.Keywords: exergy, efficiency, performance evaluation, wind energy
Procedia PDF Downloads 3671465 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes
Authors: Anna Romanova, Morteza A. Alani
Abstract:
Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, When examined in minutes scale, (ii) H2S and CO2 have an identical hourly pattern, (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.Keywords: concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid
Procedia PDF Downloads 3081464 Deasphalting of Crude Oil by Extraction Method
Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov
Abstract:
The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy
Procedia PDF Downloads 2421463 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser
Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett
Abstract:
Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser
Procedia PDF Downloads 1571462 Concanavaline a Conjugated Bacterial Polyester Based PHBHHx Nanoparticles Loaded with Curcumin for the Ovarian Cancer Therapy
Authors: E. Kilicay, Z. Karahaliloglu, B. Hazer, E. B. Denkbas
Abstract:
In this study, we have prepared concanavaline A (ConA) functionalized curcumin (CUR) loaded PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles as a novel and efficient drug delivery system. CUR is a promising anticancer agent for various cancer types. The aim of this study was to evaluate therapeutic potential of curcumin loaded PHBHHx nanoparticles (CUR-NPs) and concanavaline A conjugated curcumin loaded NPs (ConA-CUR NPs) for ovarian cancer treatment. ConA was covalently connected to the carboxylic group of nanoparticles by EDC/NHS activation method. In the ligand attachment experiment, the binding capacity of ConA on the surface of NPs was found about 90%. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were smooth and spherical in shape. The size and zeta potential of prepared NPs were about 228±5 nm and −21.3 mV respectively. ConA-CUR NPs were characterized by FT-IR spectroscopy which confirmed the existence of CUR and ConA in the nanoparticles. The entrapment and loading efficiencies of different polymer/drug weight ratios, 1/0.125 PHBHHx/CUR= 1.25CUR-NPs; 1/0.25 PHBHHx/CUR= 2.5CUR-NPs; 1/0.5 PHBHHx/CUR= 5CUR-NPs, ConA-1.25CUR NPs, ConA-2.5CUR NPs and ConA-5CUR NPs were found to be ≈ 68%-16.8%; 55%-17.7 %; 45%-33.6%; 70%-15.7%; 60%-17%; 51%-30.2% respectively. In vitro drug release showed that the sustained release of curcumin was observed from CUR-NPs and ConA-CUR NPs over a period of 19 days. After binding of ConA, the release rate was slightly increased due to the migration of curcumin to the surface of the nanoparticles and the matrix integrities was decreased because of the conjugation reaction. This functionalized nanoparticles demonstrated high drug loading capacity, sustained drug release profile, and high and long term anticancer efficacy in human cancer cell lines. Anticancer activity of ConA-CUR NPs was proved by MTT assay and reconfirmed by apoptosis and necrosis assay. The anticancer activity of ConA-CUR NPs was measured in ovarian cancer cells (SKOV-3) and the results revealed that the ConA-CUR NPs had better tumor cells decline activity than free curcumin. The nacked nanoparticles have no cytotoxicity against human ovarian carcinoma cells. Thus the developed functionalized nanoformulation could be a promising candidate in cancer therapy.Keywords: curcumin, curcumin-PHBHHx nanoparticles, concanavalin A, concanavalin A-curcumin PHBHHx nanoparticles, PHBHHx nanoparticles, ovarian cancer cell
Procedia PDF Downloads 4001461 A Review of Renewable Energy Conditions in Iran Country
Authors: Ehsan Atash Zaban, Mehdi Beyk
Abstract:
In recent years, concerns over the depletion of non-renewable fuels and environmental pollution have led countries around the world to look for alternative energy sources for these fuels. An energy source that can have the necessary reliability, be a suitable alternative to fossil fuels, be technologically achievable, comply with environmental standards to the maximum, and at the same time cause countries to meet domestic consumption for electricity production. Iran is one of the richest countries in the world in terms of various energy sources because, on the one hand, it has extensive sources of fossil and non-renewable fuels such as oil and gas, and on the other hand, it has great potential for renewable energy. In this paper, the potential of renewable energy in Iran, which includes solar, wind, geothermal, hydrogen technology, and biomass, has been reviewed and analyzed.Keywords: renewable energy, solar stations, wind, biomass, hydropower
Procedia PDF Downloads 911460 Cholinesterase Inhibitory Indole Alkaloids from the Bark of Rauvolfia reflexa
Authors: Mehran Fadaeinasab, Alireza Basiri, Yalda Kia, Hamed Karimian, Hapipah Mohd Ali, Vikneswaran Murugaiyah
Abstract:
Two new, rauvolfine C and 3- methyl-10,11-dimethoxyl-6- methoxycarbonyl- β- carboline, along with five known indole alkaloids, macusine B, vinorine, undulifoline, isoresrpiline and rescinnamine were isolated from the bark of Rauvolfia reflexa. All the compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 πM, except rauvolfine C that was inactive against acetylcholinesterase (AChE). Rescinnamine, a dual inhibitor was found to be the most potent inhibitor among the isolated alkaloids against both AChE and butyrylcholinesterase (BChE). Molecular docking revealed that rescinnamine interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding.Keywords: Rauvolfia reflexa, indole alkaloids, acetylcholinesterase, butyrylcholinesterase, molecular docking
Procedia PDF Downloads 5941459 Oxidation of Alcohols Types Using Nano-Graphene Oxide (NGO) as Heterogeneous Catalyst
Authors: Ali Gharib, Leila Vojdanifard, Nader Noroozi Pesyan, Mina Roshani
Abstract:
We describe an efficient method for oxidation of alcohols to related aldehydes and ketones by hydrogen peroxide as oxidizing agent, under reflux conditions. Nano-graphene oxide (NGO) as a heterogeneous catalyst was used and had their activity compared with other various catalysts. This catalyst was found to be an excellent catalyst for oxidation of alcohols. The effects of various parameters, including catalyst type, nature of the substituent in the alcohols and temperature, on the yield of the carboxylic acids were studied. Nano-graphene oxide was synthesized by the oxidation of graphite powders. This nanocatalyst was found to be highly efficient in this reaction and products were obtained in good to excellent yields. The recovered nano-catalyst was successfully reused for several runs without significant loss in its catalytic activity.Keywords: nano-graphene oxide, oxidation, aldehyde, ketone, catalyst
Procedia PDF Downloads 4261458 Designing a Refractive Index Gas Biosensor Exploiting Defects in Photonic Crystal Core-Shell Rods
Authors: Bilal Tebboub, AmelLabbani
Abstract:
This article introduces a compact sensor based on high-transmission, high-sensitivity two-dimensional photonic crystals. The photonic crystal consists of a square network of silicon rods in the air. The sensor is composed of two waveguide couplers and a microcavity designed for monitoring the percentage of hydrogen in the air and identifying gas types. Through the Finite-Difference Time-Domain (FDTD) method, we demonstrate that the sensor's resonance wavelength is contingent upon changes in the gas refractive index. We analyze transmission spectra, quality factors, and sensor sensitivity. The sensor exhibits a notable quality factor and a sensitivity value of 1374 nm/RIU. Notably, the sensor's compact structure occupies an area of 74.5 μm2, rendering it suitable for integrated optical circuits.Keywords: 2-D photonic crystal, sensitivity, F.D.T.D method, label-free biosensing
Procedia PDF Downloads 941457 Structural, Electronic and Optical Properties of LiₓNa1-ₓH for Hydrogen Storage
Authors: B. Bahloul
Abstract:
This study investigates the structural, electronic, and optical properties of LiH and NaH compounds, as well as their ternary mixed crystals LiₓNa1-ₓH, adopting a face-centered cubic structure with space group Fm-3m (number 225). The structural and electronic characteristics are examined using density functional theory (DFT), while empirical methods, specifically the modified Moss relation, are employed for analyzing optical properties. The exchange-correlation potential is determined through the generalized gradient approximation (PBEsol-GGA) within the density functional theory (DFT) framework, utilizing the projected augmented wave pseudopotentials (PAW) approach. The Quantum Espresso code is employed for conducting these calculations. The calculated lattice parameters at equilibrium volume and the bulk modulus for x=0 and x=1 exhibit good agreement with existing literature data. Additionally, the LiₓNa1-ₓH alloys are identified as having a direct band gap.Keywords: DFT, structural, electronic, optical properties
Procedia PDF Downloads 731456 Behavioral Study Circumferential and Longitudinal Cracks in a Steel Pipeline X65 and Repair Patch
Authors: Sadok Aboubakr
Abstract:
The mechanical behavior of cracks from several manufacturing defect in an oil pipeline, is characterized by the fact that defects'm taking several forms: circumferential, longitudinal and inclined crack that evolve over time. Increased lifetime of the constructions and in particular cylindrical tubes under internal pressure requires knowledge improving these defects during loading. From this study we simulated various forms of cracking and also their pipeline repair patch.Keywords: stress intensity factor, pressure, Young's modulus, Poisson's ratio, Shear modulus, Longueur du pipeline, the angle of crack, crack length
Procedia PDF Downloads 3621455 Improving the Aqueous Solubility of Taxol through Altering XLOGP3
Authors: Arianna Zhu, Thomas Bakupog
Abstract:
Taxol (generic name paclitaxel) is an antineoplastic drug used to treat breast, lung, and ovarian cancer. It performs exceptionally well against a wide variety of tumors, including B16 melanoma, L1210 and P388 leukemias, MX-1 mammary tumors, and CX-1 colon tumor xenografts. However, despite taxol’s efficacy in antitumor activity, its aqueous solubility is extremely poor, decreasing its bioavailability and making it difficult for the body to absorb. The objective of this study is to improve the solubility of taxol, thus increasing the bioavailability of the drug in preventing cancer. By modifying the structure of taxol, four novel taxol derivatives were created with improved solubilities. Two of the derivatives were given an additional hydrogen donor and acceptor and thus showed a pronounced positive change in solubility. The results of this work solve the issue of taxol’s inadequate solubility and show potential in increasing the absorption of the drug.Keywords: Taxol, Solubility, improving bioavailability, logP
Procedia PDF Downloads 691454 Analytical Investigation of Modeling and Simulation of Different Combinations of Sinusoidal Supplied Autotransformer under Linear Loading Conditions
Authors: M. Salih Taci, N. Tayebi, I. Bozkır
Abstract:
This paper investigates the operation of a sinusoidal supplied autotransformer on the different states of magnetic polarity of primary and secondary terminals for four different step-up and step-down analytical conditions. In this paper, a new analytical modeling and equations for dot-marked and polarity-based step-up and step-down autotransformer are presented. These models are validated by the simulation of current and voltage waveforms for each state. PSpice environment was used for simulation.Keywords: autotransformer modeling, autotransformer simulation, step-up autotransformer, step-down autotransformer, polarity
Procedia PDF Downloads 3201453 Numerical Simulation of Encased Composite Column Bases Subjected to Cyclic Loading
Authors: Eman Ismail, Adnan Masri
Abstract:
Energy dissipation in ductile moment frames occurs mainly through plastic hinge rotations in its members (beams and columns). Generally, plastic hinge locations are pre-determined and limited to the beam ends, where columns are designed to remain elastic in order to avoid premature instability (aka story mechanisms) with the exception of column bases, where a base is 'fixed' in order to provide higher stiffness and stability and to form a plastic hinge. Plastic hinging at steel column bases in ductile moment frames using conventional base connection details is accompanied by several complications (thicker and heavily stiffened connections, larger embedment depths, thicker foundation to accommodate anchor rod embedment, etc.). An encased composite base connection is proposed where a segment of the column beginning at the base up to a certain point along its height is encased in reinforced concrete with headed shear studs welded to the column flanges used to connect the column to the concrete encasement. When the connection is flexurally loaded, stresses are transferred to a reinforced concrete encasement through the headed shear studs, and thereby transferred to the foundation by reinforced concrete mechanics, and axial column forces are transferred through the base-plate assembly. Horizontal base reactions are expected to be transferred by the direct bearing of the outer and inner faces of the flanges; however, investigation of this mechanism is not within the scope of this research. The inelastic and cyclic behavior of the connection will be investigated where it will be subjected to reversed cyclic loading, and rotational ductility will be observed in cases of yielding mechanisms where yielding occurs as flexural yielding in the beam-column, shear yielding in headed studs, and flexural yielding of the reinforced concrete encasement. The findings of this research show that the connection is capable of achieving satisfactory levels of ductility in certain conditions given proper detailing and proportioning of elements.Keywords: seismic design, plastic mechanisms steel structure, moment frame, composite construction
Procedia PDF Downloads 1281452 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors
Authors: Darshna Sharma, Suban K. Sahoo
Abstract:
The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT
Procedia PDF Downloads 4031451 Non-Linear Finite Element Investigation on the Behavior of CFRP Strengthened Steel Square HSS Columns under Eccentric Loading
Authors: Tasnuba Binte Jamal, Khan Mahmud Amanat
Abstract:
Carbon Fiber-Reinforced Polymer (CFRP) composite materials have proven to have valuable properties and suitability to be used in the construction of new buildings and in upgrading the existing ones due to its effectiveness, ease of implementation and many more. In the present study, a numerical finite element investigation has been conducted using ANSYS 18.1 to study the behavior of square HSS AISC sections under eccentric compressive loading strengthened with CFRP materials. A three-dimensional finite element model for square HSS section using shell element was developed. Application of CFRP strengthening was incorporated in the finite element model by adding an additional layer of shell elements. Both material and geometric nonlinearities were incorporated in the model. The developed finite element model was applied to simulate experimental studies done by past researchers and it was found that good agreement exists between the current analysis and past experimental results, which established the acceptability and validity of the developed finite element model to carry out further investigation. Study was then focused on some selected non-compact AISC square HSS columns and the effects of number of CFRP layers, amount of eccentricities and cross-sectional geometry on the strength gain of those columns were observed. Load was applied at a distance equal to the column dimension and twice that of column dimension. It was observed that CFRP strengthening is comparatively effective for smaller eccentricities. For medium sized sections, strengthening tends to be effective at smaller eccentricities as well. For relatively large AISC square HSS columns, with increasing number of CFRP layers (from 1 to 3 layers) the gain in strength is approximately 1 to 38% to that of unstrengthened section for smaller eccentricities and slenderness ratio ranging from 27 to 54. For medium sized square HSS sections, effectiveness of CFRP strengthening increases approximately by about 12 to 162%. The findings of the present study provide a better understanding of the behavior of HSS sections strengthened with CFRP subjected to eccentric compressive load.Keywords: CFRP strengthening, eccentricity, finite element model, square hollow section
Procedia PDF Downloads 1441450 Fatigue Analysis of Spread Mooring Line
Authors: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh
Abstract:
Offshore floating structure under the various environmental conditions maintains a fixed position by mooring system. Environmental conditions, vessel motions and mooring loads are applied to mooring lines as the dynamic tension. Because global responses of mooring system in deep water are specified as wave frequency and low frequency response, they should be calculated from the time-domain analysis due to non-linear dynamic characteristics. To take into account all mooring loads, environmental conditions, added mass and damping terms at each time step, a lot of computation time and capacities are required. Thus, under the premise that reliable fatigue damage could be derived through reasonable analysis method, it is necessary to reduce the analysis cases through the sensitivity studies and appropriate assumptions. In this paper, effects in fatigue are studied for spread mooring system connected with oil FPSO which is positioned in deep water of West Africa offshore. The target FPSO with two Mbbls storage has 16 spread mooring lines (4 bundles x 4 lines). The various sensitivity studies are performed for environmental loads, type of responses, vessel offsets, mooring position, loading conditions and riser behavior. Each parameter applied to the sensitivity studies is investigated from the effects of fatigue damage through fatigue analysis. Based on the sensitivity studies, the following results are presented: Wave loads are more dominant in terms of fatigue than other environment conditions. Wave frequency response causes the higher fatigue damage than low frequency response. The larger vessel offset increases the mean tension and so it results in the increased fatigue damage. The external line of each bundle shows the highest fatigue damage by the governed vessel pitch motion due to swell wave conditions. Among three kinds of loading conditions, ballast condition has the highest fatigue damage due to higher tension. The riser damping occurred by riser behavior tends to reduce the fatigue damage. The various analysis results obtained from these sensitivity studies can be used for a simplified fatigue analysis of spread mooring line as the reference.Keywords: mooring system, fatigue analysis, time domain, non-linear dynamic characteristics
Procedia PDF Downloads 3341449 Experimental Investigation of Bituminous Roads with Waste Plastic
Authors: Arjita Biswas, Sandeep Potnis
Abstract:
Plastic roads (bituminous roads using waste plastic in the wearing course ) have now become familiar in the Road Construction Sector in India. With the Indian Road Congress Code (IRC SP: 98 -2013), many agencies are coming forward to implement Plastic Roads in India. This paper discuss and compare about the various properties of bituminous mix with 8% waste plastic and normal bituminous mix. This paper also signifies the performance of both the types of roads after 4 months of age under loading conditions. Experiments were carried out to evaluate its performance. The result shows improved performance of plastic roads.Keywords: bituminous roads, experiments, performance, plastic roads
Procedia PDF Downloads 2191448 Nanocrystalline Na0.1V2O5.nH2Oxerogel Thin Film for Gas Sensing
Authors: M. S. Al-Assiri, M. M. El-Desoky, A. A. Bahgat
Abstract:
Nanocrystalline thin film of Na0.1V2O5.nH2O xerogel obtained by sol-gel synthesis was used as a gas sensor. Gas sensing properties of different gases such as hydrogen, petroleum and humidity were investigated. Applying XRD and TEM the size of the nanocrystals is found to be 7.5 nm. SEM shows a highly porous structure with submicron meter-sized voids present throughout the sample. FTIR measurement shows different chemical groups identifying the obtained series of gels. The sample was n-type semiconductor according to the thermoelectric power and electrical conductivity. It can be seen that the sensor response curves from 130°C to 150°C show a rapid increase in sensitivity for all types of gas injection, low response values for heating period and the rapid high response values for cooling period. This result may suggest that this material is able to act as gas sensor during the heating and cooling process.Keywords: sol-gel, thermoelectric power, XRD, TEM, gas sensing
Procedia PDF Downloads 3031447 On the Market Prospects of Long-Term Electricity Storages
Authors: Reinhard Haas, Amela Ajanovic
Abstract:
In recent years especially electricity generation from intermittent sources like wind and solar has increased remarkably. To balance electricity supply over time calls for storages has been launched. Because intermittency also exists over longer periods – months, years, especially the need for long-term electricity storages is discussed. The major conclusions of our analysis are: (i) Despite many calls for a prophylactic construction of new storage capacities with respect to all centralized long-term storage technologies the future perspectives will be much less promising than currently indicated in several papers and discussions; (ii) new long term hydro storages will not become economically attractive in general in the next decades; however, daily storages will remain the cheapest option and the most likely to be competitive; (iii) For PtG-technologies it will also become very hard to compete in the electricity markets despite a high technological learning potential. Yet, for hydrogen and methane there are prospects for use in the transport sector.Keywords: storages, electricity markets, power-to-gas, hydro pump storages, economics
Procedia PDF Downloads 4851446 The Effect of Stent Coating on the Stent Flexibility: Comparison of Covered Stent and Bare Metal Stent
Authors: Keping Zuo, Foad Kabinejadian, Gideon Praveen Kumar Vijayakumar, Fangsen Cui, Pei Ho, Hwa Liang Leo
Abstract:
Carotid artery stenting (CAS) is the standard procedure for patients with severe carotid stenosis at high risk for carotid endarterectomy (CAE). A major drawback of CAS is the higher incidence of procedure-related stroke compared with traditional open surgical treatment for carotid stenosis - CEA, even with the use of the embolic protection devices (EPD). As the currently available bare metal stents cannot address this problem, our research group developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet maintaining the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid atherosclerotic stenosis. The purpose of this study is to evaluate the effect of membrane coating on the stent flexibility in order to improve the clinical performance of our novel covered stents. A total of 21 stents were evaluated in this study: 15 self expanding bare nitinol stents and 6 PTFE-covered stents. 10 of the bare stents were coated with 11%, 16% and 22% Polyurethane(PU), 4%, 6.25% and 11% EE, as well as 22% PU plus 5 μm Parylene. Different laser cutting designs were performed on 4 of the PTFE covert stents. All the stents, with or without the covered membrane, were subjected to a three-point flexural test. The stents were placed on two supports that are 30 mm apart, and the actuator is applying a force in the exact middle of the two supports with a loading pin with radius 2.5 mm. The loading pin displacement change, the force and the variation in stent shape were recorded for analysis. The flexibility of the stents was evaluated by the lumen area preservation at three displacement bending levels: 5mm, 7mm, and 10mm. All the lumen areas in all stents decreased with the increase of the displacement from 0 to 10 mm. The bare stents were able to maintain 0.864 ± 0.015, 0.740 ± 0.025 and 0.597 ± 0.031of original lumen area at 5 mm, 7 mm and 10mm displacement respectively. For covered stents, the stents with EE coating membrane showed the best lumen area preservation (0.839 ± 0.005, 0.7334 ± 0.043 and 0.559 ± 0.014), whereas, the stents with PU and Parylene coating were only 0.662, 0.439 and 0.305. Bending stiffness was also calculated and compared. These results provided optimal material information and it was crucial for enhancing clinical performance of our novel covered stents.Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain
Procedia PDF Downloads 2951445 Microbial Activity and Greenhouse Gas (GHG) Emissions in Recovery Process in a Grassland of China
Authors: Qiushi Ning
Abstract:
The nitrogen (N) is an important limiting factor of various ecosystems, and the N deposition rate is increasing unprecedentedly due to anthropogenic activities. The N deposition altered the microbial growth and activity, and microbial mediated N cycling through changing soil pH, the availability of N and carbon (C). The CO2, CH4 and N2O are important greenhouse gas which threaten the sustainability and function of the ecosystem. With the prolonged and increasing N enrichment, the soil acidification and C limitation will be aggravated, and the microbial biomass will be further declined. The soil acidification and lack of C induced by N addition are argued as two important factors regulating the microbial activity and growth, and the studies combined soil acidification with lack of C on microbial community are scarce. In order to restore the ecosystem affected by chronic N loading, we determined the responses of microbial activity and GHG emssions to lime and glucose (control, 1‰ lime, 2‰ lime, glucose, 1‰ lime×glucose and 2‰ lime×glucose) addition which was used to alleviate the soil acidification and supply C resource into soils with N addition rates 0-50 g N m–2yr–1. The results showed no significant responses of soil respiration and microbial biomass (MBC and MBN) to lime addition, however, the glucose substantially improved the soil respiration and microbial biomass (MBC and MBN); the cumulative CO2 emission and microbial biomass of lime×glucose treatments were not significantly higher than those of only glucose treatment. The glucose and lime×glucose treatments reduced the net mineralization and nitrification rate, due to inspired microbial growth via C supply incorporating more inorganic N to the biomass, and mineralization of organic N was relatively reduced. The glucose addition also increased the CH4 and N2O emissions, CH4 emissions was regulated mainly by C resource as a substrate for methanogen. However, the N2O emissions were regulated by both C resources and soil pH, the C was important energy and the increased soil pH could benefit the nitrifiers and denitrifiers which were primary producers of N2O. The soil respiration and N2O emissions increased with increasing N addition rates in all glucose treatments, as the external C resource improved microbial N utilization. Compared with alleviated soil acidification, the improved availability of C substantially increased microbial activity, therefore, the C should be the main limiting factor in long-term N loading soils. The most important, when we use the organic C fertilization to improve the production of the ecosystems, the GHG emissions and consequent warming potentials should be carefully considered.Keywords: acidification and C limitation, greenhouse gas emission, microbial activity, N deposition
Procedia PDF Downloads 307