Search results for: hip fracture rehabilitation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1397

Search results for: hip fracture rehabilitation

377 Quality of Life of Elderly People in Urban West Bengal, India

Authors: Debalina Datta, Pratyaypratim Datta, Kunal Kanti Majumdar

Abstract:

Introduction: In India 8.1% of total population is elderly. The standard of living and meaningfulness of life are indirectly measured by assessing quality of life of elderly. So, it is important to improve quality of life. Quality of life is an individual’s understanding of his/ her life situation with respect to his/ her values and cultural context as well as in relation to his/her goals, expectations and concerns. The present study was planned to assess the quality of life of geriatric people in urban West Bengal, India. Materials and methods: It was a community based cross sectional observational study conducted among people aged 60 years and above in Kolkata and Sonarpur region of West Bengal, India. Data collection was done by house to house visit using Quality of Life- BREF questionnaire (WHOQOL-BERF) developed by WHO. Analysis of quality of life of physical, psychological, social relationship and environmental domain was done using SPSS (version 16.0). Results: Transformed score (0-100 scale) was used for each domain. Mean of physical, psychological, social relationship and environmental domain were found to be 42.25, 40.84, 39.62 and 48.36 respectively. There was no significant difference in score between Kolkata and Sonarpur people in any domain except social relationship domain, where people living at Sonarpur scored significantly better. Conclusion: Rehabilitation of old age people can be done by improving their quality of life. Social interaction with people of all ages, allowing them to take important family decision, engaging them in different social activities can help a lot.

Keywords: quality of life, elderly, Urban West Bengal, India

Procedia PDF Downloads 599
376 Surface Deformation Studies in South of Johor Using the Integration of InSAR and Resistivity Methods

Authors: Sirajo Abubakar, Ismail Ahmad Abir, Muhammad Sabiu Bala, Muhammad Mustapha Adejo, Aravind Shanmugaveloo

Abstract:

Over the years, land subsidence has been a serious threat mostly to urban areas. Land subsidence is the sudden sinking or gradual downward settling of the ground’s surface with little or no horizontal motion. In most areas, land subsidence is a slow process that covers a large area; therefore, it is sometimes left unnoticed. South of Johor is the area of interest for this project because it is going through rapid urbanization. The objective of this research is to evaluate and identify potential deformations in the south of Johor using integrated remote sensing and 2D resistivity methods. Synthetic aperture radar interferometry (InSAR) which is a remote sensing technique has the potential to map coherent displacements at centimeter to millimeter resolutions. Persistent scatterer interferometry (PSI) stacking technique was applied to Sentinel-1 data to detect the earth deformation in the study area. A dipole-dipole configuration resistivity profiling was conducted in three areas to determine the subsurface features in that area. This subsurface features interpreted were then correlated with the remote sensing technique to predict the possible causes of subsidence and uplifts in the south of Johor. Based on the results obtained, West Johor Bahru (0.63mm/year) and Ulu Tiram (1.61mm/year) are going through uplift due to possible geological uplift. On the other end, East Johor Bahru (-0.26mm/year) and Senai (-1.16mm/year) undergo subsidence due to possible fracture and granitic boulders loading. Land subsidence must be taken seriously as it can cause serious damages to infrastructures and human life. Monitoring land subsidence and taking preventive actions must be done to prevent any disasters.

Keywords: interferometric synthetic aperture radar, persistent scatter, minimum spanning tree, resistivity, subsidence

Procedia PDF Downloads 140
375 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project

Authors: Kanagarajah Ravishankar

Abstract:

This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.

Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design

Procedia PDF Downloads 131
374 Design and Development of Optical Sensor Based Ground Reaction Force Measurement Platform for GAIT and Geriatric Studies

Authors: K. Chethana, A. S. Guru Prasad, S. N. Omkar, B. Vadiraj, S. Asokan

Abstract:

This paper describes an ab-initio design, development and calibration results of an Optical Sensor Ground Reaction Force Measurement Platform (OSGRFP) for gait and geriatric studies. The developed system employs an array of FBG sensors to measure the respective ground reaction forces from all three axes (X, Y and Z), which are perpendicular to each other. The novelty of this work is two folded. One is in its uniqueness to resolve the tri axial resultant forces during the stance in to the respective pure axis loads and the other is the applicability of inherently advantageous FBG sensors which are most suitable for biomechanical instrumentation. To validate the response of the FBG sensors installed in OSGRFP and to measure the cross sensitivity of the force applied in other directions, load sensors with indicators are used. Further in this work, relevant mathematical formulations are presented for extracting respective ground reaction forces from wavelength shifts/strain of FBG sensors on the OSGRFP. The result of this device has implications in understanding the foot function, identifying issues in gait cycle and measuring discrepancies between left and right foot. The device also provides a method to quantify and compare relative postural stability of different subjects under test, which has implications in post surgical rehabilitation, geriatrics and optimizing training protocols for sports personnel.

Keywords: balance and stability, gait analysis, FBG applications, optical sensor ground reaction force platform

Procedia PDF Downloads 399
373 Chronic Left Sciatic Nerve Injury and Subsequent Complications Following Delayed Hip Dislocation Treatment in a 34-Year Old Male: A Case Report

Authors: Hamida Memon, Muhammad Sanan

Abstract:

A 34-year-old male with no prior health issues presented with a wound in his left leg exhibiting active pus discharge, intense inflammation, pain radiating from the buttocks to the knee, foot drop, and skin darkening. Four years prior, he sustained an untreated dislocation of the hip joint and acetabulum from a road traffic accident. Initial nerve conduction studies (NCS) and electromyography (EMG) revealed severe axonotomesis of the left sciatic nerve and reduced compound muscle action potential in the left common peroneal nerve. Despite normal venous flow, edema and cellulitis were noted. Follow-up NCS/EMG in 2022 showed improvement, but in 2023, the patient experienced recurrent infection and underwent surgical intervention with tissue culture. Postoperative care included antibiotics and pain management. NCS/EMG in 2024 indicated decreased nerve amplitudes and conduction velocities, consistent with moderate axonotmesis and ongoing recovery, alongside incidental right S1 radiculopathy. General lab tests and abdominal imaging were normal. The patient was treated with Pregabalin and Neurobion for neuropathic pain and nerve support and is currently under observation by a tertiary sector hospital for treatment. This case underscores the critical importance of prompt treatment for hip dislocations to prevent long-term complications such as neuropathy and avascular necrosis. Delays in treatment significantly increase the risk of severe outcomes, highlighting the need for timely intervention. Overall, the case illustrates the challenges of managing complex nerve injuries and the importance of comprehensive care for optimal recovery.

Keywords: sciatic nerve neuropathy, hip dislocation, acetabular fracture, radiculopathy

Procedia PDF Downloads 9
372 Ground-Structure Interaction Analysis of Aged Tunnels

Authors: Behrang Dadfar, Hossein Bidhendi, Jimmy Susetyo, John Paul Abbatangelo

Abstract:

Finding structural demand under various conditions that a structure may experience during its service life is an important step towards structural life-cycle analysis. In this paper, structural demand for the precast concrete tunnel lining (PCTL) segments of Toronto’s 60-year-old subway tunnels is investigated. Numerical modelling was conducted using FLAC3D, a finite difference-based software capable of simulating ground-structure interaction and ground material’s flow in three dimensions. The specific structural details of the segmental tunnel lining, such as the convex shape of the PCTL segments at radial joints and the PCTL segment pockets, were considered in the numerical modelling. Also, the model was developed in a way to accommodate the flexibility required for the simulation of various deterioration scenarios, shapes, and patterns that have been observed over more than 20 years. The soil behavior was simulated by using plastic-hardening constitutive model of FLAC3D. The effect of the depth of the tunnel, the coefficient of lateral earth pressure as well as the patterns of deterioration of the segments were studied. The structural capacity under various deterioration patterns and the existing loading conditions was evaluated using axial-flexural interaction curves that were developed for each deterioration pattern. The results were used to provide recommendations for the next phase of tunnel lining rehabilitation program.

Keywords: precast concrete tunnel lining, ground-structure interaction, numerical modelling, deterioration, tunnels

Procedia PDF Downloads 157
371 Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties

Authors: L. Gyansah, Yanfang Shen, Jiqiang Wang, Tianying Xiong

Abstract:

SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed.

Keywords: cold spraying, hot deformation, deformation temperature, thermomechancal properties, SiC/Al composite

Procedia PDF Downloads 99
370 Electromyographic Analysis of Trunk Muscle Activity of Healthy Individuals While Catching a Ball on Three Different Seating Surfaces

Authors: Hanan H. ALQahtani, Karen Jones

Abstract:

Catching a ball during sitting is a functional exercise commonly used in rehabilitation to enhance trunk muscle activity. To progress this exercise, physiotherapists incorporate a Swiss ball or change seat height. However, no study has assessed the effect of different seating surfaces on trunk muscle activity while catching a ball. Objective: To investigate the effect of catching a ball during sitting on a Swiss ball, a low seat and a high seat on trunk muscle activity. Method: A repeated-measures, counterbalanced design was used. A total of 26 healthy participants (15 female and 11 male) performed three repetitions of catching a ball on each seating surface. Using surface electromyography (sEMG), the activity of the bilateral transversus abdominis/internal oblique (TrA/IO), rectus abdominis (RA), erector spinae (ES) and lumbar multifidus (MF) was recorded. Trunk muscle activity was normalized using maximum voluntary isometric contraction and analyzed. Statistical significance was set at p ≤ .05. Results: No significant differences were observed in the activity of RA, TrA/IO, ES or MF between a low seat and a Swiss ball. However, the activity of the right and left ES on a low seat was significantly greater than on a high seat (p = .017 and p = .017, respectively). Conversely, the activity of the right and left RA on a high seat was significantly greater than on a low seat (p = .007 and p = .004, respectively). Conclusion: This study suggests that replacing a low seat with a Swiss ball while catching a ball is insufficient to increase trunk muscle activity, whereas changing the seat height could induce different trunk muscle activities. However, research conducted on patients is needed before translating these results into clinical settings.

Keywords: catching, electromyography, seating, trunk

Procedia PDF Downloads 281
369 Transperineal Repair Is Ideal for the Management of Rectocele with Faecal Incontinence

Authors: Tia Morosin, Marie Shella De Robles

Abstract:

Rectocele may be associated with symptoms of both obstructed defecation and faecal incontinence. Currently, numerous operative techniques exist to treat patients with rectocele; however, no single technique has emerged as the optimal approach in patients with post-partum faecal incontinence. The purpose of this study was to evaluate the clinical outcome in a consecutive series of patients who underwent transperineal repair of rectocele for patients presenting with faecal incontinence as the predominant symptom. Twenty-three consecutive patients from April 2000 to July 2015 with symptomatic rectocele underwent transperineal repair by a single surgeon. All patients had a history of vaginal delivery, with or without evidence of associated anal sphincter injury at the time. The median age of the cohort was 53 years (range 21 to 90 years). The median operating time and length of hospital stay were 2 hours and 7 days, respectively. Two patients developed urinary retention post-operatively, which required temporary bladder catheterization. One patient had wound dehiscence, which was managed by absorbent dressing applied by the patient and her carer. There was no operative mortality. In all patients with rectocele, there was a concomitant anal sphincter disruption. All patients had satisfactory improvement with regard to faecal incontinence on follow-up. This study suggests this method provides excellent anatomic and physiologic results with minimal morbidity. However, because none of the patients gained full continence postoperatively, pelvic floor rehabilitation might be also needed to achieve better sphincter function in patients with incontinence.

Keywords: anal sphincter defect, faecal incontinence, rectocele, transperineal repair

Procedia PDF Downloads 124
368 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel

Authors: Aqsa Jamil, Tamura Hiroshi, Katsuchi Hiroshi, Wang Jiaqi

Abstract:

The yield point represents the upper limit of forces which can be applied to a specimen without causing any permanent deformation. After yielding, the behavior of the specimen suddenly changes, including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of a thermography camera. The yield point of specimens was estimated with the help of temperature dip, which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing a repeatability analysis. The effects of temperature imperfection and light source have been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of the thermographic technique.

Keywords: signal to noise ratio, thermoelastic effect, thermography, yield point

Procedia PDF Downloads 100
367 Effect of Hybrid Fibers on Mechanical Properties in Autoclaved Aerated Concrete

Authors: B. Vijay Antony Raj, Umarani Gunasekaran, R. Thiru Kumara Raja Vallaban

Abstract:

Fibrous autoclaved aerated concrete (FAAC) is concrete containing fibrous material in it which helps to increase its structural integrity when compared to that of convention autoclaved aerated concrete (CAAC). These short discrete fibers are uniformly distributed and randomly oriented, which enhances the bond strength within the aerated concrete matrix. Conventional red-clay bricks create larger impact to the environment due to red soil depletion and it also consumes large amount to time for construction. Whereas, AAC are larger in size, lighter in weight and it is environmentally friendly in nature and hence it is a viable replacement for red-clay bricks. Internal micro cracks and corner cracks are the only disadvantages of conventional autoclaved aerated concrete, to resolve this particular issue it is preferable to make use of fibers in it.These fibers are bonded together within the matrix and they induce the aerated concrete to withstand considerable stresses, especially during the post cracking stage. Hence, FAAC has the capability of enhancing the mechanical properties and energy absorption capacity of CAAC. In this research work, individual fibers like glass, nylon, polyester and polypropylene are used they generally reduce the brittle fracture of AAC.To study the fibre’s surface topography and composition, SEM analysis is performed and then to determine the composition of a specimen as a whole as well as the composition of individual components EDAX mapping is carried out and then an experimental approach was performed to determine the effect of hybrid (multiple) fibres at various dosage (0.5%, 1%, 1.5%) and curing temperature of 180-2000 C is maintained to determine the mechanical properties of autoclaved aerated concrete. As an analytical part, the outcome experimental results is compared with fuzzy logic using MATLAB.

Keywords: fiberous AAC, crack control, energy absorption, mechanical properies, SEM, EDAX, MATLAB

Procedia PDF Downloads 265
366 Exploring Factors Associated with Substance Use among Pregnant Women in a Cape Town Community

Authors: Mutshinye Manguvhewa, Maria Florence, Mansoo Yu, Elize Koch, Kamal Kamaloodien

Abstract:

Substance use among pregnant women is a perennial problem in the Western Cape Province of South Africa. There are many influential factors are associated with substance use among women of childbearing age. The study explored factors associated with substance use among pregnant women using a qualitative research design and the bio-ecological theoretical framework to explore and guide the researcher throughout the study. Participants were selected using purposive sampling. Only participants accessed from the Department of Social Development meeting the inclusion criteria of the study were interviewed using semi structured interviews. Immediate referral for psychological intervention during the interview was available for participants who needed it. Braun and Clarke's six phases of thematic analysis were utilised to analyse the data. The study adheres to ethical guidelines for the participants' protection. Participants were informed about the study before the initiation of the interviews and the details of their voluntary participation were explained. The key findings from this study illustrate that socio-cultural factors, personal factors, emotional response and intimate relationships are the major contributing factors to substance use among pregnant women in this sample. The results outline the preventative measures that pregnant women implement. Lastly, the study reveals the positive and negative perceptions of substance use programmes that participants share. Some of the study findings are similar to the existing literature and some of the findings differed. Recommendations emanating from the study include that the stakeholders, rehabilitation centres, Department of Health and future researchers should act proactively against substance use during pregnancy.

Keywords: substance addiction, antenatal care, pregnancy, substance use

Procedia PDF Downloads 117
365 Seismic Inversion for Geothermal Exploration

Authors: E. N. Masri, E. Takács

Abstract:

Amplitude Versus Offset (AVO) and simultaneous model-based impedance inversion techniques have not been utilized for geothermal exploration commonly; however, some recent publications called the attention that they can be very useful in the geothermal investigations. In this study, we present rock physical attributes obtained from 3D pre-stack seismic data and well logs collected in a study area of the NW part of Pannonian Basin where the geothermal reservoir is located in the fractured zones of Triassic basement and it was hit by three productive-injection well pairs. The holes were planned very successfully based on the conventional 3D migrated stack volume prior to this study. Subsequently, the available geophysical-geological datasets provided a great opportunity to test modern inversion procedures in the same area. In this presentation, we provide a summary of the theory and application of the most promising seismic inversion techniques from the viewpoint of geothermal exploration. We demonstrate P- and S-wave impedance, as well as the velocity (Vp and Vs), the density, and the Vp/Vs ratio attribute volumes calculated from the seismic and well-logging data sets. After a detailed discussion, we conclude that P-wave impedance and Vp/Vp ratio are the most helpful parameters for lithology discrimination in the study area. They detect the hot water saturated fracture zone very well thus they can be very useful in mapping the investigated reservoir. Integrated interpretation of all the obtained rock-physical parameters is essential. We are extending the above discussed pre-stack seismic tools by studying the possibilities of Elastic Impedance Inversion (EII) for geothermal exploration. That procedure provides two other useful rock-physical properties, the compressibility and the rigidity (Lamé parameters). Results of those newly created elastic parameters will also be demonstrated in the presentation. Geothermal extraction is of great interest nowadays; and we can adopt several methods have been successfully applied in the hydrocarbon exploration for decades to discover new reservoirs and reduce drilling risk and cost.

Keywords: fractured zone, seismic, well-logging, inversion

Procedia PDF Downloads 120
364 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs

Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao

Abstract:

In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.

Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs

Procedia PDF Downloads 231
363 Excision and Reconstruction of a Hypertrophic and Functional Bleb with Bovine Pericardium (Tutopatch®) and Amniotic Membrane: A Case Report

Authors: Blanca Fatela Cantillo, Silvia Iglesias Cerrato, Guadalupe Garrido Ceca

Abstract:

Purpose: Bleb dysfunction is a late complication following glaucoma filtration surgery. We describe our surgical technique for excision and reconstruction of a hypertrophic bleb complication using bovine pericardium patch graft (Tutopatch®) and amniotic membrane. Material and methods: The case report presents a hypertrophic bleb over the cornea with good intraocular pressure control. The hanging bleb without leak caused dysesthesia and high irregular astigmatism. Bleb reconstruction involved the excision of corneal fibrous material and avascular conjunctiva, preserving the original scleral and tennon. Bovine pericardium patch graft (Tutopatch®) was sited over these with fixed sutures, reinforcing the underlying scleral, and the conjunctiva advanced. The superior epithelium corneal defect was covered using an amniotic membrane. Conclusion: Repair of bleb dysfunction with varied techniques has been reported, including conjunctival advancement, use of scleral patch graft, dural patch graft, or pericardium. Additional use of amniotic membrane promotes epithelialization and exhibits anti-fibrotic and anti-inflammatory features. Reconstruction with bovine pericardium patch graft and amniotic membrane resulted in pain relief, visual rehabilitation, and good aesthetic results, with preservation of bleb function.

Keywords: reconstruction, hypertrophic bleb, bovine pericardium, amniotic membrane, dysesthesia of the bleb

Procedia PDF Downloads 71
362 Test-Retest Agreement, Random Measurement Error and Practice Effect of the Continuous Performance Test-Identical Pairs for Patients with Schizophrenia

Authors: Kuan-Wei Chen, Chien-Wei Chen, Tai-Ling Chang, Nan-Cheng Chen, Ching-Lin Hsieh, Gong-Hong Lin

Abstract:

Background and Purposes: Deficits in sustained attention are common in patients with schizophrenia. Such impairment can limit patients to effectively execute daily activities and affect the efficacy of rehabilitation. The aims of this study were to examine the test-retest agreement, random measurement error, and practice effect of the Continuous Performance Test-Identical Pairs (CPT-IP) (a commonly used sustained attention test) in patients with schizophrenia. The results can provide empirical evidence for clinicians and researchers to apply a sustained attention test with sound psychometric properties in schizophrenia patients. Methods: We recruited patients with chronic schizophrenia to be assessed twice with 1 week interval using CPT-IP. The intra-class correlation coefficient (ICC) was used to examine the test-retest agreement. The percentage of minimal detectable change (MDC%) was used to examine the random measurement error. Moreover, the standardized response mean (SRM) was used to examine the practice effect. Results: A total of 56 patients participated in this study. Our results showed that the ICC was 0.82, MDC% was 47.4%, and SRMs were 0.36 for the CPT-IP. Conclusion: Our results indicate that CPT-IP has acceptable test-retests agreement, substantial random measurement error, and small practice effect in patients with schizophrenia. Therefore, to avoid overestimating patients’ changes in sustained attention, we suggest that clinicians interpret the change scores of CPT-IP conservatively in their routine repeated assessments.

Keywords: schizophrenia, sustained attention, CPT-IP, reliability

Procedia PDF Downloads 297
361 The Effect of Agricultural Waste as a Filler in Fibre Cement Board Reinforced with Natural Cellulosic Fibres

Authors: Anuoluwapo S. Taiwo, David S. Ayre, Morteza Khorami, Sameer S. Rahatekar

Abstract:

This investigation aims to characterize the effect of Corn Cob (CC), an agricultural waste, for potential use as a filler material, reducing cement in natural fibre-reinforced cement composite boards used for building applications in low-cost housing estates in developing countries. The corn cob is readily and abundantly available in many West African States. However, this agricultural waste product has not been put to any effective use. Hence, the objective of the current research is to convert this massive agro-waste resource into a potential material for use as filler materials reducing cement contents in fibre-cement board production. Kraft pulp fibre-reinforced cement composite boards were developed with the incorporation of the corn cob powder at varying percentages of 1 – 4% as filler materials to reduce the cement content, using a laboratory-simulated vacuum de-watering process. The mechanical properties of the developed cement boards were characterized through a three-point bending test, while the fractured morphology of the cement boards was examined through a Scanning Electron Microscope (SEM). Results revealed that the flexural strength of the composite board improved significantly with an optimum enhancement of 39% when compared to the reference sample without corn cob replacement, however, the flexural behaviour (ductility) of the composite board was slightly affected by the addition of the corn cob powder at higher percentage. SEM observation of the fractured surfaces revealed good bonding at the fibre-matrix interface as well as a ductile-to-brittle fracture mechanism. Overall, the composite board incorporated with 2% corn cob powder as filler materials had the optimum properties which satisfied the minimum requirements of relevant standards for fibre cement flat sheets.

Keywords: agricultural waste, building applications, fibre-cement board, kraft pulp fibre, sustainability

Procedia PDF Downloads 87
360 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model

Procedia PDF Downloads 451
359 Improvement of the Geometric of Dental Bridge Framework through Automatic Program

Authors: Rong-Yang Lai, Jia-Yu Wu, Chih-Han Chang, Yung-Chung Chen

Abstract:

The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure.

Keywords: dental bridge, finite element analysis, framework, automatic program

Procedia PDF Downloads 276
358 Formulation Development, Process Optimization and Comparative study of Poorly Compressible Drugs Ibuprofen, Acetaminophen Using Direct Compression and Top Spray Granulation Technique

Authors: Abhishek Pandey

Abstract:

Ibuprofen and Acetaminophen is widely used as prescription & non-prescription medicine. Ibuprofen mainly used in the treatment of mild to moderate pain related to headache, migraine, postoperative condition and in the management of spondylitis, osteoarthritis and rheumatoid arthritis. Acetaminophen is used as an analgesic and antipyretic drug. Ibuprofen having high tendency of sticking to punches of tablet punching machine while Acetaminophen is not ordinarily compressible to tablet formulation because Acetaminophen crystals are very hard and brittle in nature and fracture very easily when compressed producing capping and laminating tablet defects therefore wet granulation method is used to make them compressible. The aim of study was to prepare Ibuprofen and Acetaminophen tablets by direct compression and top spray granulation technique. In this Investigation tablets were prepared by using directly compressible grade excipients. Dibasic calcium phosphate, lactose anhydrous (DCL21), microcrystalline cellulose (Avicel PH 101). In order to obtain best or optimized formulation, nine different formulations were generated among them batch F7, F8, F9 shows good results and within the acceptable limit. Formulation (F7) selected as optimize product on the basis of dissolution study. Furtherly, directly compressible granules of both drugs were prepared by using top spray granulation technique in fluidized bed processor equipment and compressed .In order to obtain best product process optimization was carried out by performing four trials in which various parameters like inlet air temperature, spray rate, peristaltic pump rpm, % LOD, properties of granules, blending time and hardness were optimized. Batch T3 coined as optimized batch on the basis physical & chemical evaluation. Finally formulations prepared by both techniques were compared.

Keywords: direct compression, top spray granulation, process optimization, blending time

Procedia PDF Downloads 355
357 Associations between Metabolic Syndrome and Bone Mineral Density and Trabecular Bone Score in Postmenopausal Women with Non-Vertebral Fractures

Authors: Vladyslav Povoroznyuk, Larysa Martynyuk, Iryna Syzonenko, Liliya Martynyuk

Abstract:

Medical, social, and economic relevance of osteoporosis is caused by reducing quality of life, increasing disability and mortality of the patients as a result of fractures due to the low-energy trauma. This study is aimed to examine the associations of metabolic syndrome components, bone mineral density (BMD) and trabecular bone score (TBS) in menopausal women with non-vertebral fractures. 1161 menopausal women aged 50-79 year-old were examined and divided into three groups: A included 419 women with increased body weight (BMI - 25.0-29.9 kg/m2), B – 442 females with obesity (BMI >29.9 kg/m2)i and C – 300 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). BMD of lumbar spine (L1-L4), femoral neck, total body and forearm was investigated with usage of dual-energy X-ray absorptiometry. The bone quality indexes were measured according to Med-Imaps installation. All analyses were performed using Statistical Package 6.0. BMD of lumbar spine (L1-L4), femoral neck, total body, and ultradistal radius was significant higher in women with obesity and metabolic syndrome compared to the pre-obese ones (p<0.001). TBS was significantly higher in women with increased body weight compared to obese and metabolic syndrome patients. Analysis showed significant positive correlation between waist circumference, triglycerides level and BMD of lumbar spine and femur. Significant negative association between serum HDL level and BMD of investigated sites was established. The TBS (L1-L4) indexes positively correlated with HDL (high-density lipoprotein) level. Despite the fact that BMD indexes were better in women with metabolic syndrome, the frequency of non-vertebral fractures was significantly higher in this group of patients.

Keywords: bone mineral density, trabecular bone score, metabolic syndrome, fracture

Procedia PDF Downloads 199
356 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation

Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi

Abstract:

For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.

Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)

Procedia PDF Downloads 253
355 Effects of Progressive Resistive Exercise on Isometric Strength of Shoulder Extensor and Abductor Muscles in Adult Hemiplegic

Authors: S. Abbasi, M. R. Hadian, M. Abdolvahab, M. Jalili, S. H. Jalaei

Abstract:

Background: Rehabilitation treatments have significant role in reducing the disabilities of Cerebro Vascular Accident (CVA). Due to great role of upper limb in the function of individuals particularly in Activity of Daily Living and the effect of stability of shoulder girdle on hand function, the aim of this study was to study the effects of Progressive Resistive Exercise on shoulder extensor and abductor muscles isometric strengths in adult hemiplegic. Methods: 17 adult hemiplegics patients (50-70 yrs., mean 60/52, SD7/22); with RT side dominancy and 6 months after stroke, participated in this study. All procedures were approved by ethical committee of TUMS and written consents were also taken. Patients were familiarized with the procedure and shoulder extensor and abductor muscles isometric strengths were measured by dynamometer. Results: according to result to our study, shoulder extensor and abductor muscles isometric strengths showed Significant differences between mean scores of pre and post intervention (P<0/05). Progressive Resistive Exercise improved 34% shoulder extensor muscles isometric strength and 27% shoulder abductor muscle isometric strength. Conclusion: Results of our research showed that progressive resistive exercise approach is a useful method for increasing the isometric strength of shoulder extensor and abductor muscles. Therefore, it might be concluded that improvement of strength of shoulder muscles could result in stability in shoulder girdle and consequently might effect on hand function in hemiplegic patients.

Keywords: shoulder extensor muscles isometric strength, shoulder abductor muscles isometric strength, hemiplegic, physical therapy

Procedia PDF Downloads 313
354 The Impact of Civilian Syrian War on Human Wellbeing as Inflected by Depression General Status Among Patients Treated in Royal Medical Services, Jordan

Authors: Zeyad Suleiman Bataineh

Abstract:

Introduction: civilian wars are associated with severe humanitarian effects that include loss of individuals and properties. Psychological dimensions are also included depression. Objectives: the main objectives of the present study were to investigate the depression level among Syrian patients who visited internal medicine clinics and other related variables. Methods and subjects: this study was conducted based on cross sectional study design. A total of 175 patients were involved. Patients were asked to fill a questionnaire to assess the level of depression that include demographic variables such as gender, age, educational level, and social status. Beck Aaron scale for depression was used. Participation in this study was voluntary, and all patients were informed about their rights to withdraw from the study without being negatively affected. Data were entered into excel spreading sheet for all participants. SPSS version 21 was used to analyze data. Data were described as means, the standard deviation for linear variables, frequencies, and percentages for categorical variables. The relationships between variables were evaluated using independent t test and One Way ANOVA test. Significance was considered at α≤0.05. Results: Depression was found in 152 (87%) of participants. The majority of participants with depression had moderate to severe depression. Depression was significantly associated gender, age, educational level, and social status (p<0.05). Conclusion: psychological rehabilitation is required for patients who experienced civilian wars.

Keywords: mental health, deprssion, health system, psychological dimension

Procedia PDF Downloads 122
353 Interdisciplinary Approach in Vocational Training for Orthopaedic Surgery

Authors: Mihail Nagea, Olivera Lupescu, Elena Taina Avramescu, Cristina Patru

Abstract:

Classical education of orthopedic surgeons involves lectures, self study, workshops and cadaver dissections, and sometimes supervised practical training within surgery, which quite seldom gives the young surgeons the feeling of being unable to apply what they have learned especially in surgical practice. The purpose of this paper is to present a different approach from the classical one, which enhances the practical skills of the orthopedic trainees and prepare them for future practice. The paper presents the content of the research project 2015-1-RO01-KA202-015230, ERASMUS+ VET ‘Collaborative learning for enhancing practical skills for patient-focused interventions in gait rehabilitation after orthopedic surgery’ which, using e learning as a basic tool , delivers to the trainees not only courses, but especially practical information through videos and case scenarios including gait analysis in order to build patient focused therapeutic plans, adapted to the characteristics of each patient. The outcome of this project is to enhance the practical skills in orthopedic surgery and the results are evaluated following the answers to the questionnaires, but especially the reactions within the case scenarios. The participants will thus follow the idea that any mistake within solving the cases might represent a failure of treating a real patient. This modern approach, besides using interactivity to evaluate the theoretical and practical knowledge of the trainee, increases the sense of responsibility, as well as the ability to react properly in real cases.

Keywords: interdisciplinary approach, gait analysis, orthopedic surgery, vocational training

Procedia PDF Downloads 249
352 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns

Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency

Procedia PDF Downloads 72
351 Combining the Fictitious Stress Method and Displacement Discontinuity Method in Solving Crack Problems in Anisotropic Material

Authors: Bahatti̇n Ki̇mençe, Uğur Ki̇mençe

Abstract:

In this study, the purpose of obtaining the influence functions of the displacement discontinuity in an anisotropic elastic medium is to produce the boundary element equations. A Displacement Discontinuous Method formulation (DDM) is presented with the aim of modeling two-dimensional elastic fracture problems. This formulation is found by analytical integration of the fundamental solution along a straight-line crack. With this purpose, Kelvin's fundamental solutions for anisotropic media on an infinite plane are used to form dipoles from singular loads, and the various combinations of the said dipoles are used to obtain the influence functions of displacement discontinuity. This study introduces a technique for coupling Fictitious Stress Method (FSM) and DDM; the reason for applying this technique to some examples is to demonstrate the effectiveness of the proposed coupling method. In this study, displacement discontinuity equations are obtained by using dipole solutions calculated with known singular force solutions in an anisotropic medium. The displacement discontinuities method obtained from the solutions of these equations and the fictitious stress methods is combined and compared with various examples. In this study, one or more crack problems with various geometries in rectangular plates in finite and infinite regions, under the effect of tensile stress with coupled FSM and DDM in the anisotropic environment, were examined, and the effectiveness of the coupled method was demonstrated. Since crack problems can be modeled more easily with DDM, it has been observed that the use of DDM has increased recently. In obtaining the displacement discontinuity equations, Papkovitch functions were used in Crouch, and harmonic functions were chosen to satisfy various boundary conditions. A comparison is made between two indirect boundary element formulations, DDM, and an extension of FSM, for solving problems involving cracks. Several numerical examples are presented, and the outcomes are contrasted to existing analytical or reference outs.

Keywords: displacement discontinuity method, fictitious stress method, crack problems, anisotropic material

Procedia PDF Downloads 72
350 Integrated Management of Tithonia Diversifolia in the Vhembe Biosphere Reserve

Authors: Mutavhatsindi Tshinakaho

Abstract:

Invasive alien plants (IAP’s) are referred to as species that are non-native to the ecosystem under consideration. Whose introduction causes or is likely to cause economic, ecological, or environmental harm. The integrated management of the invasive plant, Tithonia diversifolia, will be assessed through two herbicide trials (one on the seedlings and the other on matured plants) and a competitive trial between Tithonia and invasive grass species. The initial herbicide trial will be undertaken at the University of Venda Agricultural greenhouse facilities, where Tithonia will be planted in pot plants and watered every after two days until they reach at least 30 cm and will then be subjected to four different herbicide treatments (Metsulfuron methyl, Fluroxypyr, Picloram, Triclopyr), water will be utilised as a control. The percentage damage to foliar will be recorded. The second herbicide trial will be undertaken at Levubu road site, where matured Tithonia will be cut at at least 10cm above the ground and the subjected to herbicide treatments (Picloram, Fluroxypyr, Imazapyr, and Water as a control). The site will be visited post treatment for assessment. For the competition trial, tall grass species will be chosen as competitors (Panicum maximum and Eragrostis murvula), they will be grown at six densities per pot in the greenhouse facilities at the University of Venda, were they will be kept watered for the duration of the experiment. At the end of the experiment, plants will be removed from pots, and the above and below ground biomass will be weighed. The expected results are to know the effective integrated management strategy for T. diversifolia, the effective rehabilitation of T. diversifolia invaded habitats, and the effective chemical control of T. diversifolia

Keywords: foliar, biomass, competition, invasion

Procedia PDF Downloads 87
349 Physiotherapy Program for Frozen Shoulder Related to Onset of Symptom, Range of Motions and Obtaining Modalities

Authors: Narupon Kunbootsri, P. Sirasaporn

Abstract:

Frozen shoulder is a common problem present by pain and limit range of motion. The prevalence of frozen shoulder showed 18-31% of population. The effect of frozen shoulder lead to limit activities daily living life, high medical care cost and so on. Physiotherapy is one of the treatments for frozen shoulder but there was no data about the treatment of physiotherapy. Moreover, it is question about onset of symptom relate to physiotherapy program and obtaining physical modalities and delayed start physiotherapy program lead to delayed improvement. Thus the aim of this study was to investigate physiotherapy program for frozen shoulder relate to onset of symptom, range of motion and obtaining physical modalities. A retrospective study design was conducted. 182 medical records of patients with frozen shoulder were reviewed. These frozen shoulders were treated at physiotherapy unit, department of Rehabilitation last 3 years (January, 2014- December, 2016). The data consist of onset of symptom, range of motion and obtaining physical modalities were recorded. There was a statistically significant increase in shoulder flexion [mean difference 38.88 with 95%CI were [16.00-61.77], shoulder abduction [mean difference 48.47 with 95%CI were 16.07-90.59], shoulder internal rotation [mean difference 22.36 with 95%CI were 2.81-37.18] and shoulder external rotation [mean difference 32.12 with 95%CI were [(-2.47)-(46.91)]. In addition, the onset of symptom was 76.42±46.90 days. And the physical modalities used frequently were hot pack 14.8% and ultrasound diathermy 13.7%. In conclusion, the physiotherapy program including, hot pack and ultrasound diathermy seem to be useful for frozen shoulder. But onset of symptom is too long to start physiotherapy programs.

Keywords: frozen shoulder, range of motions, onset of symptom, physiotherapy, physical modality

Procedia PDF Downloads 277
348 Community Based Landslide Investigation and Treatment in the Earthquake Affected Areas, Nepal

Authors: Basanta Raj Adhikari

Abstract:

Large and small scale earthquakes are frequent in the Nepal, Himalaya, and many co-seismic landslides are resulted out of it. Recently, Gorkha earthquake-2015 has triggered many co-seismic landslides destroying many lives and properties. People have displaced their original places due to having many cracks and unstable ground. Therefore, Nepal has been adopting a pronged development strategy to address the earthquake issues through reconstruction and rehabilitation policy, plans and budgets. Landslides are major threat for the mountain livelihood, and it is very important to investigate and mitigate to improve human wellbeing factoring in considerations of economic growth, environmental safety, and sustainable development. Community based landslide investigation was carried with the involvement of the local community in the Sindhupalchowk District of Central Nepal. Landslide training and field orientation were the major methodological approach of this study. Combination of indigenous and modern scientific knowledge has created unique working environment which enhanced the local capacity and trained people for replication. Local topography of the landslide was created with the help of Total Station and bill of quantity was derived based on it. River training works, plantation of trees and grasses, support structures, surface and sub-surface drainage management are the recommended mitigative measures. This is a very unique example of how academia and local community can work together for sustainable development by reducing disaster risk at the local level with very low-cost technology.

Keywords: community, earthquake, landslides, Nepal

Procedia PDF Downloads 153