Search results for: genetic rodenticide resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4620

Search results for: genetic rodenticide resistance

3600 Study on the Strength and Durability Properties of Ternary Blended Concrete

Authors: Athira Babu, M. Nazeer

Abstract:

Concrete is the most common and versatile construction material used in any type of civil engineering structure. The durability and strength characteristics of concrete make it more desirable among any other construction materials. The manufacture and use of concrete produces wide range of environmental and social consequences. The major component in concrete, cement accounts for roughly 5 % of global CO2 emissions. In order to improve the environmental friendliness of concrete, suitable substitutes are added to concrete. The present study deals with GGBS and silica fume as supplementary cementitious materials. The strength and durability studies were conducted in this ternary blended concrete. Several mixes were adopted with varying percentages of Silica Fume i.e., 5%, 10% and 15%. Binary mix with 50% GGBS was also prepared. GGBS content has been kept constant for the rest of mixes. There is an improvement in compressive strength with addition of Silica Fume.Maximum workability, split tensile strength, modulus of elasticity, flexural strength and impact resistance are obtained for GGBS binary blend. For durability studies, maximum sulphate resistance,carbonation resistance andresistance to chloride ion penetration are obtained for ternary blended concrete. Partial replacement of GGBS and Silica Fume reduces the environmental effects, produces economical and eco-friendly concrete. The study showed that for strength characteristics, binary blended concrete showed better performance while for durability study ternary blend performed better.

Keywords: concrete, GGBS, silica fume, ternary blend

Procedia PDF Downloads 472
3599 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques

Authors: Bhrugesh Radadiya, Jaydeep Shah

Abstract:

In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.

Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm

Procedia PDF Downloads 721
3598 Salicylic Acid Signalling in Relation to Root Colonization in Rice

Authors: Seema Garcha, Sheetal Chopra, Navraj Sarao

Abstract:

Plant hormones play a role in internal colonization by beneficial microbes and also systemic acquired resistance. They define qualitative and quantitative nature of root microbiome and also influence dynamics of root rhizospheric soil. The present study is an attempt to relate salicylic acid (signal molecule) content and qualitative nature of root endophytes at various stages in the growth of rice varieties of commercial value- Parmal 121 and Basmati 1121. Root seedlings of these varieties were raised using tissue culture techniques and then they were transplanted in the fields. Cultivation was done using conventional methods in agriculture. Field soil contained 0.39% N, 75.12 Kg/hectare of phosphorus and 163.0 Kg/hectare of potassium. Microfloral profiling of the root tissue was done using the selective microbiological medium. The salicylic acid content was estimated using HPLC-Agilent 1100 HPLC Series. Salicylic acid level of Basmati 1121 remained relatively low at the time of transplant and 90 days after transplant. It increased marginally at 60 days. A similar trend was observed with Parmal 121 as well. However, Parmal variety recorded 0.935 ug/g of salicylic acid at 60 days after transplant. Salicylic acid content decreased after 90 days as both the rice varieties remained disease free. The endophytic root microflora was established by 60 days after transplant in both the varieties after which their population became constant. Rhizobium spp dominated over Azotobacter spp. Genetic profiling of endophytes for nitrogen-fixing ability is underway.

Keywords: plant-microbe interaction, rice, root microbiome, salicylic acid

Procedia PDF Downloads 191
3597 Contribution to the Study of the Rill Density Effects on Soil Erosion: Laboratory Experiments

Authors: L. Mouzai, M. Bouhadef

Abstract:

Rills begin to be generated once overland flow shear capacity overcomes the soil surface resistance. This resistance depends on soil texture, the arrangement of soil particles and on chemical and physical properties. The rill density could affect soil erosion, especially when the distance between the rills (interrill) contributes to the variation of the rill characteristics, and consequently on sediment concentration. To investigate this point, agricultural sandy soil, a soil tray of 0.2x1x3m³ and a piece of hardwood rectangular in shape to build up rills were the base of this work. The results have shown that small lines have been developed between the rills and the flow acceleration increased in comparison to the flow on the flat surface (interrill). Sediment concentration increased with increasing rill number (density).

Keywords: artificial rainfall, experiments, rills, soil erosion, transport capacity

Procedia PDF Downloads 151
3596 Drivers and Barriers for Implementing Environmental Management in Beverage Processors: A Case of Thailand

Authors: Auttasuriyanan Pakpoom, Setthasakko Watchaneeporn

Abstract:

The main purpose of this study is to gain a clearer understanding of key determinants that drive environmental management and barriers that hinder its development. The study employs semi-structured interviews with key informants accompanied by site observations. Key informants include production, environmental and plant managers of six beverage companies, including three Thai and three multinational companies in Thailand. It is found that corporate image, government subsidies, top management leadership and education institutes are four primary factors influencing the implementation of environmental management in the beverage processors. No demand from Asian buyers, employee resistance to change and lack of environmental knowledge are identified as barriers.

Keywords: environmental management, beverage, government subsidies, education institutes, employee resistance, environmental knowledge, Thailand

Procedia PDF Downloads 238
3595 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door

Authors: Zainab Fadhil Al Toki, Nader Ghareeb

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 36
3594 Hybrid Sol-Gel Coatings for Corrosion Protection of AA6111-T4 Aluminium Alloy

Authors: Shadatul Hanom Rashid, Xiaorong Zhou

Abstract:

Hybrid sol-gel coatings are the blend of both advantages of inorganic and organic networks have been reported as environmentally friendly anti-corrosion surface pre-treatment for several metals, including aluminum alloys. In this current study, Si-Zr hybrid sol-gel coatings were synthesized from (3-glycidoxypropyl)trimethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS) and zirconium(IV) propoxide (TPOZ) precursors and applied on AA6111 aluminum alloy by dip coating technique. The hybrid sol-gel coatings doped with different concentrations of cerium nitrate (Ce(NO3)3) as a corrosion inhibitor were also prepared and the effect of Ce(NO3)3 concentrations on the morphology and corrosion resistance of the coatings were examined. The surface chemistry and morphology of the hybrid sol-gel coatings were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion behavior of the coated aluminum alloy samples was evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that good corrosion resistance of hybrid sol-gel coatings were prepared from hydrolysis and condensation reactions of GPTMS, TEOS and TPOZ precursors deposited on AA6111 aluminum alloy. When the coating doped with cerium nitrate, the properties were improved significantly. The hybrid sol-gel coatings containing lower concentration of cerium nitrate offer the best inhibition performance. A proper doping concentration of Ce(NO3)3 can effectively improve the corrosion resistance of the alloy, while an excessive concentration of Ce(NO3)3 would reduce the corrosion protection properties, which is associated with defective morphology and instability of the sol-gel coatings.

Keywords: AA6111, Ce(NO3)3, corrosion, hybrid sol-gel coatings

Procedia PDF Downloads 148
3593 Susceptibility Assessment and Genetic Diversity of Iranian and CIMMYT Wheat Genotypes to Common Root Rot Disease Bipolaris sorokiniana

Authors: Mehdi Nasr Esfahani, Abdal-Rasool Gholamalian, Abdelfattah A. Dababat

Abstract:

Wheat, Triticum aestivum L. is one of the most important and strategic crops in the human diet. Several diseases threaten this particular crop. Common root rot disease of wheat by a fungal agent, Bipolaris sorokiniana is one of the important diseases, causing considerable losses worldwide. Resistant sources are the only feasible and effective method of control for managing diseases. In this study, the response of 33 domestic and exotic wheat genotypes, including cultivars and promising lines were screened to B. sorokiniana at greenhouse and field conditions, based on five scoring scale indexes of 0 to 100 severity percentage. The screening was continued on resistant wheat genotypes and repeated several times to confirm the greenhouse and field results. Statistical and cluster analysis of data was performed using SAS and SPSS software, respectively. The results showed that, the response of wheat genotypes to the disease in the greenhouse and field conditions was highly significant. The highest rate of common root rot disease infection, B. sorokiniana in the greenhouse and field, was of CVS. Karkheh and Beck Cross-Roshan with 60.83% and 59.16% disease severity respectively, and the lowest one were in cv. Alvand with 18.33%, followed by cv. Baharan with 19.16% disease severity, with a highly significant difference respectively. The remaining wheat genotypes were located in between these two highest and lowest infected groups to B. sorokiniana significantly. There was a high correlation coefficient between the related statistical groups and cluster analysis.

Keywords: wheat, rot, root, crown, fungus, genotype, resistance

Procedia PDF Downloads 127
3592 Analysis of the AZF Region in Slovak Men with Azoospermia

Authors: J. Bernasovská, R. Lohajová Behulová, E. Petrejčiková, I. Boroňová, I. Bernasovský

Abstract:

Y chromosome microdeletions are the most common genetic cause of male infertility and screening for these microdeletions in azoospermic or severely oligospermic men is now standard practice. Analysis of the Y chromosome in men with azoospermia or severe oligozoospermia has resulted in the identification of three regions in the euchromatic part of the long arm of the human Y chromosome (Yq11) that are frequently deleted in men with otherwise unexplained spermatogenic failure. PCR analysis of microdeletions in the AZFa, AZFb and AZFc regions of the human Y chromosome is an important screening tool. The aim of this study was to analyse the type of microdeletions in men with fertility disorders in Slovakia. We evaluated 227 patients with azoospermia and with normal karyotype. All patient samples were analyzed cytogenetically. For PCR amplification of sequence-tagged sites (STS) of the AZFa, AZFb and AZFc regions of the Y chromosome was used Devyser AZF set. Fluorescently labeled primers for all markers in one multiplex PCR reaction were used and for automated visualization and identification of the STS markers we used genetic analyzer ABi 3500xl (Life Technologies). We reported 13 cases of deletions in the AZF region 5,73%. Particular types of deletions were recorded in each region AZFa,b,c .The presence of microdeletions in the AZFc region was the most frequent. The study confirmed that percentage of microdeletions in the AZF region is low in Slovak azoospermic patients, but important from a prognostic view.

Keywords: AZF, male infertility, microdeletions, Y chromosome

Procedia PDF Downloads 362
3591 The Effect of Different Patterns of Upper, Lower and Whole Body Resistance Exercise Training on Systemic and Vascular Inflammatory Factors in Healthy Untrained Women

Authors: Leyla Sattarzadeh, Shahin Fathi Molk Kian, Maghsoud Peeri, Mohammadali Azarbaijani, Hasan Matin Homaee

Abstract:

Inflammation by various mechanisms may cause atherosclerosis. Systemic circulating inflammatory markers such as C-reactive protein (CRP), pro-inflammatory cytokines such as Interleukin-6 (IL-6), vascular inflammatory markers as adhesion molecules like Intracellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) are the predictors of cardiovascular diseases. Regarding the conflicting results about the effect of different patterns of resistance exercise training on these inflammatory markers, present study aimed to examine the effect of different patterns of eight week resistance exercise training on CRP, IL-6, ICAM-1 and VCAM-1 levels in healthy untrained women. 56 healthy volunteered untrained female university students (aged: 21 ± 3 yr., Body Mass Index: 21.5 ± 3.5 kg/m²) were selected purposefully and divided into four groups. At the end of training protocol and after subject drop during the protocol, upper body exercise training (n=11), lower body (n=12) and whole body resistance exercise training group (n=11) completed the eight weeks of training period although the control group (n=7) did anything. Blood samples gathered pre and post-experimental period and CRP, IL-6, ICAM-1 and VCAM-1 levels were evaluated using special laboratory kits, then the difference of pre and post values of each indices analyzed using one-way analysis of variance (α < 0.05). The results of one way ANOVA for difference of pre and post values of CRP, ICAM-1 and VCAM-1 showed no significant changes due to the exercise training, but there were significant differences between groups about IL-6. Tukey post- hoc test indicated that there is significant difference between the differences of pre and post values of IL-6 between lower body exercise training group and control group, and eight weeks of lower body exercise training lead to significant changes in IL-6 values. There were no changes in anthropometric indices. The findings show that the different patterns of upper, lower and whole body exercise training by involving the different amounts of muscles altered the IL-6 values in lower body exercise training group probably because of engaging the bigger amount of muscles, but showed any significant changes about CRP, ICAM-1 and VCAM-1 probably due to intensity and duration of exercise or the lower levels of these markers at baseline of healthy people.

Keywords: resistance training, C-reactive protein, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1

Procedia PDF Downloads 127
3590 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm

Procedia PDF Downloads 113
3589 In vitro Antimicrobial Resistance Pattern of Bovine Mastitis Bacteria in Ethiopia

Authors: Befekadu Urga Wakayo

Abstract:

Introduction: Bacterial infections represent major human and animal health problems in Ethiopia. In the face of poor antibiotic regulatory mechanisms, development of antimicrobial resistance (AMR) to commonly used drugs has become a growing health and livelihood threat in the country. Monitoring and control of AMR demand close coloration between human and veterinary services as well as other relevant stakeholders. However, risk of AMR transfer from animal to human population’s remains poorly explored in Ethiopia. This systematic research literature review attempted to give an overview on AMR challenges of bovine mastitis bacteria in Ethiopia. Methodology: A web based research literature search and analysis strategy was used. Databases are considered including; PubMed, Google Scholar, Ethiopian Veterinary Association (EVA) and Ethiopian Society of Animal Production (ESAP). The key search terms and phrases were; Ethiopia, dairy, cattle, mastitis, bacteria isolation, antibiotic sensitivity and antimicrobial resistance. Ultimately, 15 research reports were used for the current analysis. Data extraction was performed using a structured Microsoft Excel format. Frequency AMR prevalence (%) was registered directly or calculated from reported values. Statistical analysis was performed on SPSS – 16. Variables were summarized by giving frequencies (n or %), Mean ± SE and demonstrative box plots. One way ANOVA and independent t test were used to evaluate variations in AMR prevalence estimates (Ln transformed). Statistical significance was determined at p < 0.050). Results: AMR in bovine mastitis bacteria was investigated in a total of 592 in vitro antibiotic sensitivity trials involving 12 different mastitis bacteria (including 1126 Gram positive and 77 Gram negative isolates) and 14 antibiotics. Bovine mastitis bacteria exhibited AMR to most of the antibiotics tested. Gentamycin had the lowest average AMR in both Gram positive (2%) and negative (1.8%) bacteria. Gram negative mastitis bacteria showed higher mean in vitro resistance levels to; Erythromycin (72.6%), Tetracycline (56.65%), Amoxicillin (49.6%), Ampicillin (47.6%), Clindamycin (47.2%) and Penicillin (40.6%). Among Gram positive mastitis bacteria higher mean in vitro resistance was observed in; Ampicillin (32.8%), Amoxicillin (32.6%), Penicillin (24.9%), Streptomycin (20.2%), Penicillinase Resistant Penicillin’s (15.4%) and Tetracycline (14.9%). More specifically, S. aurues exhibited high mean AMR against Penicillin (76.3%) and Ampicillin (70.3%) followed by Amoxicillin (45%), Streptomycin (40.6%), Tetracycline (24.5%) and Clindamycin (23.5%). E. coli showed high mean AMR to Erythromycin (78.7%), Tetracycline (51.5%), Ampicillin (49.25%), Amoxicillin (43.3%), Clindamycin (38.4%) and Penicillin (33.8%). Streptococcus spp. demonstrated higher (p =0.005) mean AMR against Kanamycin (> 20%) and full sensitivity (100%) to Clindamycin. Overall, mean Tetracycline (p = 0.013), Gentamycin (p = 0.001), Polymixin (p = 0.034), Erythromycin (p = 0.011) and Ampicillin (p = 0.009) resistance increased from the 2010’s than the 2000’s. Conclusion; the review indicated a rising AMR challenge among bovine mastitis bacteria in Ethiopia. Corresponding, public health implications demand a deeper, integrated investigation.

Keywords: antimicrobial resistance, dairy cattle, Ethiopia, Mastitis bacteria

Procedia PDF Downloads 235
3588 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt

Authors: Lee P. Leon, Raymond Charles

Abstract:

This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.

Keywords: aggregate angularity, asphalt concrete, permanent deformation, rutting prediction

Procedia PDF Downloads 392
3587 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems

Authors: Mohammad Mohammadzadeh, Alireza Ghasempour

Abstract:

In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.

Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm

Procedia PDF Downloads 288
3586 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller

Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan

Abstract:

Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.

Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller

Procedia PDF Downloads 471
3585 Proposition Model of Micromechanical Damage to Predict Reduction in Stiffness of a Fatigued A-SMC Composite

Authors: Houssem Ayari

Abstract:

Sheet molding compounds (SMC) are high strength thermoset moulding materials reinforced with glass treated with thermocompression. SMC composites combine fibreglass resins and polyester/phenolic/vinyl and unsaturated acrylic to produce a high strength moulding compound. These materials are usually formulated to meet the performance requirements of the moulding part. In addition, the vinyl ester resins used in the new advanced SMC systems (A-SMC) have many desirable features, including mechanical properties comparable to epoxy, excellent chemical resistance and tensile resistance, and cost competitiveness. In this paper, a proposed model is used to take into account the Young modulus evolutions of advanced SMC systems (A-SMC) composite under fatigue tests. The proposed model and the used approach are in good agreement with the experimental results.

Keywords: composites SFRC, damage, fatigue, Mori-Tanaka

Procedia PDF Downloads 108
3584 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent

Procedia PDF Downloads 367
3583 Solving Process Planning, Weighted Apparent Tardiness Cost Dispatching, and Weighted Processing plus Weight Due-Date Assignment Simultaneously Using a Hybrid Search

Authors: Halil Ibrahim Demir, Caner Erden, Abdullah Hulusi Kokcam, Mumtaz Ipek

Abstract:

Process planning, scheduling, and due date assignment are three important manufacturing functions which are studied independently in literature. There are hundreds of works on IPPS and SWDDA problems but a few works on IPPSDDA problem. Integrating these three functions is very crucial due to the high relationship between them. Since the scheduling problem is in the NP-Hard problem class without any integration, an integrated problem is even harder to solve. This study focuses on the integration of these functions. Sum of weighted tardiness, earliness, and due date related costs are used as a penalty function. Random search and hybrid metaheuristics are used to solve the integrated problem. Marginal improvement in random search is very high in the early iterations and reduces enormously in later iterations. At that point directed search contribute to marginal improvement more than random search. In this study, random and genetic search methods are combined to find better solutions. Results show that overall performance becomes better as the integration level increases.

Keywords: process planning, genetic algorithm, hybrid search, random search, weighted due-date assignment, weighted scheduling

Procedia PDF Downloads 357
3582 Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System

Authors: H. Mohit

Abstract:

In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process.

Keywords: cryogenic treatment, corrosion resistance, dimensional stability, materials science

Procedia PDF Downloads 249
3581 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid

Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef

Abstract:

Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.

Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm

Procedia PDF Downloads 260
3580 Genetically Informed Precision Drug Repurposing for Rheumatoid Arthritis

Authors: Sahar El Shair, Laura Greco, William Reay, Murray Cairns

Abstract:

Background: Rheumatoid arthritis (RA) is a chronic, systematic, inflammatory, autoimmune disease that involves damages to joints and erosions to the associated bones and cartilage, resulting in reduced physical function and disability. RA is a multifactorial disorder influenced by heterogenous genetic and environmental factors. Whilst different medications have proven successful in reducing inflammation associated with RA, they often come with significant side effects and limited efficacy. To address this, the novel pharmagenic enrichment score (PES) algorithm was tested in self-reported RA patients from the UK Biobank (UKBB), which is a cohort of predominantly European ancestry, and identified individuals with a high genetic risk in clinically actionable biological pathways to identify novel opportunities for precision interventions and drug repurposing to treat RA. Methods and materials: Genetic association data for rheumatoid arthritis was derived from publicly available genome-wide association studies (GWAS) summary statistics (N=97173). The PES framework exploits competitive gene set enrichment to identify pathways that are associated with RA to explore novel treatment opportunities. This data is then integrated into WebGestalt, Drug Interaction database (DGIdb) and DrugBank databases to identify existing compounds with existing use or potential for repurposed use. The PES for each of these candidates was then profiled in individuals with RA in the UKBB (Ncases = 3,719, Ncontrols = 333,160). Results A total of 209 pathways with known drug targets after multiple testing correction were identified. Several pathways, including interferon gamma signaling and TID pathway (which relates to a chaperone that modulates interferon signaling), were significantly associated with self-reported RA in the UKBB when adjusting for age, sex, assessment centre month and location, RA polygenic risk and 10 principal components. These pathways have a major role in RA pathogenesis, including autoimmune attacks against certain citrullinated proteins, synovial inflammation, and bone loss. Encouragingly, many also relate to the mechanism of action of existing RA medications. The analyses also revealed statistically significant association between RA polygenic scores and self-reported RA with individual PES scorings, highlighting the potential utility of the PES algorithm in uncovering additional genetic insights that could aid in the identification of individuals at risk for RA and provide opportunities for more targeted interventions. Conclusions In this study, pharmacologically annotated genetic risk was explored through the PES framework to overcome inter-individual heterogeneity and enable precision drug repurposing in RA. The results showed a statistically significant association between RA polygenic scores and self-reported RA and individual PES scorings for 3,719 RA patients. Interestingly, several enriched PES pathways were targeted by already approved RA drugs. In addition, the analysis revealed genetically supported drug repurposing opportunities for future treatment of RA with a relatively safe profile.

Keywords: rheumatoid arthritis, precision medicine, drug repurposing, system biology, bioinformatics

Procedia PDF Downloads 67
3579 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery

Authors: Chun-Lang Chang, Chun-Kai Liu

Abstract:

In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.

Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery

Procedia PDF Downloads 317
3578 Lateral Torsional Buckling: Tests on Glued Laminated Timber Beams

Authors: Vera Wilden, Benno Hoffmeister, Markus Feldmann

Abstract:

Glued laminated timber (glulam) is a preferred choice for long span girders, e.g., for gyms or storage halls. While the material provides sufficient strength to resist the bending moments, large spans lead to increased slenderness of such members and to a higher susceptibility to stability issues, in particular to lateral torsional buckling (LTB). Rules for the determination of the ultimate LTB resistance are provided by Eurocode 5. The verifications of the resistance may be performed using the so called equivalent member method or by means of theory 2nd order calculations (direct method), considering equivalent imperfections. Both methods have significant limitations concerning their applicability; the equivalent member method is limited to rather simple cases; the direct method is missing detailed provisions regarding imperfections and requirements for numerical modeling. In this paper, the results of a test series on slender glulam beams in three- and four-point bending are presented. The tests were performed in an innovative, newly developed testing rig, allowing for a very precise definition of loading and boundary conditions. The load was introduced by a hydraulic jack, which follows the lateral deformation of the beam by means of a servo-controller, coupled with the tested member and keeping the load direction vertically. The deformation-controlled tests allowed for the identification of the ultimate limit state (governed by elastic stability) and the corresponding deformations. Prior to the tests, the structural and geometrical imperfections were determined and used later in the numerical models. After the stability tests, the nearly undamaged members were tested again in pure bending until reaching the ultimate moment resistance of the cross-section. These results, accompanied by numerical studies, were compared to resistance values obtained using both methods according to Eurocode 5.

Keywords: experimental tests, glued laminated timber, lateral torsional buckling, numerical simulation

Procedia PDF Downloads 220
3577 A Review on the Use of Herbal Alternatives to Antibiotics in Poultry Diets

Authors: Sasan Chalaki, Seyed Ali Mirgholange, Touba Nadri, Saman Chalaki

Abstract:

In the current world, proper poultry nutrition has garnered special attention as one of the fundamental factors for enhancing their health and performance. Concerns related to the excessive use of antibiotics in the poultry industry and their role in antibiotic resistance have transformed this issue into a global challenge in public health and the environment. On the other hand, poultry farming plays a vital role as a primary source of meat and eggs in human nutrition, and improving their health and performance is crucial. One effective approach to enhance poultry nutrition is the utilization of the antibiotic properties of plant-based ingredients. The use of plant-based alternatives as natural antibiotics in poultry nutrition not only aids in improving poultry health and performance but also plays a significant role in reducing the consumption of synthetic antibiotics and preventing antibiotic resistance-related issues. Plants contain various antibacterial compounds, such as flavonoids, tannins, and essential oils. These compounds are recognized as active agents in combating bacteria. Plant-based antibiotics are compounds extracted from plants with antibacterial properties. They are acknowledged as effective substitutes for chemical antibiotics in poultry diets. The advantages of plant-based antibiotics include reducing the risk of resistance to chemical antibiotics, increasing poultry growth performance, and lowering the risk of disease transmission.

Keywords: poultry, antibiotics, essential oils, plant-based

Procedia PDF Downloads 60
3576 TiN/TiO2 Nanostructure Coating on Glass Substrate

Authors: F. Dabir, R. Sarraf-Mamoory, N. Riahi-Noori

Abstract:

In this work, a nanostructured TiO2 layer was coated onto a FTO-less glass substrate using screen printing technique for back contact DSSC application. Then, titanium nitride thin film was applied on TiO2 layer by plasma assisted chemical vapor deposition (PACVD) as charge collector layer. The microstructure of prepared TiO2 layer was characterized by SEM. The sheet resistance, microstructure and elemental composition of titanium nitride thin films were analysed by four point probe, SEM, and EDS, respectively. TiO2 layer had porous nanostructure. The EDS analysis of TiN thin film showed presence of chlorine impurity. Sheet resistance of TiN thin film was 30 Ω/sq. With respect to the results, PACVD TiN can be a good candidate as a charge collector layer in back contacts DSSC.

Keywords: TiO2, TiN, charge collector, DSSC

Procedia PDF Downloads 460
3575 Antibiogram Profile of Antibacterial Multidrug Resistance in Democratic Republic of Congo: Situation in Bukavu City Hospitals

Authors: Justin Ntokamunda Kadima, Christian Ahadi Irenge, Patient Birindwa Mulashe, Félicien Mushagalusa Kasali, Patient Wimba

Abstract:

Background: Bacterial strains carrying multidrug resistance traits are gaining ground worldwide, especially in countries with limited resources. This study aimed to evaluate the spreading of multidrug-resistant bacteria strains in Bukavu city hospitals in the Democratic Republic of Congo. Methods: We analyzed 758 antibiogram data recorded in files of patients consulted between January 2016 and December 2017 at three reference hospitals selected as sentinel sites, namely the Panzi General Reference Hospital (HGP), BIO -PHARM hospital (HBP), and Saint Luc Clinic (CSL). Results: Of 758 isolates tested, the laboratories identified 12 bacterial strains in 712 isolates, of which 223 (29.42%) presented MDR profile, including Escherichia coli (11.48%), Klebsiella pneumonia (6.07%), Enterobacter (5.8%), Staphylococcus aureus and coagulase-negative Staphylococci (1.58%), Proteus mirabilis (1.85%), Salmonella enterica (1.19%), Pseudomonas aeruginosa (0.53%), Streptococcus pneumonia (0.4%)), Citrobacter (0.13%), Neisseria gonorrhea (0.13%), Enterococcus faecalis (0.13%), and Morganella morganii (0.13%). Infected patients were significantly more adults (73.1% vs. 21.5%) compared to children and mainly women (63.7% vs. 30.9%; p = 0.001). Conclusion: The observed expansion requires that hospital therapeutic committees set up an effective clinical management system and define the right combinations of antibiotics.

Keywords: multidrug resistance, bacteria, antibiogram, Bukavu

Procedia PDF Downloads 70
3574 Soil Penetration Resistance and Water Content Spatial Distribution Following Different Tillage and Crop Rotation in a Chinese Mollisol

Authors: Xuewen Chen, Aizhen Liang, Xiaoping Zhang

Abstract:

To better understand the spatial variability of soil penetration resistance (SPR) and soil water content (SWC) induced by different tillage and crop rotation in a Mollisol of Northeast China, the soil was sampled from the tillage experiment which was established in Dehui County, Jilin Province, Northeast China, in 2001. Effect of no-tillage (NT), moldboard plow (MP) and ridge tillage (RT) under corn-soybean rotation (C-S) and continuous corn (C-C) system on SPR and SWC were compared with horizontal and vertical variations. The results showed that SPR and SWC spatially varied across the ridge. SPR in the rows was higher than inter-rows, especially in topsoil (2.5-15 cm) of NT and RT plots. SPR of MP changed in the trend with the curve-shaped ridge. In contrast to MP, NT, and RT resulted in average increment of 166.3% and 152.3% at a depth of 2.5-17.5 cm in the row positions, respectively. The mean SPR in topsoil in the rows means soil compaction is not the main factor limiting plant growth and crop yield. SPR in the row of RT soil was lower than NT at a depth of 2.5-12.5 cm. The SWC in NT and RT soil was highest in the inter-rows and least in the rows or shoulders, respectively. However, the lateral variation trend of MP was opposite to NT. From the profile view of SWC, MP was greater than NT and RT in 0-20 cm of the rows. SWC in RT soil was higher than NT in the row of 0-20 cm. Crop rotation did not have a marked impact on SPR and SWC. In addition to the tillage practices, the factor which affects SPR greatly was depth but not position. These two factors have significant effects on SWC. These results indicated that the adoption of RT was a more suitable conservation tillage practices than NT in the black soil of Northeast China.

Keywords: row, soil penetration resistance, spatial variability, tillage practice

Procedia PDF Downloads 126
3573 Quantification of Enzymatic Activities of Proteins, Peroxidase and Phenylalanine Ammonia Lyase, in Growing Phaseolus vulgaris L, with Application Bacterial Consortium to Control Fusarium and Rhizoctonia

Authors: Arredondo Valdés Roberto, Hernández Castillo Francisco Daniel, Laredo Alcalá Elan Iñaky, Gonzalez Gallegos Esmeralda, Castro Del Angel Epifanio

Abstract:

The common bean or Phaseolus vulgaris L. is the most important food legume for direct consumption in the world. Fusarium dry rot in the major fungus disease affects Phaseolus vulgaris L, after planting. In another hand, Rhizoctonia can be found on all underground parts of the plant and various times during the growing season. In recent years, the world has conducted studies about the use of natural products as substitutes for herbicides and pesticides, because of possible ecological and economic benefits. Plants respond to fungal invasion by activating defense responses associated with accumulation of several enzymes and inhibitors, which prevent pathogen infection. This study focused on the role of proteins, peroxidase (POD), phenylalanine ammonia lyase (PAL), in imparting resistance to soft rot pathogens by applied different bacterial consortium, formulated and provided by Biofertilizantes de Méxicanos industries, analyzing the enzyme activity at different times of application (6 h, 12 h and 24 h). The resistance of these treatments was correlated with high POD and PAL enzyme activity as well as increased concentrations of proteins. These findings show that PAL, POD and synthesis of proteins play a role in imparting resistance to Phaseolus vulgaris L. soft rot infection by Fusarium and Rhizoctonia.

Keywords: fusarium, peroxidase, phenylalanine ammonia lyase, rhizoctonia

Procedia PDF Downloads 345
3572 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling

Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal

Abstract:

It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.

Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability

Procedia PDF Downloads 283
3571 CRISPR/Cas9 Based Gene Stacking in Plants for Virus Resistance Using Site-Specific Recombinases

Authors: Sabin Aslam, Sultan Habibullah Khan, James G. Thomson, Abhaya M. Dandekar

Abstract:

Losses due to viral diseases are posing a serious threat to crop production. A quick breakdown of resistance to viruses like Cotton Leaf Curl Virus (CLCuV) demands the application of a proficient technology to engineer durable resistance. Gene stacking has recently emerged as a potential approach for integrating multiple genes in crop plants. In the present study, recombinase technology has been used for site-specific gene stacking. A target vector (pG-Rec) was designed for engineering a predetermined specific site in the plant genome whereby genes can be stacked repeatedly. Using Agrobacterium-mediated transformation, the pG-Rec was transformed into Coker-312 along with Nicotiana tabacum L. cv. Xanthi and Nicotiana benthamiana. The transgene analysis of target lines was conducted through junction PCR. The transgene positive target lines were used for further transformations to site-specifically stack two genes of interest using Bxb1 and PhiC31 recombinases. In the first instance, Cas9 driven by multiplex gRNAs (for Rep gene of CLCuV) was site-specifically integrated into the target lines and determined by the junction PCR and real-time PCR. The resulting plants were subsequently used to stack the second gene of interest (AVP3 gene from Arabidopsis for enhancing cotton plant growth). The addition of the genes is simultaneously achieved with the removal of marker genes for recycling with the next round of gene stacking. Consequently, transgenic marker-free plants were produced with two genes stacked at the specific site. These transgenic plants can be potential germplasm to introduce resistance against various strains of cotton leaf curl virus (CLCuV) and abiotic stresses. The results of the research demonstrate gene stacking in crop plants, a technology that can be used to introduce multiple genes sequentially at predefined genomic sites. The current climate change scenario highlights the use of such technologies so that gigantic environmental issues can be tackled by several traits in a single step. After evaluating virus resistance in the resulting plants, the lines can be a primer to initiate stacking of further genes in Cotton for other traits as well as molecular breeding with elite cotton lines.

Keywords: cotton, CRISPR/Cas9, gene stacking, genome editing, recombinases

Procedia PDF Downloads 140