Search results for: dam removal
595 Evaluation of the Impact of Scraping Operations during Winter Road Maintenance on Pavement Skid Resistance
Authors: Garance Liaboeuf, Mohamed Bouteldja, Antoine Martinet, Nicolas Grignard, Damien Pilet, Ali Daouadji, Alain Le Bot
Abstract:
A series of in-situ tests is set up to evaluate and quantify the long-term effects of scraping operations using steel plows on the skid resistance of pavements. Three pavements are tested, and a total number of 1.800 snowplow scrapings are applied. The skid resistance of the pavements is measured periodically using two indicators on two scales: an average profile depth (macrotexture) and a longitudinal friction coefficient (microtexture). The results of these tests show a reduction in the average profile depth between 4 % and 10 %, depending on the asphalt composition. This reduction of macrotexture is correlated with the reduction of high points on surfaces due to the removal of portions of the aggregate surfaces. The longitudinal friction coefficient of pavements decreases by 4% to 10%. This reduction in microtexture is related to the polishing of the surface of the aggregate used in the pavements. These variations of skid resistance are not linear. A phenomenon of regeneration of the friction coefficient is observed for pavements composed of sand-lime aggregates after several scraping operations.Keywords: GripTester, macrotexture, microtexture, pavement, skid resistance, snowplow, TM2, winter road maintenance
Procedia PDF Downloads 70594 Bioremediation of Hydrocarbon and Some Heavy Metal Polluted Wastewater Effluent of a Typical Refinery
Authors: S. Abdulsalam, A. D. I. Suleiman, N. M. Musa, M. Yusuf
Abstract:
Environment free of pollutants should be the concern of every individual but with industrialization and urbanization it is difficult to achieve. In view of achieving a pollution limited environment at low cost, a study was conducted on the use of bioremediation technology to remediate hydrocarbons and three heavy metals namely; copper (Cu), zinc (Zn) and iron (Fe) from a typical petroleum refinery wastewater in a closed system. Physicochemical and microbiological characteristics on the wastewater sample revealed that it was polluted with the aforementioned pollutants. Isolation and identification of microorganisms present in the wastewater sample revealed the presence of Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Staphylococcus epidermidis. Bioremediation experiments carried out on five batch reactors with different compositions but at same environmental conditions revealed that treatment T5 (boosted with the association of Bacillus subtilis, Micrococcus luteus) gave the best result in terms of oil and grease content removal (i.e. 67% in 63 days). In addition, these microorganisms were able of reducing the concentrations of heavy metals in the sample. Treatments T5, T3 (boosted with Bacillus subtilis only) and T4 (boosted with Micrococcus luteus only) gave optimum percentage uptakes of 65, 75 and 25 for Cu, Zn and Fe respectively.Keywords: boosted, bioremediation, closed system, aeration, uptake, wastewater
Procedia PDF Downloads 256593 Hemp Defoliation Technology and Management before Harvesting
Authors: Rataya Yanaphan, Saksiri Kuppatarat, Sarita Pinmanee
Abstract:
Hemp (Cannabis sativa L. ssp. Sativa) cultivation for fiber is limited by extremely high labor cost, especially for the removal of the leaves before harvest. This study evaluated chemical defoliants as a means to remove the leaves of hemp before harvest, in an effort to reduce labor expenditures in the production on hemp fiber. This study was conducted by spraying the leaves of hemp with five different treatments: saline solution, Urea (CH4N2O), Ethephon, copper Sulphate (CuSO4) and water (control) before harvesting. The largest percentage of leaf loss 6 days after spraying was with saline solution (43%), followed by Ethephon (32%). However, saline solution also caused drying of the stems but Ethephon did not. Thus, Ethephon was evaluated in the second experiment by spraying with Ethephon concentrations of 0, 10, 15 and 20 ml per 1 liter of water at 7 days before harvest. Spraying with 0.5% Ethephon resulted in 13.6% leaf fall. Spraying with 1.5% and 2% Ethephon resulted in 82.2% and 82.3 % leaf fall, respectively. In addition, using Ethephon to defoliate hemp had no detrimental effect the yield. Therefore, Ethephon concentration at 15 ml per 1 liter of water will be recommended for use in removing hemp leaves by spraying at 7 days before harvest to lower labor cost.Keywords: defoliation technology, ethephon, hemp cultivation, saline solution
Procedia PDF Downloads 219592 The Batch Method Approach for Adsorption Mechanism Processes of Some Selected Heavy Metal Ions and Methylene Blue by Using Chemically Modified Luffa Cylindrica
Authors: Akanimo Emene, Mark D. Ogden, Robert Edyvean
Abstract:
Adsorption is a low cost, efficient and economically viable wastewater treatment process. Utilization of this treatment process has not been fully applied due to the complex and not fully understood nature of the adsorption system. To optimize its process is to choose a sufficient adsorbent and to study further the experimental parameters that influence the adsorption design system. Chemically modified adsorbent, Luffa cylindrica, was used to adsorb heavy metal ions and an organic pollutant, methylene blue, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion or organic pollutant concentration, ionic strength, and pH of solution were studied. The experimental data were analyzed with kinetic and isotherm models. The antagonistic effect of the methylene and some heavy metal ions were recorded. An understanding of the use of this treated Luffa cylindrica for the removal of these toxic substances will establish and improve the commercial application of the adsorption process in treatment of contaminated waters.Keywords: adsorption, heavy metal ions, Luffa cylindrica, wastewater treatment
Procedia PDF Downloads 197591 Evaluation of Mirabegron, Tolterodine, and Fesoterodine for Double-J Stent-Related Symptoms: A Comparative Analysis
Authors: Janet Joy, Shri Shailesh Amarkhed, Pradeep M. Kulkarni
Abstract:
Introduction: Ureteral stent-related symptoms significantly impact patients' quality of life. This study compared the efficacy of Mirabegron, Tolterodine, and Fesoterodine in managing these symptoms. Methodology: In this prospective, randomized, placebo-controlled trial, two hundred patients undergoing ureteral stenting were randomly assigned to receive Mirabegron, Tolterodine, Fesoterodine, or placebo for two weeks. Symptoms were assessed using the Ureteral Stent Symptom Questionnaire (USSQ) at stent removal. Results: 200 patients completed the study. Mirabegron demonstrated the lowest mean USSQ score (31.6 ± 6.4), followed by Fesoterodine (34.0 ± 6.9) and Tolterodine (35.0 ± 7.2), all significantly lower than placebo (48.6 ± 8.7, p<0.001). Mirabegron showed superior efficacy in reducing urinary symptoms (score: 16.5 ± 3.9) compared to Fesoterodine (17.8 ± 4.1) and Tolterodine (18.2 ± 4.3). Side effects, such as parched mouth, were less frequent with Mirabegron (6%) than with Tolterodine (28%) and Fesoterodine (24%). Conclusion: All three medications significantly improved stent-related symptoms compared to placebo. Mirabegron demonstrated a trend toward superior efficacy and fewer side effects, suggesting its potential as a first-line treatment for stent-related discomfort.Keywords: ureteral stent, mirabegron, tolterodine, fesoterodine, USSQ, stent-related symptoms
Procedia PDF Downloads 19590 Coagulation-Flocculation of Palm Oil Mill Effluent from Pertubuhan Peladang Negeri Johor, Malaysia
Authors: A. H. Jagaba, Musa Babayo, Ab Aziz Abdul Latiff, Sule Abubakar, I. M. Lawal, Isa Zubairu, M. A. Nasara
Abstract:
Wastewater containing heavy metals is of extreme importance globally because of its potential threat to both the aquatic ecosystem and the soil environment. Heavy metal is hazardous even at low concentration and thereby causing various forms of diseases. One method which has been tested and found to be effective for heavy metals removal is coagulation-flocculation. For the coagulation process of POME obtained from Pertubuhan Peladang Negeri Johor (PPNJ), Oil Palm Mill Company located in Kahang area of Kluang, Johor Darul Takzim, Malaysia, diffèrent coagulants would be used to absorb and then separate the metals from wastewater. The determination of heavy metals concentration in POME was carried out using an inductively coupled plasma (ICP) and an Atomic Absorption Spectrometer (AAS). Results of the study showed that alum coagulant was successful in effectively reducing Cu, Cd, and Mn from 0.840 mg/l, 0.00509 mg/l and 8.191 mg/l to as low as 0.107 mg/l, 0.000270 mg/l and 0.612 mg/l respectively. All were obtained at a dose of 1000 mg/l. 1000 mg/l dose of ferric chloride reduced Pb concentration from 0.0248 mg/l to 0.00151 mg/l. Chitosan was best at reducing Fe and Zn from 62.91 mg/l and 3.616 mg/l to 6.003 mg/l and 0.595 mg/l all at a dose of 400 mg/l.Keywords: palm oil mill effluent, coagulation, heavy metals, Pertubuhan Peladang Negeri Johor, Malaysia
Procedia PDF Downloads 226589 Nutrients Removal from Industrial Wastewater Using Constructed Wetland System
Authors: Christine Odinga, Fred Otieno, Josiah Adeyemo
Abstract:
A study was done to establish the effectiveness of wetland plants: Echinocloa pyramidalis (L) and Cyperus papyrus (L) in purifying wastewater from sugar factory stabilization pond effluent. A pilot-scale Free Water Surface Wetland (FWSCW) system was constructed in Chemelil sugar factory, Kenya for the study. The wetland was divided into 8 sections (cells) and planted with C. papyrus and E. pyramidalis in alternating sequence. Water samples and plant specimen were taken fortnightly at inlets and outlets of the cells and analysed for total phosphates and total nitrates. The data was analysed by use of Microsoft excel and SPSS computer packages. Water analysis recorded a reduction in the nutrient levels between the inlet pond nine and the final outlet channel to River Nyando. The plants grown in the wetland experienced varied increases and reductions in the level of total foliar nitrogen and phosphorous, indicating that though the nutrients were being removed from the wetland, the same were not those assimilated by the plants either. The control plants had higher folia phosphorous and nitrogen, an indication that the system of the constructed wetland was able to eliminate the nutrients effectively from the plants.Keywords: wetlands, constructed, plants, nutrients, wastewater, industrial
Procedia PDF Downloads 301588 Metagenomics Profile during the Bioremediation of Fischer-Tropsch Derived Short-Chain Alcohols and Volatile Fatty Acids Using a Moving Bed Biofilm Reactor
Authors: Mabtho Moreroa-Monyelo, Grace Ijoma, Rosina Nkuna, Tonderayi Matambo
Abstract:
A moving bed biofilm reactor (MBBR) was used for the bioremediation of high strength chemical oxygen demand (COD) Fisher-Tropsch (FT) wastewater. The aerobic MBBR system was operated over 60 days. For metagenomics profile assessment of the targeted 16S sequence of bacteria involved in the bioremediation of the chemical compounds, sludge samples were collected every second day of operation. Parameters such as pH and COD were measured daily to compare the system efficiency as the changedin microbial diversity progressed. The study revealed that pH was a contributing factor to microbial diversity, which further affected the efficiency of the MBBR system. The highest COD removal rate of 86.4% was achieved at pH 8.3. It was observed that when there was more, A higher bacterial diversity led to an improvement in the reduction of COD. Furthermore, an OTUof 4530 was obtained, which were divided into 12 phyla, 27 classes, 44 orders, 74 families, and 138 genera across all sludge samples from the MBBR. A determination of the relative abundance of microorganisms at phyla level indicates that the most abundant phylum on day it was Firmicutes (50%); thereafter, the most abundant phylum changed toProteobacteria.Keywords: biodegradation, fischer-tropsch wastewater, metagenomics, moving bed biofilm reactor
Procedia PDF Downloads 159587 Contribution of Soluble Microbial Products on Dissolved Organic Nitrogen in Wastewater Effluent from Moving Bed Biofilm Reactor
Authors: Boonsiri Dandumrongsin, Halis Simsek, Chaiwat Rongsayamanont
Abstract:
Dissolved organic nitrogen (DON) is known as one of the persistence nitrogenous pollutant being originated from secondary treated effluent of municipal sewage treatment plant. However, effect of key system operating condition on the fate and behavior of residual DON in the treated effluent is still not known. This study aims to investigate effect of organic loading rate (OLR) on the residual level of DON in the biofilm reactor effluent. Synthetic municipal wastewater was fed into moving bed biofilm reactors at OLR of 1.6x10-3 and 3.2x10-3 kg SCOD/m3-d. The results showed higher organic removal efficiency was found in the reactor operating at higher OLR. However, DON was observed at higher value in the effluent of the higher OLR reactor than that of the lower OLR reactor evidencing a clear influence of OLR on the residual DON level in the treated effluent of the biofilm reactors. It is possible that the lower DON being observed in the reactor at lower OLR is likely to be a result of providing the microbe with the additional period for utilizing the refractory DON molecules during operation at lower organic loading. All the experiments were repeated using raw wastewaters and similar trend was obtained.Keywords: dissolved organic nitrogen, hydraulic retention time, moving bed biofilm reactor, soluble microbial products
Procedia PDF Downloads 285586 Riparian Buffer Strips’ Capability of E. coli Removal in New York Streams
Authors: Helen Sanders, Joshua Cousins
Abstract:
The purpose of this study is to ascertain whether riparian buffer strips could be used to reduce Escherichia Coli (E. coli) runoff into streams in Central New York. Mainstream methods currently utilized to reduce E. coli runoff include fencing and staggered fertilizing plans for agriculture. These methods still do not significantly limit E. coli and thus, pose a serious health risk to individuals who swim in contaminated waters or consume contaminated produce. One additional method still in research development involves the planting of vegetated riparian buffers along waterways. Currently, riparian buffer strips are primarily used for filtration of nitrate and phosphate runoff to slow erosion, regulate pH and, improve biodiversity within waterways. For my research, four different stream sites were selected for the study, in which rainwater runoff was collected at both the riparian buffer and the E. coli sourced runoff upstream. Preliminary results indicate that there is an average 70% decrease in E. coli content in streams at the riparian buffer strips compared to upstream runoff. This research could be utilized to include vegetated buffer planting as a method to decrease manure runoff into essential waterways.Keywords: Escherichia coli, riparian buffer strips, vegetated riparian buffers, runoff, filtration
Procedia PDF Downloads 179585 Ix Operation for the Concentration of Low-Grade Uranium Leach Solution
Authors: Heba Ahmed Nawafleh
Abstract:
In this study, two commercial resins were evaluated to concentrate uranium from real solutions that were produced from analkaline leaching process of carbonate deposits. The adsorption was examined using a batch process. Different parameters were evaluated, including initial pH, contact time, temperature, adsorbent dose, and finally, uranium initial concentration. Both resins were effective and selective for uranium ions from the tested leaching solution. The adsorption isotherms data were well fitted for both resins using the Langmuir model. Thermodynamic functions (Gibbs free energy change ΔG, enthalpy change ΔH, and entropy change ΔS) were calculated for the adsorption of uranium. The result shows that the adsorption process is endothermic, spontaneous, and chemisorption processes took place for both resins. The kinetic studies showed that the equilibrium time for uranium ions is about two hours, where the maximum uptake levels were achieved. The kinetics studies were carried out for the adsorption of U ions, and the data was found to follow pseudo-second-order kinetics, which indicates that the adsorption of U ions was chemically controlled. In addition, the reusability (adsorption/ desorption) process was tested for both resins for five cycles, these adsorbents maintained removal efficiency close to first cycle efficiency of about 91% and 80%.Keywords: uranium, adsorption, ion exchange, thermodynamic and kinetic studies
Procedia PDF Downloads 92584 Atmospheric Oxidation of Carbonyls: Insight to Mechanism, Kinetic and Thermodynamic Parameters
Authors: Olumayede Emmanuel Gbenga, Adeniyi Azeez Adebayo
Abstract:
Carbonyls are the first-generation products from tropospheric degradation reactions of volatile organic compounds (VOCs). This computational study examined the mechanism of removal of carbonyls from the atmosphere via hydroxyl radical. The kinetics of the reactions were computed from the activation energy (using enthalpy (ΔH**) and Gibbs free energy (ΔG**). The minimum energy path (MEP) analysis reveals that in all the molecules, the products have more stable energy than the reactants, which implies that the forward reaction is more thermodynamically favorable. The hydrogen abstraction of the aromatic aldehyde, especially without methyl substituents, is more kinetically favorable compared with the other aldehydes in the order of aromatic (without methyl or meta methyl) > alkene (short chain) > diene > long-chain aldehydes. The activation energy is much lower for the forward reaction than the backward, indicating that the forward reactions are more kinetically stable than their backward reaction. In terms of thermodynamic stability, the aromatic compounds are found to be less favorable in comparison to the aliphatic. The study concludes that the chemistry of the carbonyl bond of the aldehyde changed significantly from the reactants to the products.Keywords: atmospheric carbonyls, oxidation, mechanism, kinetic, thermodynamic
Procedia PDF Downloads 50583 Obtaining High Purity Hydroxyapatite from Bovine Bone: Effect of Chemical and Thermal Treatments
Authors: Hernandez Pardo Diego F., Guiza Arguello Viviana R., Coy Echeverria Ana, Viejo Abrante Fernando
Abstract:
The biological hydroxyapatite obtained from bovine bone arouses great interest in its application as a material for bone regeneration due to its better bioactive behavior in comparison with synthetic hydroxyapatite. For this reason, the objective of the present investigation was to determine the effect of chemical and thermal treatments in obtaining biological bovine hydroxyapatite of high purity and crystallinity. Two different chemical reagents were evaluated (NaOH and HCl) with the aim to remove the organic matrix of the bovine cortical bone. On the other hand, for analyzing the effect of thermal treatment temperature was ranged between 500 and 1000°C for a holding time of 4 hours. To accomplish the above, the materials before and after the chemical and thermal treatments were characterized by elemental compositional analysis (CHN), infrared spectroscopy by Fourier transform (FTIR), RAMAN spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and energy dispersion X-ray spectroscopy (EDS). The results allowed to establish that NaOH is more effective in the removal of the organic matrix of the bone when compared to HCl, whereas a thermal treatment at 700ºC for 4 hours was enough to obtain biological hydroxyapatite of high purity and crystallinity.Keywords: bovine bone, hydroxyapatite, biomaterials, thermal treatment
Procedia PDF Downloads 116582 Using Deep Learning in Lyme Disease Diagnosis
Authors: Teja Koduru
Abstract:
Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash
Procedia PDF Downloads 240581 UV Enhanced Hydrophilicity of the Anodized Films Formed at Low Current Density and Low Voltage
Authors: Phanawan Whangdee, Tomoaki Watanabe, Viritpon Srimaneepong, Dujreutai Pongkao Kashima
Abstract:
The anodized films formed at high current density or high voltage have been widely prepared for dental implant because it can improve the hydrophilicity to the film. Our attempt is exploring whether low current density and low voltage could enhance the good hydrophilicity to the anodized films or not. Furthermore, UV irradiation would be one of the key factor to enhance their hydrophilicity. The anodized films were performed at low current density of 2 mA/cm2 in 1M H3PO4, 1 mA/cm2 in 1M MCPM and low voltage of 6 V in either 1M H3PO4 or 1M MCPM. All samples were treated with UV for various times up to 24 h. After UV irradiation, the contact angle decreased, the chemical species changed. The Ti 2p and O 1s peaks increased, while the C 1s peak decreased which might be due to removal of hydrocarbon. The functional groups of the films shown as the change of OH groups appeared at wave number 3700 cm-1 and 2900-3000 cm-1, however, the peak of H2O at 1630 cm-1disappeared. It is indicated that UV irradiation might change the stretching modes of OH groups coordinated to surface Ti4+ cation but UV did not affect to the changes in surface morphologies. The surface energies increased after UV irradiation resulting in improving of the hydrophilicity. The anodized films formed at low current density or low voltage after UV irradiation showed a low contact angle as well as the film formed at high current density or high voltage.Keywords: hydrophilicity, low current density, low voltage, UV irradiation
Procedia PDF Downloads 499580 Recent Development on Application of Microwave Energy on Process Metallurgy
Authors: Mamdouh Omran, Timo Fabritius
Abstract:
A growing interest in microwave heating has emerged recently. Many researchers have begun to pay attention to microwave energy as an alternative technique for processing various primary and secondary raw materials. Compared to conventional methods, microwave processing offers several advantages, such as selective heating, rapid heating, and volumetric heating. The present study gives a summary on our recent works related to the use of microwave energy for the recovery of valuable metals from primary and secondary raw materials. The research is mainly focusing on: Application of microwave for the recovery and recycling of metals from different metallurgical industries wastes (i.e. electric arc furnace (EAF) dust, blast furnace (BF), basic oxygen furnace (BOF) sludge). Application of microwave for upgrading and recovery of valuable metals from primary raw materials (i.e. iron ore). The results indicated that microwave heating is a promising and effective technique for processing primary and secondary steelmaking wastes. After microwave treatment of iron ore for 60 s and 900 W, about a 28.30% increase in grindability.Wet high intensity magnetic separation (WHIMS) indicated that the magnetic separation increased from 34% to 98% after microwave treatment for 90 s and 900 W. In the case of EAF dust, after microwave processing at 1100 W for 20 min, Zinc removal from 64 % to ~ 97 %, depending on mixture ratio and treatment time.Keywords: dielectric properties, microwave heating, raw materials, secondary raw materials
Procedia PDF Downloads 95579 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw
Authors: N. Ouslimani, M. T. Abadlia
Abstract:
Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption
Procedia PDF Downloads 263578 Removal of Hexavalent Chromium from Aqueous Solutions by Biosorption Using Macadamia Nutshells: Effect of Different Treatment Methods
Authors: Vusumzi E. Pakade, Themba D. Ntuli, Augustine E. Ofomaja
Abstract:
Macadamia nutshell biosorbents treated in three different methods (raw Macadamia nutshell powder (RMN), acid-treated Macadamia nutshell (ATMN) and base-treated Macadamia nutshell (BTMN)) were investigated for the adsorption of Cr(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FT-IR) spectra of free and Cr(VI)-loaded sorbents as well as thermogravimetric analysis (TGA) revealed that the acid and base treatments modified the surface properties of the sorbents. The optimum conditions for the adsorption of Cr(VI) by sorbents were pH 2, contact time 10 h, adsorbent dosage 0.2 g L-1, and concentration 100 mg L-1. The different treatment methods altered the surface characteristics of the sorbents and produced different maximum binding capacities of 42.5, 40.6 and 37.5 mg g-1 for RMN, ATMN and BTMN, respectively. The data was fitted into the Langmuir, Freundlich, Redlich-Peterson and Sips isotherms. No single model could clearly explain the data perhaps due to the complexity of process taking place. The kinetic modeling results showed that the process of Cr(VI) biosorption with Macadamia sorbents was better described by a process of chemical sorption in pseudo-second order. These results showed that the three treatment methods yielded different surface properties which then influenced adsorption of Cr(VI) differently.Keywords: biosorption, chromium(VI), isotherms, Macadamia, reduction, treatment
Procedia PDF Downloads 266577 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing
Authors: Carolina Gouveia, José Vieira, Pedro Pinho
Abstract:
The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR
Procedia PDF Downloads 141576 Preparation and Characterization of the TiO₂ Photocatalytic Membrane for the Degradation of Reactive Orange 16 Dye
Authors: Shruti Sakarkar, Jega Jegatheesan, Srinivasan Madapusi
Abstract:
Photocatalytic membranes have shown great potential for the removal of an organic and inorganic pollutant from wastewater as it combines the degradation and antibacterial properties from photocatalysis and physical separation by the membrane in a single unit. Incorporation of the semiconductor in membrane structure results in enhancing the performance and the properties of the membrane. In this study porous ultrafiltration polyvinylidene fluoride (PVDF) membranes with entrapped TiO₂ nanoparticle were prepared by phase inversion method and further used for the degradation of reactive orange 16 (RO16). Prepared photocatalytic membranes were characterized by the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), contact angle, and atomic force microscope (AFM). The addition of TiO₂ nanopartparticles improves the strength and thermal stability of the membrane. In particular hydrophilicity and permeability increases with the increase of TiO₂ nanoparticles into the membrane. The photocatalytic membrane achieves 80-85% degrdation of RO16. The impact of different parameters such as pH, concentration of photocatalyst, dye concentration and effect of H₂O₂ were analysed. The best conditions for dye degradation were an initial dye concentration of 50 mg/L, with a membrane containing TiO₂ loading of 2wt%. It was observed that in the presence of H₂O₂, degradation increases with increasing H₂O₂ concentration and reached up to 95-98%. The high quality permeates obtained from the photocatalytic membrane can be reused.Keywords: photocatalytic membrane, TiO₂, PVDF, nanoparticles
Procedia PDF Downloads 166575 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions
Authors: M. S. Mrudula, M. R. Gopinathan Nair
Abstract:
In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes
Procedia PDF Downloads 342574 Investigation on the Capacitive Deionization of Functionalized Carbon Nanotubes (F-CNTs) and Silver-Decorated F-CNTs for Water Softening
Authors: Khrizelle Angelique Sablan, Rizalinda De Leon, Jaeyoung Lee, Joey Ocon
Abstract:
The impending water shortage drives us to find alternative sources of water. One of the possible solutions is desalination of seawater. There are numerous processes by which it can be done and one if which is capacitive deionization. Capacitive deionization is a relatively new technique for water desalination. It utilizes the electric double layer for ion adsorption. Carbon-based materials are commonly used as electrodes for capacitive deionization. In this study, carbon nanotubes (CNTs) were treated in a mixture of nitric and sulfuric acid. The silver addition was also facilitated to incorporate antimicrobial action. The acid-treated carbon nanotubes (f-CNTs) and silver-decorated f-CNTs (Ag@f-CNTs) were used as electrode materials for seawater deionization and compared with CNT and acid-treated CNT. The synthesized materials were characterized using TEM, EDS, XRD, XPS and BET. The electrochemical performance was evaluated using cyclic voltammetry, and the deionization performance was tested on a single cell with water containing 64mg/L NaCl. The results showed that the synthesized Ag@f-CNT-10 H could have better performance than CNT and a-CNT with a maximum ion removal efficiency of 50.22% and a corresponding adsorption capacity of 3.21 mg/g. It also showed antimicrobial activity against E. coli. However, the said material lacks stability as the efficiency decreases with repeated usage of the electrode.Keywords: capacitive deionization, carbon nanotubes, desalination, acid functionalization, silver
Procedia PDF Downloads 231573 Facial Design of Combined Photoelectrocehmcial-Fenton Coupling Nanocomposites for Antibiotic Eliminations
Authors: Xinyong Li
Abstract:
A new coupling system was constructed by combining photo-electrochemical cell with eletro-fenton cell (PEC-EF). The electrode material in this system was derived from MnyFe₁₋yCo Prussian-Blue-Analog (PBA). Mn₀.₄Fe₀.₆Co₀.₆₇-N@C spin-coated on carbon paper behaved as the gas diffusion cathode and Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ spin-coated on fluorine-tin oxide glass (FTO) as anode. The two separated cells could degrade Sulfamethoxazole (SMX) simultaneously and some coupling mechanisms by PEC and EF enhancing the degradation efficiency were investigated. The continuous on-site generation of H₂O₂ at cathode through an oxygen reduction reaction (ORR) was realized over rotating ring-disk electrode (RRDE). The electron transfer number (n) of the ORR with Mn₀.₄Fe₀.₆Co₀.₆₇-N@C was 2.5 in the selected potential and pH range. The photo-electrochemical properties of Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ were systematically studied, which displayed good response towards visible light. The photo-induced electrons at anode can transfer to cathode for further use. Efficient photo-electro-catalytic performance was observed in degrading SMX. Almost 100% SMX removal was achieved in 120 min. This work not only provided a highly effective technique for antibiotic treatment but also revealed the synergic effect between PEC and EF.Keywords: Electro-Fenton, photo-electrochemical, synergic effect, sulfamethoxazole
Procedia PDF Downloads 142572 The Orthodontic Management of Multiple Tooth Agenesis with Macroglossia in Adult Patient: Case Report
Authors: Yanuarti Retnaningrum, Cendrawasih A. Farmasyanti, Kuswahyuning
Abstract:
Orthodontists find challenges in treating patients who have cases of macroglossia and multiple tooth agenesis because difficulties in determining the causes, formulating a diagnosis and the potential for relapse after treatment. Definition of macroglossia is a tongue enlargement due to muscle hypertrophy, tumor or an endocrine disturbance. Macroglossia may cause many problems such as anterior proclination of upper and lower incisors, development of general diastema and anterior and/ or posterior open bite. Treatment for such patients with multiple tooth agenesis and macroglossia can be complex and must consider orthodontic and/or surgical interventions. This article discusses an orthodontic non surgical approach to a patient with a general diastema in both maxilla and mandible associated with multiple tooth agenesis and macroglossia. Fixed orthodontic therapy with straightwire appliance was used for space closure in anterior region of maxilla and mandible, also to create a space suitable for future prosthetic restoration. After 12 months treatment, stable and functional occlusal relationships was achieved, although still have edentulous area in both maxilla and mandible. At the end of the orthodontic treatment was obtained with correct overbite and overjet values. After removal of the brackets, a maxillary and mandibular removable retainer combine with artificial tooth were placed for retention.Keywords: general diastema, macroglossia, space closure, tooth agenesis
Procedia PDF Downloads 177571 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis
Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong
Abstract:
A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell
Procedia PDF Downloads 343570 Carbon@NiCoFeS Nanoparticles for Photocatalytic Degradation of Organic Pollutants via Peroxymonosulfate Activation
Authors: Raqiqa Tur Rasool, Ghulam Abbas Ashraf
Abstract:
This study presents the synthesis and application of Carbon@NiCoFeS nanoparticles as a photocatalyst for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. The Carbon@NiCoFeS nanoparticles, synthesized via a hydrothermal method, exhibit a highly crystalline and uniformly distributed nanostructure, as confirmed by XRD, SEM, TEM, and FTIR analyses. The photocatalytic performance was tested using ibuprofen (IBU) as a model pollutant under visible light, demonstrating remarkable efficiency across various conditions, including different concentrations of photocatalyst and PMS and a range of pH values. The enhanced activity is attributed to the synergistic effects of Ni, Co, and Fe, promoting effective electron-hole separation and reactive radical generation, primarily SO4•− and •OH. Quenching experiments highlighted sulfate radicals' predominant role in the degradation process. The Carbon@NiCoFeS photocatalyst also showed excellent reusability and stability over multiple cycles, and its versatility in degrading various organic pollutants underscores its potential for practical wastewater treatment applications. This research offers significant insights into multi-metal sulfide photocatalyst design, showcasing Carbon@NiCoFeS nanoparticles' promising role in environmental remediation via efficient PMS activation.Keywords: NiCoFeS nanoparticles, photocatalytic degradation, peroxymonosulfate activation, organic pollutant removal, wastewater treatment
Procedia PDF Downloads 47569 Alternatives to the Disposal of Sludge from Water and Wastewater Treatment Plants
Authors: Lima Priscila, Gianotto Raiza, Arruda Leonan, Magalhães Filho Fernando
Abstract:
Industrialization and especially the accentuated population growth in developing countries and the lack of drainage, public cleaning, water and sanitation services has caused concern about the need for expansion of water treatment units and sewage. However, these units have been generating by-products, such as the sludge. This paper aims to investigate aspects of operation and maintenance of sludge from a wastewater treatment plant (WWTP - 90 L.s-1) and two water treatment plants (WTPs; 1.4 m3.s-1 and 0.5 m3.s-1) for the purpose of proper disposal and reuse, evaluating their qualitative and quantitative characteristics, the Brazilian legislation and standards. It was concluded that the sludge from the water treatment plants is directly related to the quality of raw water collected, and it becomes feasible for use in construction materials, and to dispose it in the sewage system, improving the efficiency of the WWTP regarding precipitation of phosphorus (35% of removal). The WTP Lageado had 55,726 kg/month of sludge production, more than WTP Guariroba (29,336 kg/month), even though the flow of WTP Guariroba is 1,400 L.s-1 and the WTP Lagedo 500 L.s-1, being explained by the quality that influences more than the flow. The WWTP sludge have higher concentrations of organic materials due to their origin and could be used to improve the fertility of the soil, crop production and recovery of degraded areas. The volume of sludge generated at the WWTP was 1,760 ton/month, with 5.6% of solid content in the raw sludge and in the dewatered sludge it increased its content to 23%.Keywords: disposal, sludge, water treatment, wastewater treatment
Procedia PDF Downloads 320568 Using of TFC Polysulfone Electrospun Nanofiber Mats in Oil-Water Separation
Authors: Nasser A. M. Barakat
Abstract:
Membrane technology is the most promising process for oil-water separation operation if the hydrophilicity, fouling and reusability properties could be improved. In this study, novel effective and reusable membrane for oil-water separation process is introduced based on modification of polysulfone (PSF) electrospun nanofiber mats. The modification process was achieved by incorporation of NaOH nanoparticles inside the PSF nanofibers, and formation of a thin layer from a polyamide polymer on the surface of the electrospun mat. Typically, solutions composed of PSF and NaOH (twelve solutions were prepared based on different PSF concentrations; 15, 18 and 20 wt%, and various NaOH content; 1.5, 1.7 and 2.5 wt%) have been electrospun, then the dried nanofiber mats were treated by m-phenylenediamine and 1,3,5-benzenetricarbonyl chloride to form polyamide thin layer on the surface of the mats. The results indicated that incorporation of NaOH and the formed polyamide could decrease the water contact angle from ~ 130˚ to 13˚ for the nanofiber mats obtained from 20 wt% PSF solutions containing 1.7 wt% sodium hydroxide powders. Interestingly, the membrane having the lowest contact angle could separate oil-water mixture for three successive cycles and 100% removal of the oil with relatively high water flux; 5.5 m3/m2.day. Overall, simplicity of the manufacturing technique, and effectiveness and reusability of the produced nanofiber mats open new avenue for the introduced as promising membranes for the oil-water separation process.Keywords: electrospinning, oil-water separation, hydrophilic membrane, nanofibers
Procedia PDF Downloads 341567 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling
Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar
Abstract:
Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.Keywords: toolpath, part program, optimization, pocket
Procedia PDF Downloads 287566 Determinaton of Processing Parameters of Decaffeinated Black Tea by Using Pilot-Scale Supercritical CO₂ Extraction
Authors: Saziye Ilgaz, Atilla Polat
Abstract:
There is a need for development of new processing techniques to ensure safety and quality of final product while minimizing the adverse impact of extraction solvents on environment and residue levels of these solvents in final product, decaffeinated black tea. In this study pilot scale supercritical carbon dioxide (SCCO₂) extraction was used to produce decaffeinated black tea in place of solvent extraction. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO₂ flow rate (1, 2 ,3 LPM) and co-solvent quantity (0, 2.5, 5 %mol) were selected as extraction parameters. The five factors BoxBehnken experimental design with three center points was performed to generate 46 different processing conditions for caffeine removal from black tea samples. As a result of these 46 experiments caffeine content of black tea samples were reduced from 2.16 % to 0 – 1.81 %. The experiments showed that extraction time, pressure, CO₂ flow rate and co-solvent quantity had great impact on decaffeination yield. Response surface methodology (RSM) was used to optimize the parameters of the supercritical carbon dioxide extraction. Optimum extraction parameters obtained of decaffeinated black tea were as follows: extraction temperature of 62,5 °C, extraction pressure of 375 bar, CO₂ flow rate of 3 LPM, extraction time of 176.5 min and co-solvent quantity of 5 %mol.Keywords: supercritical carbon dioxide, decaffeination, black tea, extraction
Procedia PDF Downloads 364