Search results for: bio-signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: bio-signals

3 Signals Monitored during Anaesthesia

Authors: Launcelot.McGrath

Abstract:

A comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Biosignal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. Understanding which biological signals are most important during anaesthesia is critically important. It is important that the anaesthesiologist understand both the signals themselves and the limitations introduced by the processes of acquisition. In this article, we provide an overview of different types of biological signals as well as the mechanisms applied to acquire them.

Keywords: general biosignals, anaesthesia, biological, electroencephalogram

Procedia PDF Downloads 140
2 Signals Monitored During Anaesthesia

Authors: Launcelot McGrath, Xiaoxiao Liu, Colin Flanagan

Abstract:

It is widely recognised that a comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Bio signal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. There are tremendous biological signals during anaesthesia, and not all of them are important, which to choose to observe is a significant decision. It is important that the anaesthesiologist understand both the signals themselves, and the limitations introduced by the processes of acquisition. In this article, we provide an all-sided overview of different types of biological signals as well as the mechanisms applied to acquire them.

Keywords: general biosignals, anaesthesia, biological, electroencephalogram

Procedia PDF Downloads 100
1 Classifying Affective States in Virtual Reality Environments Using Physiological Signals

Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley

Abstract:

Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28  4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.

Keywords: affective computing, biosignals, machine learning, stress database

Procedia PDF Downloads 136