Search results for: cold spray coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1834

Search results for: cold spray coating

814 The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films

Authors: Nour El Houda Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water.

Keywords: physical properties, sol, gel, TiO2/SiO2 composite films

Procedia PDF Downloads 485
813 The Consumption of Limited Edition Products in Soccer Clubs of Southern Brazil

Authors: Eduardo Wiebbelling, Marcelo Curth

Abstract:

Among the sporting modalities, soccer stands out as the one that reached the world's largest spray today, moving large monetary sums. However, the modality presents potential to be explored by the agents inserted in it. New advertising campaigns have overwhelmed the media and the consumption of sports goods, especially soccer, has increased over the years by having experts increase their marketing projects linked to this specific area. However, little is studied about consumer behavior regarding the purchase of specific products linked to the club. In this sense, the research aims to understand the reasons that lead the fans of two rival clubs in southern Brazil to consume limited edition products from their respective soccer clubs. The method used was an in-depth exploratory survey with thirty memberships and non-memberships. The results showed that in the group of memberships the main motivations are emotional, of historical rescue from memories and feelings that arouse in the fan when they remember their idols and the titles conquered by the club. In the group of non-memberships, a more rational and objective view was perceived, involving aspects such as promotion, utility and extra benefits. Finally, it is realized that fans generally do not value the products to be limited edition. It is believed that this is due to the fact that the products are usually marketed at a higher price when compared to similar products offered on a regular basis.

Keywords: consumer behavior, limited edition, soccer, sports marketing

Procedia PDF Downloads 337
812 Formulation and Evaluation of Colon-Specific Drug Delivery System of Zaltoprofen

Authors: Surajj Sarode, G. P. Vadnere, G. Vidya Sagar

Abstract:

Compression coating is one of the strategies for delivering drug to the colon based on Gastrointestinal PH and transit time concept. The main aim of these formulations to develop rapidly disintegrating Zaltoprofen core tablets compression-coated with a mixture of time-dependent hydrophilic swellable polymer HPMC K 15 and PH responsive soluble polymer Chitosan and Guar gum in different ratios. The effect of the proportion of HPMC, Chitosan and Guar gum in the coat on premature drug release in upper part (Stomach and small intestine) of GIT and the amount of drug release in colon target area was studied. The formulations are carried out by using Direct Compression method. Sodium starch Glycolate used for rapid disintegration. FTIR used for Drug-Polymer Interaction studies. The prepared tablets were evaluated for hardness, thickness, friability, in-vitro disintegration, in-Vitro dissolution and in-vitro kinetic study.

Keywords: zaltoprofen, chitosan, formulation, drug delivery

Procedia PDF Downloads 443
811 Controlled Nano Texturing in Silicon Wafer for Excellent Optical and Photovoltaic Properties

Authors: Deb Kumar Shah, M. Shaheer Akhtar, Ha Ryeon Lee, O-Bong Yang, Chong Yeal Kim

Abstract:

The crystalline silicon (Si) solar cells are highly renowned photovoltaic technology and well-established as the commercial solar technology. Most of the solar panels are globally installed with the crystalline Si solar modules. At the present scenario, the major photovoltaic (PV) market is shared by c-Si solar cells, but the cost of c-Si panels are still very high as compared with the other PV technology. In order to reduce the cost of Si solar panels, few necessary steps such as low-cost Si manufacturing, cheap antireflection coating materials, inexpensive solar panel manufacturing are to be considered. It is known that the antireflection (AR) layer in c-Si solar cell is an important component to reduce Fresnel reflection for improving the overall conversion efficiency. Generally, Si wafer exhibits the 30% reflection because it normally poses the two major intrinsic drawbacks such as; the spectral mismatch loss and the high Fresnel reflection loss due to the high contrast of refractive indices between air and silicon wafer. In recent years, researchers and scientists are highly devoted to a lot of researches in the field of searching effective and low-cost AR materials. Silicon nitride (SiNx) is well-known AR materials in commercial c-Si solar cells due to its good deposition and interaction with passivated Si surfaces. However, the deposition of SiNx AR is usually performed by expensive plasma enhanced chemical vapor deposition (PECVD) process which could have several demerits like difficult handling and damaging the Si substrate by plasma when secondary electrons collide with the wafer surface for AR coating. It is very important to explore new, low cost and effective AR deposition process to cut the manufacturing cost of c-Si solar cells. One can also be realized that a nano-texturing process like the growth of nanowires, nanorods, nanopyramids, nanopillars, etc. on Si wafer can provide a low reflection on the surface of Si wafer based solar cells. The above nanostructures might be enhanced the antireflection property which provides the larger surface area and effective light trapping. In this work, we report on the development of crystalline Si solar cells without using the AR layer. The Silicon wafer was modified by growing nanowires like Si nanostructures using the wet controlled etching method and directly used for the fabrication of Si solar cell without AR. The nanostructures over Si wafer were optimized in terms of sizes, lengths, and densities by changing the etching conditions. Well-defined and aligned wires like structures were achieved when the etching time is 20 to 30 min. The prepared Si nanostructured displayed the minimum reflectance ~1.64% at 850 nm with the average reflectance of ~2.25% in the wavelength range from 400-1000 nm. The nanostructured Si wafer based solar cells achieved the comparable power conversion efficiency in comparison with c-Si solar cells with SiNx AR layer. From this study, it is confirmed that the reported method (controlled wet etching) is an easy, facile method for preparation of nanostructured like wires on Si wafer with low reflectance in the whole visible region, which has greater prospects in developing c-Si solar cells without AR layer at low cost.

Keywords: chemical etching, conversion efficiency, silicon nanostructures, silicon solar cells, surface modification

Procedia PDF Downloads 121
810 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

Authors: Mahmoud Huleihil

Abstract:

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

Keywords: magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine

Procedia PDF Downloads 237
809 Atmospheric Pressure Microwave Plasma System and Its Applications

Authors: Waqas A. Toor, Anis U. Baig, Nuaman Shafqat, Raafia Irfan, Muhammad Ashraf

Abstract:

A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation.

Keywords: HFSS high frequency structure simulator, Microwave plasma, UV ultraviolet, WR rectangular waveguide

Procedia PDF Downloads 264
808 EIS Study of the Corrosion Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water

Authors: Nadia Hammouda, Kamel Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water

Procedia PDF Downloads 368
807 Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW

Authors: Mustapha Mahmoud Dif, Fouzia Benali-Toumi, Mohamed Benyahia, Sofiane Bouazza, Abbes Dellal, Slimane Baha

Abstract:

L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C.

Keywords: L multifidi, phenolic content, optimization, time, temperature

Procedia PDF Downloads 413
806 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation

Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie

Abstract:

Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.

Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)

Procedia PDF Downloads 130
805 Corrosion Protective Coatings in Machines Design

Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi

Abstract:

During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.

Keywords: coatings, corrosion, PVD, stainless steel

Procedia PDF Downloads 155
804 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport

Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto

Abstract:

The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.

Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell

Procedia PDF Downloads 87
803 Synthesis of Nanosized Amorphous Alumina Particles and Their Use in Electroless Ni-P Coatings

Authors: Preeti Makkar, R. C. Agarwala, Vijaya Agarwala

Abstract:

The present study focuses on the preparation of Al2O3 nanoparticles by top down approach i.e. mechanical milling using high energy planetary ball mill at 250 rpm for 40h. The milled Al2O3 nanoparticles are then used as the second phase to develop electroless (EL) Ni-P- Al2O3 nanocomposite coatings on mild steel substrate. An alkaline bath was used with a suspension of Al2O3 particles (4 g/L) for the synthesis of Ni-P-Al2O3 nanocomposite coating. The surface morphology, size range and phase analysis of as-prepared Al2O3 particles and the coatings were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coatings were heat treated at 400°C for 1h in argon atmosphere and the hardness of the nanocomposite coatings was investigated with respect to Ni-P before and after heat treatment. The results showed that as milled Al2O3 nanoparticles exhibit irregular shaped and size ranges around 40-45 nm. The Al2O3 particles are uniformly distributed in Ni-P matrix. The microhardness of the coatings is found to be significantly improved after heat treatment (1126 VHN).

Keywords: Electroless (EL), Ni-P-Al2O3, nanocomposite, mechanical milling, microhardness

Procedia PDF Downloads 278
802 Fundamentals of Theorizing Power in International Relations

Authors: Djehich Mohamed Yousri

Abstract:

The field of political science is one of the sciences in which there is much controversy, in terms of the multiplicity of schools, trends, and goals. This overlap and complexity in the interpretation of the political phenomenon in political science has been linked to other disciplines associated with it, and the science of international relations and the huge amount of theories that have found a wide range and a decisive position after the national tide in the history of Western political thought, especially after the Westphalia Conference 1648, and as a result was approved The new foundations of international politics, the most important of which is respect for state sovereignty. Historical events continued and coincided with scientific, intellectual, and economic developments following the emergence of the industrial revolution, followed by the technological revolutions in all their contents, which led to the rooting and establishment of a comprehensive political system that is more complex and overlapping than it was in the past during the First and Second World Wars. The international situation has become dependent on the digital revolution and its aspirations in The comprehensive transformation witnessed by international political relations after the Cold War.

Keywords: theorizing, international relations, approaches to international relations, political science, the political system

Procedia PDF Downloads 97
801 Synthesis and Characterization of Thiourea-Formaldehyde Coated Fe3O4 (TUF@Fe3O4) and Its Application for Adsorption of Methylene Blue

Authors: Saad M. Alshehri, Tansir Ahamad

Abstract:

Thiourea-Formaldehyde Pre-Polymer (TUF) was prepared by the reaction thiourea and formaldehyde in basic medium and used as a coating materials for magnetite Fe3O4. The synthesized polymer coated microspheres (TUF@Fe3O4) was characterized using FTIR, TGA SEM and TEM. Its BET surface area was up to 1680 m2 g_1. The adsorption capacity of this ACF product was evaluated in its adsorption of Methylene Blue (MB) in water under different pH values and different temperature. We found that the adsorption process was well described both by the Langmuir and Freundlich isotherm model. The kinetic processes of MB adsorption onto TUF@Fe3O4 were described in order to provide a more clear interpretation of the adsorption rate and uptake mechanism. The overall kinetic data was acceptably explained by a pseudo second-order rate model. Evaluated ∆Go and ∆Ho specify the spontaneous and exothermic nature of the reaction. The adsorption takes place with a decrease in entropy (∆So is negative). The monolayer capacity for MB was up to 450 mg g_1 and was one of the highest among similar polymeric products. It was due to its large BET surface area.

Keywords: TGA, FTIR, magentite, thiourea formaldehyde resin, methylene blue, adsorption

Procedia PDF Downloads 338
800 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Godson Osueke, Edward Gobina

Abstract:

A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery.

Keywords: gas permeation, silica membrane, separation factor, membrane layer thickness

Procedia PDF Downloads 349
799 Three-Dimensional Jet Refraction Simulation Using a Gradient Term Suppression and Filtering Method

Authors: Lican Wang, Rongqian Chen, Yancheng You, Ruofan Qiu

Abstract:

In the applications of jet engine, open-jet wind tunnel and airframe, there wildly exists a shear layer formed by the velocity and temperature gradients between jet flow and surrounded medium. The presence of shear layer will refract and reflect the sound path that consequently influences the measurement results in far-field. To investigate and evaluate the shear layer effect, a gradient term suppression and filtering method is adopted to simulate sound propagation through a steady sheared flow in three dimensions. Two typical configurations are considered: one is an incompressible and cold jet flow in wind tunnel and the other is a compressible and hot jet flow in turbofan engine. A numerically linear microphone array is used to localize the position of given sound source. The localization error is presented and linearly fitted.

Keywords: aeroacoustic, linearized Euler equation, acoustic propagation, source localization

Procedia PDF Downloads 189
798 Surface Pressure Distributions for a Forebody Using Pressure Sensitive Paint

Authors: Yi-Xuan Huang, Kung-Ming Chung, Ping-Han Chung

Abstract:

Pressure sensitive paint (PSP), which relies on the oxygen quenching of a luminescent molecule, is an optical technique used in wind-tunnel models. A full-field pressure pattern with low aerodynamic interference can be obtained, and it is becoming an alternative to pressure measurements using pressure taps. In this study, a polymer-ceramic PSP was used, using toluene as a solvent. The porous particle and polymer were silica gel (SiO₂) and RTV-118 (3g:7g), respectively. The compound was sprayed onto the model surface using a spray gun. The absorption and emission spectra for Ru(dpp) as a luminophore were respectively 441-467 nm and 597 nm. A Revox SLG-55 light source with a short-pass filter (550 nm) and a 14-bit CCD camera with a long-pass (600 nm) filter were used to illuminate PSP and to capture images. This study determines surface pressure patterns for a forebody of an AGARD B model in a compressible flow. Since there is no experimental data for surface pressure distributions available, numerical simulation is conducted using ANSYS Fluent. The lift and drag coefficients are calculated and in comparison with the data in the open literature. The experiments were conducted using a transonic wind tunnel at the Aerospace Science and Research Center, National Cheng Kung University. The freestream Mach numbers were 0.83, and the angle of attack ranged from -4 to 8 degree. Deviation between PSP and numerical simulation is within 5%. However, the effect of the setup of the light source should be taken into account to address the relative error.

Keywords: pressure sensitive paint, forebody, surface pressure, compressible flow

Procedia PDF Downloads 120
797 The Professionalisation of British Intelligence Analysts

Authors: Michael S. Goodman

Abstract:

The Joint Intelligence Committee (JIC) has been the senior most analytical body in the UK since its creation in 1936. At various points in its history, most notably and recently in 2004, in the wake of the Iraq war, questions have been asked about its analytical process. In 1968 the British intelligence community saw one of its biggest transformations: the creation of an independent, central cadre of analysts. The ‘Assessments Staff’ was a novel attempt to improve the quality of analysis by fostering independence from departmental biases that had long plagued British intelligence. Seconded into the Cabinet Office, staff were allocated a ‘desk,’ and their role was to produce high level assessments for the most senior readers in the land. At the same time, efforts were made to ‘professionalise’ the analysts. This paper is based on a detailed archival examination of the JIC’s documentary files. It will recount the reasons behind this organisational reform, what the changes entailed, and whether they were a success. The changes were immediately brought to bear with the intelligence assessments prior to the Soviet invasion of Czechoslovakia, something that the JIC failed to appreciate.

Keywords: intelligence, cold war history, analysis, united kingdom

Procedia PDF Downloads 68
796 Chi Square Confirmation of Autonomic Functions Percentile Norms of Indian Sportspersons Withdrawn from Competitive Games and Sports

Authors: Pawan Kumar, Dhananjoy Shaw, Manoj Kumar Rathi

Abstract:

Purpose of the study were to compare between (a) frequencies among the four quartiles of percentile norms of autonomic variables from power events and (b) frequencies among the four quartiles percentile norms of autonomic variables from aerobic events of Indian sportspersons withdrawn from competitive games and sports in regard to number of samples falling in each quartile. The study was conducted on 430 males of 30 to 35 years of age. Based on the nature of game/sports the retired sportspersons were classified into power events (throwers, judo players, wrestlers, short distance swimmers, cricket fast bowlers and power lifters) and aerobic events (long distance runners, long distance swimmers, water polo players). Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with frequency, percentage of each quartile and finally the frequencies were compared with the chi square analysis. The finding pertaining to norm reference comparison of frequencies among the four quartiles of Indian sportspersons withdrawn from competitive games and sports from (a) power events suggests that frequency distribution in four quartile namely Q1, Q2, Q3, and Q4 are significantly different at .05 level in regard to variables namely, SDNN, Total Power (Absolute Power), HF (Absolute Power), LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, valsalva manoeuvre, hand grip test, cold pressor test and lying to standing test, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD, SDANN, NN50 Count, pNN50 Count, LF (Absolute Power) and 30: 15 Ratio (b) aerobic events suggests that frequency distribution in four quartile are significantly different at .05 level in regard to variables namely, SDNN, LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, hand grip test, cold pressor test, lying to standing test and 30: 15 ratio, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD. SDANN, NN50 count, pNN50 count, Total Power (Absolute Power), LF(Absolute Power) HF(Absolute Power), and valsalva manoeuvre. The study concluded that comparison of frequencies among the four quartiles of Indian retired sportspersons from power events and aerobic events are different in four quartiles in regard to selected autonomic functions, hence the developed percentile norms are not homogenously distributed across the percentile scale; hence strengthen the percentage distribution towards normal distribution.

Keywords: power, aerobic, absolute power, normalized power

Procedia PDF Downloads 349
795 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation

Authors: Panagiotis Svarnas, Polykarpos Papadopoulos

Abstract:

Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.

Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force

Procedia PDF Downloads 135
794 Air-Purifying Properties of Cement Mortars Intermixed with TiO₂-SiO₂ Composites

Authors: A.M. Kaja, Q. Yu, H.J.H Brouwers

Abstract:

An increased functionality of concrete towards higher eco-efficiency is nowadays of great importance due to the decreasing air quality in urban areas. Surface modifications of concrete walls and roads, as a coating or an intermixing of the surface layer with TiO₂, provide an opportunity to improve the air quality by reducing NOx via photocatalytic phenomena. Nevertheless, there are still concerns regarding the cost-efficiency as well as the toxicity of intermediate products which can be produced during the photocatalysis, limiting a widespread adoption of these materials. This study addresses the problem of the selectivity of cement mortars towards nitrate in terms of microstructural characteristics and hydration products. The ability of cement mortars matrix intermixed with commercial TiO₂ and TiO₂-SiO₂ composite to abate NO₂ is investigated. The influence of hydration products formed under the carbonation facilitating conditions is discussed and solutions how to optimize the mix design are proposed. The incorporation of the TiO₂-SiO₂ composite into cement mortar is found to increase the nitrate selectivity index.

Keywords: cement matrix, NO₂ abatement, photocatalysis, TiO₂-SiO₂ composite

Procedia PDF Downloads 156
793 Development and Evaluation of Surgical Sutures Coated with Antibiotic Loaded Gold Nanoparticles

Authors: Sunitha Sampathi, Pankaj Kumar Tiriya, Sonia Gera, Sravanthi Reddy Pailla, V. Likhitha, A. J. Maruthi

Abstract:

Surgical site infections (SSIs) are the most common nosocomial infections localized at the incision site. With an estimated 27 million surgical procedures each year in USA, approximately 2-5% rate of SSIs are predicted to occur annually. SSIs are treated with antibiotic medication. Current trend suggest that the direct drug delivery from the suture to the scared tissue can improve patient comfort and wound recovery. For that reason coating the surface of the medical device such as suture and catguts with broad spectrum antibiotics can prevent the formation of bactierial colonies with out comprimising the mechanical properties of the sutures.Hence, the present study was aimed to develop and evaluate a surgical suture coated with an antibiotic Ciprofloxacin hydrochloride loaded on gold nanoparticles. Gold nanoparticles were synthesized by chemical reduction method and conjugated with ciprofloxacin using Polyvinylpyrolidone as stabilizer and gold as carrier. Ciprofloxacin conjugated gold nanoparticles were coated over an absorbable surgical suture made of Polyglactan using sodium alginate as an immobilising agent by slurry dipping technique. The average particle size and Polydispersity Index of drug conjugated gold NPs were found to be 129±2.35 nm and 0.243±0.36 respectively. Gold nanoparticles are characterized by UV-Vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy and Transmission electron microscopy. FT-IR revealed that there is no chemical interaction between drug and polymer. Antimicrobial activity for coated sutures was evaluated by disc diffusion method on culture plates of both gram negative (E-coli) and gram positive bacteria (Staphylococcus aureus) and results found to be satisfactory. In vivo studies for coated sutures was performed on Swiss albino mice and histological evaluation of intestinal wound healing parameters such as wound edges in mucosa, muscularis, presence of necrosis, exudates, granulation tissue, granulocytes, macrophages, restoration, and repair of mucosal epithelium and muscularis propria on day 7 after surgery were studied. The control animal group, sutured with plain suture (uncoated suture) showed signs of restoration and repair, but presence of necrosis, heamorraghic infiltration and granulation tissue was still noticed. Whereas the animal group treated with ciprofloxacin and ciprofloxacin gold nanoparticle coated sutures has shown promising decrease in terms of haemorraghic infiltration, granulation tissue, necrosis and better repaired muscularis layers on comparision with plain coated sutures indicating faster rate of repair and less chance of sepsis. Hence coating of sutures with broad spectrum antibiotics can be an alternate technique to reduce SSIs.

Keywords: ciprofloxacin hydrochloride, gold nanoparticles, surgical site infections, sutures

Procedia PDF Downloads 254
792 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement

Procedia PDF Downloads 166
791 Elaboration and Physico-Chemical Characterization of Edible Films Made from Chitosan and Spray Dried Ethanolic Extracts of Propolis

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

It was necessary to establish which formulation is suitable for the preservation of aquaculture products, that why edible films were made. These were to a characterization in order to meet their morphology physicochemical and mechanical properties, optical. Six Formulations of chitosan and propolis ethanolic extract encapsulated were developed because of their activity against pathogens and due to their properties, which allows the creation waterproof polymer networks against gasses, vapor, and physical damage. In the six Formulations, the concentration of comparison material (1% w/v, 2% pv) and the bioactive concentrations (0.5% w/v, 1% w/v, 1.5% pv) were changed and the results obtained were compared with statistical and multivariate analysis methods. It was observed that the matrices showed a mayor impermeability and thickness control samples and the samples reported in the literature. Also, these films showed a notorious uniformity of the films and a bigger resistance to the physical damage compared with other edible films made of other biopolymers. However the action of some compounds had a negative effect on the mechanical properties and changed drastically the optical properties, the bioactive has an effect on Polymer Matrix and it was determined that the films with 2% w / v of chitosan and 1.5% w/v encapsulated, exhibited the best properties and suffered to a lesser extent the negative impact of immiscible substances.

Keywords: chitosan, edible films, ethanolic extract of propolis, mechanical properties, optical properties, physical characterization, scanning electron microscopy (SEM)

Procedia PDF Downloads 437
790 Conjugated Chitosan-Carboxymethyl-5-Fluorouracil Nanoparticles for Skin Delivery

Authors: Mazita Mohd Diah, Anton V. Dolzhenko, Tin Wui Wong

Abstract:

Nanoparticles, being small with a large specific surface area, increase solubility, enhance bioavailability, improve controlled release and enable precision targeting of the entrapped compounds. In this study, chitosan as polymeric permeation enhancer was conjugated to a polar pro-drug, carboxymethyl-5-fluorouracil (CMFU) to increase the skin drug permeation. Chitosan-CMFU conjugate was synthesized using chemical conjugation process through succinate linker. It was then transformed into nanoparticles via spray drying method. The conjugation was elucidated using Fourier Transform Infrared and Proton Nuclear Magnetic Resonance techniques. The nanoparticle size, size distribution, zeta potential, drug content, skin permeation and retention profiles were characterized. The conjugation was denoted using 1H NMR by new peaks at signal δ = 4.184 ppm (singlet, 2H for CH2) and 7.676-7.688 ppm (doublet, 1H for C6) attributed to CMFU in chitosan-CMFU NMR spectrum. The nanoparticles had profiles of particle size: 93.97 ±35.11 nm, polydispersity index: 0.40 ± 0.14, zeta potential: +18.25 ±2.95 mV and drug content: 6.20 ± 1.98 % w/w. Almost 80 % w/w CMFU in the form of nanoparticles permeated through the skin in 24 hours and close to 50 % w/w permeation occurred in first 1-2 hours. Without conjugation to chitosan and nanoparticulation, less than 40 % w/w CMFU permeated through the skin in 24 hours. The skin drug retention likewise was higher with chitosan-CMFU nanoparticles (15.34 ± 5.82 % w/w) than CMFU (2.24 ± 0.57 % w/w). CMFU, through conjugation with chitosan permeation enhancer and processed in nanogeometry, had its skin permeation and retention degree promoted.

Keywords: carboxymethyl-5-fluorouracil, chitosan, conjugate, skin permeation, skin retention

Procedia PDF Downloads 359
789 Zero-Knowledge Proof-of-Reserve: A Confidential Approach to Cryptocurrency Asset Verification

Authors: Sam Ng, Lewis Leighton, Sam Atkinson, Carson Yan, Landan Hu, Leslie Cheung, Brian Yap, Kent Lung, Ketat Sarakune

Abstract:

This paper introduces a method for verifying cryptocurrency reserves that balances the need for both transparency and data confidentiality. Our methodology employs cryptographic techniques, including Merkle Trees, Bulletproof, and zkSnark, to verify that total assets equal or exceed total liabilities, represented by customer funds. Importantly, this verification is achieved without disclosing sensitive information such as the total asset value, customer count, or cold wallet addresses. We delve into the construction and implementation of this methodology. While the system is robust and scalable, we also identify areas for potential enhancements to improve its efficiency and versatility. As the digital asset landscape continues to evolve, our approach provides a solid foundation for ensuring continued trust and security in digital asset platforms.

Keywords: cryptocurrency, crypto-currency, proof-of-reserve, por, zero-knowledge, ZKP

Procedia PDF Downloads 67
788 Heat Transfer Studies on CNT Nanofluids in a Turbulent Flow Heat Exchanger

Authors: W. Rashmi, M. Khalid, O. Seiksan, R. Saidur, A. F. Ismail

Abstract:

Nanofluids have received much more attention since its discovery. They are believed to be promising coolants in heat transfer applications due to their enhanced thermal conductivity and heat transfer characteristics. In this study, the enhancement in heat transfer of CNT-nanofluids under turbulent flow conditions is investigated experimentally. Carbon nanotube (CNTs) concentration was varied between 0.051-0.085 wt%. The nanofluid suspension was stabilized by gum arabic (GA) through a process of homogenisation and sonication. The flow rates of cold fluid (water) is varied from 1.7-3 L/min and flow rates of the hot fluid is varied between 2-3.5 L/min. Thermal conductivity, density and viscosity of the nanofluids were also measured as a function of temperature and CNT concentration. The experimental results are validated with theoretical correlations for turbulent flow available in the literature. Results showed an enhancement in heat transfer range between 9-67% as a function of temperature and CNT concentration.

Keywords: nanofluids, carbon nanotubes (CNT), heat transfer enhancement, heat transfer

Procedia PDF Downloads 494
787 A Counter-flow Vortex Tube With Energy Separation: An Experimental Study and CFD Analysis

Authors: Li̇zan Mahmood Khorsheed Zangana

Abstract:

Experimental and numerical investigations have been carried out to study the mechanism of separation energy and flow phenomena in the counter-flow vortex tube. This manuscript presents a complete comparison between the experimental investigation and CFD analysis. The experimental model tested under different inlet pressures. Three-dimensional numerical modelling using the k-ε model. The results show any increase in both cold mass fraction and inlet pressure caused to increase ΔTc, and the maximum ΔTc value occurs at P = 6 bar. The coefficient of performance (COP) of two important factors in the vortex tube have been evaluated, which ranged from 0.25 to 0.74. The maximum axial velocity is 93, where it occurs at the tube axis close the inlet exit (Z/L=0.2). The results showed a good agreement for experimental and numerical analysis.

Keywords: counter flow, vortex tube, computational fluid dynamics analysis, energy separation, experimental study

Procedia PDF Downloads 70
786 Energy Refurbishment of University Building in Cold Italian Climate: Energy Audit and Performance Optimization

Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli

Abstract:

The Directive 2010/31/EC 'Directive of the European Parliament and of the Council of 19 may 2010 on the energy performance of buildings' moved the targets of the previous version toward more ambitious targets, for instance by establishing that, by 31 December 2020, all new buildings should demand nearly zero-energy. Moreover, the demonstrative role of public buildings is strongly affirmed so that also the target nearly zero-energy buildings is anticipated, in January 2019. On the other hand, given the very low turn-over rate of buildings (in Europe, it ranges between 1-3%/yearly), each policy that does not consider the renovation of the existing building stock cannot be effective in the short and medium periods. According to this proposal, the study provides a novel, holistic approach to design the refurbishment of educational buildings in colder cities of Mediterranean regions enabling stakeholders to understand the uncertainty to use numerical modelling and the real environmental and economic impacts of adopting some energy efficiency technologies. The case study is a university building of Molise region in the centre of Italy. The proposed approach is based on the application of the cost-optimal methodology as it is shown in the Delegate Regulation 244/2012 and Guidelines of the European Commission, for evaluating the cost-optimal level of energy performance with a macroeconomic approach. This means that the refurbishment scenario should correspond to the configuration that leads to lowest global cost during the estimated economic life-cycle, taking into account not only the investment cost but also the operational costs, linked to energy consumption and polluting emissions. The definition of the reference building has been supported by various in-situ surveys, investigations, evaluations of the indoor comfort. Data collection can be divided into five categories: 1) geometrical features; 2) building envelope audit; 3) technical system and equipment characterization; 4) building use and thermal zones definition; 5) energy building data. For each category, the required measures have been indicated with some suggestions for the identifications of spatial distribution and timing of the measurements. With reference to the case study, the collected data, together with a comparison with energy bills, allowed a proper calibration of a numerical model suitable for the hourly energy simulation by means of EnergyPlus. Around 30 measures/packages of energy, efficiency measure has been taken into account both on the envelope than regarding plant systems. Starting from results, two-point will be examined exhaustively: (i) the importance to use validated models to simulate the present performance of building under investigation; (ii) the environmental benefits and the economic implications of a deep energy refurbishment of the educational building in cold climates.

Keywords: energy simulation, modelling calibration, cost-optimal retrofit, university building

Procedia PDF Downloads 173
785 Distribution and Densities of Anopheles Mosquito in El Obied Town, Sudan

Authors: Adam Musa Adam Eissa

Abstract:

Environmental and weather changes especially rainfall affects the distribution and densities of mosquitoes. This work was carried out to study the distribution and densities of mosquitoes adults and larvae in a total of five selected stations in El Obied Town. A cross-sectional survey of Anopheline mosquito larval habitats was conducted. The survey was conducted during the dry season (January 2013). Larvae were collected by using the standard dipping technique, while adult stages were collected by rearing larvae in cage, because the density of adults Anopheles mosquito per room was zero by using spray sheet method by using Permethrin pesticide 25%E.C, during the study period. The results revealed that (2347) Anopheline mosquito larvae were found and collected from only one station. All of which (2347) larvae (100%) were classified as probably Anopheles Squamosus. The study also showed that, a number of 81 adults (100%) Anopheline mosquito were classified as probably Anopheles Squamosus. Anopheles Squamosus were found only in the shallow pond water habitat in Alrahma west area of El Obied, the mean Anopheline density in the study area for larvae was 0.313 per dip while the mean density of adult was 0 per room. The high mosquito larval density in Alrahma west area indicated that, this part of El Obied Town is at risk of mosquito-borne diseases including malaria. This study recommended to apply the control program against mosquito at this part of the Town.

Keywords: anopheles, squamosus, Alrahma, distribution

Procedia PDF Downloads 278