Search results for: Sustainable Energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11968

Search results for: Sustainable Energy

1588 Use of Recycled Vegetable Oil in the Diet of Lactating Sows

Authors: Juan Manuel Uriarte Lopez, Hector Raul Guemez Gaxiola, Javier Alonso Romo Rubio, Juan Manuel Romo Valdez

Abstract:

The objective of this investigation was to determine the influence of the use of recycled vegetable oil from restaurants in the productive performance of sows in lactation. Twenty-four hybrids lactating sows (Landrace x Yorkshire) were divided into three treatments with eight sows per treatment. On day 107 of gestation, the sows were moved to the mesh floor maternity cages in an environment regulated by the environment regulated (2.4 × 0.6 m) contained an area (2.4 × 0.5 m) for newborn pigs on each side, all diets were provided as a dry powder, and the sows received free access to water throughout the experimental period. After farrowing, the sows were fasted for 12 hours, the daily feed ration gradually increased, and the sows had ad libitum access to feed on the fourth day. The diets used were corn-soybean meal-based, containing 0 (CONT), recycled vegetable oil 1.0 % (RVOL), or recycled vegetable oil 1.5 % (RVOH) for 30 days. The diets contained similar calculated levels of crude protein and metabolizable energy and contained vitamins and minerals that exceeded National Research Council (1998) recommendations; sows were fed three times daily. On day 30, piglets were weaned, and performances of lactating sows and nursery piglets were recorded. Results indicated that average daily feed intake (5.58, 5.55, and 5.49 kg for CONT, RVOL, and RVO, respectively) of sows were not affected (P > 0.05) by different dietary. There was no difference in the average body weight of piglets on the day of birth, with 1.33, 1.36, and 1.35 kg, respectively (P > 0.05). There was no difference in average body weight of piglets on day 30, with 6.91, 6.75, and 7.05 kg, respectively 0.05) between treatments numbers of weaned piglets per sow (9.95, 9.80, and 9.80) were not affected by treatments (P > 0.05).In conclusion, the substitution of virgin vegetable oil for recycled vegetable oil in the diet does not affect the productive performance of lactating sows.

Keywords: lactating, sow, vegetable, oil

Procedia PDF Downloads 300
1587 Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure

Authors: Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, Philomela Komninou

Abstract:

A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation.

Keywords: chromium-rich tannery residues, glass-ceramic materials, mechanical properties, microstructure

Procedia PDF Downloads 341
1586 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization

Authors: Shahrukh Ahmad, Purnendu Bose

Abstract:

Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.

Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs

Procedia PDF Downloads 79
1585 Considering International/Local Peacebuilding Partnerships: The Stoplights Analysis System

Authors: Charles Davidson

Abstract:

This paper presents the Stoplight Analysis System of Partnering Organizations Readiness, offering a structured framework to evaluate conflict resolution collaboration feasibility, especially crucial in conflict areas, employing a colour-coded approach and specific assessment points, with implications for more informed decision-making and improved outcomes in peacebuilding initiatives. Derived from at total of 40 years of practical peacebuilding experience from the project’s two researchers as well as interviews of various other peacebuilding actors, this paper introduces the Stoplight Analysis System of Partnering Organizations Readiness, a comprehensive framework designed to facilitate effective collaboration in international/local peacebuilding partnerships by evaluating the readiness of both potential partner organisations and the location of the proposed project. ^The system employs a colour-coded approach, categorising potential partnerships into three distinct indicators: Red (no-go), Yellow (requires further research), and Green (promising, go ahead). Within each category, specific points are identified for assessment, guiding decision-makers in evaluating the feasibility and potential success of collaboration. The Red category signals significant barriers, prompting an immediate stoppage in the consideration of partnership. The Yellow category encourages deeper investigation to determine whether potential issues can be mitigated, while the Green category signifies organisations deemed ready for collaboration. This systematic and structured approach empowers decision-makers to make informed choices, enhancing the likelihood of successful and mutually beneficial partnerships. Methodologically, this paper utilised interviews from peacebuilders from around the globe, scholarly research of extant strategies, and a collaborative review of programming from the project’s two authors from their own time in the field. This method as a formalised model has been employed for the past two years across a litany of partnership considerations, and has been adjusted according to its field experimentation. This research holds significant importance in the field of conflict resolution as it provides a systematic and structured approach to peacebuilding partnership evaluation. In conflict-affected regions, where the dynamics are complex and challenging, the Stoplight Analysis System offers decision-makers a practical tool to assess the readiness of partnering organisations. This approach can enhance the efficiency of conflict resolution efforts by ensuring that resources are directed towards partnerships with a higher likelihood of success, ultimately contributing to more effective and sustainable peacebuilding outcomes.

Keywords: collaboration, conflict resolution, partnerships, peacebuilding

Procedia PDF Downloads 64
1584 Examining Smallholder Farmers’ Perceptions of Climate Change and Barriers to Strategic Adaptation in Todee District, Liberia

Authors: Joe Dorbor Wuokolo

Abstract:

Thousands of smallholder farmers in Todee District, Montserrado county, are currently vulnerable to the negative impact of climate change. The district, which is the agricultural hot spot for the county, is faced with unfavorable changes in the daily temperature due to climate change. Farmers in the district have observed a dramatic change in the ratio of rainfall to sunshine, which has caused a chilling effect on their crop yields. However, there is a lack of documentation regarding how farmers perceive and respond to these changes and challenges. A study was conducted in the region to examine the perceptions of smallholder farmers regarding the negative impact of climate change, the adaptation strategies practice, and the barriers that hinder the process of advancing adaptation strategy. On purpose, a sample of 41 respondents from five towns was selected, including five town chiefs, five youth leaders, five women leaders, and sixteen community members. Women and youth leaders were specifically chosen to provide gender balance and enhance the quality of the investigation. Additionally, to validate the barriers farmers face during adaptation to climate change, this study interviewed eight experts from local and international organizations and government ministries and agencies involved in climate change and agricultural programs on what they perceived as the major barrier in both local and national level that impede farmers adaptation to climate change impact. SPSS was used to code the data, and descriptive statistics were used to analyze the data. The weighted average index (WAI) was used to rank adaptation strategies and the perceived importance of adaptation practices among farmers. On a scale from 0 to 3, 0 indicates the least important technique, and 3 indicates the most effective technique. In addition, the Problem Confrontation Index (PCI) was used to rank the barriers that prevented farmers from implementing adaptation measures. According to the findings, approximately 60% of all respondents considered the use of irrigation systems to be the most effective adaptation strategy, with drought-resistant varieties making up 30% of the total. Additionally, 80% of respondents placed a high value on drought-resistant varieties, while 63% percent placed it on irrigation practices. In addition, 78% of farmers ranked and indicated that unpredictability of the weather is the most significant barrier to their adaptation strategies, followed by the high cost of farm inputs and lack of access to financing facilities. 80% of respondents believe that the long-term changes in precipitation (rainfall) and temperature (hotness) are accelerating. This suggests that decision-makers should adopt policies and increase the capacity of smallholder farmers to adapt to the negative impact of climate change in order to ensure sustainable food production.

Keywords: adaptation strategies, climate change, farmers’ perception, smallholder farmers

Procedia PDF Downloads 82
1583 Relocation of Plastic Hinge of Interior Beam Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames

Authors: P. Wongmatar, C. Hansapinyo, C. Buachart

Abstract:

Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. Past researches shown that the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam–column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.

Keywords: relocation, plastic hinge, intermediate bar, T-section steel, precast concrete frame

Procedia PDF Downloads 273
1582 Free Vibration Analysis of Timoshenko Beams at Higher Modes with Central Concentrated Mass Using Coupled Displacement Field Method

Authors: K. Meera Saheb, K. Krishna Bhaskar

Abstract:

Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates etc. These structural elements, sometimes carry concentrated masses at discrete points, and when subjected to severe dynamic environment tend to vibrate with large amplitudes. The frequency amplitude relationship is very much essential in determining the response of these structural elements subjected to the dynamic loads. For Timoshenko beams, the effects of shear deformation and rotary inertia are to be considered to evaluate the fundamental linear and nonlinear frequencies. A commonly used method for solving vibration problem is energy method, or a finite element analogue of the same. In the present Coupled Displacement Field method the number of undetermined coefficients is reduced to half when compared to the famous Rayleigh Ritz method, which significantly simplifies the procedure to solve the vibration problem. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. The prime objective of the present paper here is to study, in detail, the effect of a central concentrated mass on the large amplitude free vibrations of uniform shear flexible beams. Accurate closed form expressions for linear frequency parameter for uniform shear flexible beams with a central concentrated mass was developed and the results are presented in digital form.

Keywords: coupled displacement field, coupling equation, large amplitude vibrations, moderately thick plates

Procedia PDF Downloads 226
1581 The Influence of Operational Changes on Efficiency and Sustainability of Manufacturing Firms

Authors: Dimitrios Kafetzopoulos

Abstract:

Nowadays, companies are more concerned with adopting their own strategies for increased efficiency and sustainability. Dynamic environments are fertile fields for developing operational changes. For this purpose, organizations need to implement an advanced management philosophy that boosts changes to companies’ operation. Changes refer to new applications of knowledge, ideas, methods, and skills that can generate unique capabilities and leverage an organization’s competitiveness. So, in order to survive and compete in the global and niche markets, companies should incorporate the adoption of operational changes into their strategy with regard to their products and their processes. Creating the appropriate culture for changes in terms of products and processes helps companies to gain a sustainable competitive advantage in the market. Thus, the purpose of this study is to investigate the role of both incremental and radical changes into operations of a company, taking into consideration not only product changes but also process changes, and continues by measuring the impact of these two types of changes on business efficiency and sustainability of Greek manufacturing companies. The above discussion leads to the following hypotheses: H1: Radical operational changes have a positive impact on firm efficiency. H2: Incremental operational changes have a positive impact on firm efficiency. H3: Radical operational changes have a positive impact on firm sustainability. H4: Incremental operational changes have a positive impact on firm sustainability. In order to achieve the objectives of the present study, a research study was carried out in Greek manufacturing firms. A total of 380 valid questionnaires were received while a seven-point Likert scale was used to measure all the questionnaire items of the constructs (radical changes, incremental changes, efficiency and sustainability). The constructs of radical and incremental operational changes, each one as one variable, has been subdivided into product and process changes. Non-response bias, common method variance, multicollinearity, multivariate normal distribution and outliers have been checked. Moreover, the unidimensionality, reliability and validity of the latent factors were assessed. Exploratory Factor Analysis and Confirmatory Factor Analysis were applied to check the factorial structure of the constructs and the factor loadings of the items. In order to test the research hypotheses, the SEM technique was applied (maximum likelihood method). The goodness of fit of the basic structural model indicates an acceptable fit of the proposed model. According to the present study findings, radical operational changes and incremental operational changes significantly influence both efficiency and sustainability of Greek manufacturing firms. However, it is in the dimension of radical operational changes, meaning those in process and product, that the most significant contributors to firm efficiency are to be found, while its influence on sustainability is low albeit statistically significant. On the contrary, incremental operational changes influence sustainability more than firms’ efficiency. From the above, it is apparent that the embodiment of the concept of the changes into the products and processes operational practices of a firm has direct and positive consequences for what it achieves from efficiency and sustainability perspective.

Keywords: incremental operational changes, radical operational changes, efficiency, sustainability

Procedia PDF Downloads 136
1580 Challenges of Strategies for Improving Sustainability in Urban Historical Context in Developing Countries: The Case of Shiraz Bein Al-Haramein

Authors: Amir Hossein Ashari, Sedighe Erfan Manesh

Abstract:

One of the problems in developing countries is renovating the historical context and inducing behaviors appropriate to modern life to such a context. This study was conducted using field and library methods in 2012. Similar cases carried out in Iran and developing countries were compared to unveil the strengths and weaknesses of these projects. At present, in the historical context of Shiraz, the distance between two religious shrines of Shahcheragh (Ahmad ibn Musa) and Astaneh (Sayed Alaa al-Din Hossein), which are significant places in religious, cultural, social, and economic terms, is an area full of historic places called Bein Al-Haramein. Unfortunately, some of these places have been worn out and are not appropriate for common uses. The basic strategy of Bein Al-Haramein was to improve social development of Shiraz, to enhance the vitality and dynamism of the historical context of Bein Al-Haramein and to create tourist attractions in order to boost the city's economic and social stability. To this end, the project includes the huge Bein Al-Haramein Commercial Complex which is under construction now. To construct the complex, officials have decided to demolish places of historical value which can lead to irreparable consequences. Iranian urban design has always been based on three elements of bazaars, mosques and government facilities with bazaars being the organic connector of the other elements. Therefore, the best strategy in the above case is to provide for a commercial connection between the two poles. Although this strategy is included in the project, lack of attention to renovation principles in this area and complete destruction of the context will lead to its irreversible damage and will destroy its cultural and historical identity. In urban planning of this project, some important issues have been neglected including: preserving valuable buildings and special old features of the city, rebuilding worn buildings and context to attract trust and confidence of the people, developing new models according to changes, improving the structural position of old context with minimal degradation, attracting partnerships of residents and protecting their rights and finally using potential facilities of the old context. The best strategy for achieving sustainability in Bein Al-Haramein can be the one used in the distance between Santa Maria Novella and Santa Maria Del Fiore churches in historical context where while protecting the historic context and constructions, old buildings were renovated and given different commercial and service uses making them sustainable and dynamic places. Similarly, in Bein Al-Haramein, renovating old constructions and monuments and giving different commercial and other uses to them can help improve the economic and social sustainability of the area.

Keywords: Bein Al-Haramein, sustainability, historical context, historical context

Procedia PDF Downloads 443
1579 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping

Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru

Abstract:

This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.

Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier

Procedia PDF Downloads 328
1578 Economic Impact of Rana Plaza Collapse

Authors: Md. Omar Bin Harun Khan

Abstract:

The collapse of the infamous Rana Plaza, a multi-storeyed commercial building in Savar, near Dhaka, Bangladesh has brought with it a plethora of positive and negative consequences. Bangladesh being a key player in the export of clothing, found itself amidst a wave of economic upheaval following this tragic incident that resulted in numerous Bangladeshis, most of whom were factory workers. This paper compares the consequences that the country’s Ready Made Garments (RMG) sector is facing now, two years into the incident. The paper presents a comparison of statistical data from study reports and brings forward perspectives from all dimensions of Labour, Employment and Industrial Relations in Bangladesh following the event. The paper brings across the viewpoint of donor organizations and donor countries, the impacts of several initiatives taken by foreign organizations like the International Labour Organization, and local entities like the Bangladesh Garment Manufacturers and Exporters Association (BGMEA) in order to reinforce compliance and stabilize the shaky foundation that the RMG sector had found itself following the collapse. Focus of the paper remains on the stance taken by the suppliers in Bangladesh, with inputs from buying houses and factories, and also on the reaction of foreign brands. The paper also focuses on the horrific physical, mental and financial implications sustained by the victims and their families, and the consequent uproar from workers in general regarding compliance with work safety and workers’ welfare conditions. The purpose is to get across both sides of the scenario: the economic impact that suppliers / factories/ sellers/ buying houses/exporters have faced in Bangladesh as a result of complete loss of reliability on them regarding working standards; and also to cover the aftershock felt on the other end of the spectrum by the importers/ buyers, particularly the foreign entities, in terms of the sudden accountability of being affiliated with non- compliant factories. The collapse of Rana Plaza has received vast international attention and strong criticism. Nevertheless, the almost immediate strengthening of labourrights and the wholesale reform undertaken on all sides of the supply chain, evidence a move of all local and foreign stakeholders towards greater compliance and taking of precautionary steps for prevention of further disasters. The tragedy that Rana Plaza embodies served as a much-needed epiphany for the soaring RMG Sector of Bangladesh. Prompt co-operation on the part of all stakeholders and regulatory bodies now show a move towards sustainable development, which further ensures safeguarding against any future irregularities and pave the way for steady economic growth.

Keywords: economy, employment standards, Rana Plaza, RMG

Procedia PDF Downloads 338
1577 Exploring the Challenges of Post-conflict Peacebuilding in the Border Districts of Eastern Zone of Tigray Region

Authors: Gebreselassie Sebhatleab

Abstract:

According to the Global Peace Index report (GPI, 2023), global peacefulness has deteriorated by more than 0.42%. Old and new conflicts, COVID-19, and political and cultural polarization are the main drivers of conflicts in the world. The 2022 was the deadliest year for armed conflict in the history of the GPI. In Ethiopia, over half a million people died in the Tigray war, which was the largest conflict death event since the 1994 Rwandan genocide. In total, 84 countries recorded an improvement, while 79 countries recorded a deterioration in peacefulness across the globe. The Russia-Ukraine war and its consequences were the main drivers of the deterioration in peacefulness globally. Both Russia and Ukraine are now ranked amongst the ten least peaceful countries, and Ukraine had the largest deterioration of any country in the 2023 GPI. In the same year, the global impact of violence on the economy was 17 percent, which was equivalent to 10.9% of global GDP. Besides, the brutal conflict in Tigray started in November. 2020 claimed more than half a million lives lost and displaced nearly 3 million people, along with widespread human rights violations and sexual violence has left deep damage on the population. The displaced people are still unable to return home because the western, southern and Eastern parts of Tigray are occupied by Eritrean and Amhara forces, despite the Pretoria Agreement. Currently, armed conflicts in Amhara in the Oromya regions are intensified, and human rights violations are being reported in both regions. Meanwhile, protests have been held by war-injured TDF members, IDPs and teachers in the Tigray region. Hence, the general objective of this project is to explore the challenges of peace-building processes in the border woredas of the Eastern Zone of the Tigray Region. Methodologically, the project will employ exploratory qualitative research designs to gather and analyze qualitative data. A purposive sampling technique will be applied to gather pertinent information from the key stakeholders. Open-ended interview questions will be prepared to gather relevant information about the challenges and perceptions of peacebuilding in the study area. Data will be analyzed using qualitative methods such as content analysis, narrative analysis and phenomenological analysis to deeply investigate the challenges of peace-building in the study woredas. Findings of this research project will be employed for program intervention to promote sustainable peace in the study area.

Keywords: peace building, conflcit and violence, political instability, insecurity

Procedia PDF Downloads 39
1576 High Pressure Torsion Deformation Behavior of a Low-SFE FCC Ternary Medium Entropy Alloy

Authors: Saumya R. Jha, Krishanu Biswas, Nilesh P. Gurao

Abstract:

Several recent investigations have revealed medium entropy alloys exhibiting better mechanical properties than their high entropy counterparts. This clearly establishes that although a higher entropy plays a vital role in stabilization of particular phase over complex intermetallic phases, configurational entropy is not the primary factor responsible for the high inherent strengthening in these systems. Above and beyond a high contribution from friction stresses and solid solution strengthening, strain hardening is an important contributor to the strengthening in these systems. In this regard, researchers have developed severe plastic deformation (SPD) techniques like High Pressure Torsion (HPT) to incorporate very high shear strain in the material, thereby leading to ultrafine grained (UFG) microstructures, which cause manifold increase in the strength. The presented work demonstrates a meticulous study of the variation in mechanical properties at different radial displacements from the center of HPT tested equiatomic ternary FeMnNi synthesized by casting route, which is a low stacking fault energy FCC alloy that shows significantly higher toughness than its high entropy counterparts like Cantor alloy. The gradient in grain sizes along the radial direction of these specimens has been modeled using microstructure entropy for predicting the mechanical properties, which has also been validated by indentation tests. The dislocation density is computed by FEM simulations for varying strains and validated by analyzing synchrotron diffraction data. Thus, the proposed model can be utilized to predict the strengthening behavior of similar systems deformed by HPT subjected to varying loading conditions.

Keywords: high pressure torsion, severe plastic deformation, configurational entropy, dislocation density, FEM simulation

Procedia PDF Downloads 153
1575 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression

Authors: J. S. Saini, P. P. K. Sandhu

Abstract:

The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.

Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control

Procedia PDF Downloads 338
1574 Bituminous Geomembranes: Sustainable Products for Road Construction and Maintenance

Authors: Ines Antunes, Andrea Massari, Concetta Bartucca

Abstract:

Greenhouse gasses (GHG) role in the atmosphere has been well known since the 19th century; however, researchers have begun to relate them to climate changes only in the second half of the following century. From this moment, scientists started to correlate the presence of GHG such as CO₂ with the global warming phenomena. This has raised the awareness not only of those who were experts in this field but also of public opinion, which is becoming more and more sensitive to environmental pollution and sustainability issues. Nowadays the reduction of GHG emissions is one of the principal objectives of EU nations. The target is an 80% reduction of emissions in 2050 and to reach the important goal of carbon neutrality. Road sector is responsible for an important amount of those emissions (about 20%). The most part is due to traffic, but a good contribution is also given directly or indirectly from road construction and maintenance. Raw material choice and reuse of post-consumer plastic rather than a cleverer design of roads have an important contribution to reducing carbon footprint. Bituminous membranes can be successfully used as reinforcement systems in asphalt layers to improve road pavement performance against cracking. Composite materials coupling membranes with grids and/or fabrics should be able to combine improved tensile properties of the reinforcement with stress absorbing and waterproofing effects of membranes. Polyglass, with its brand dedicated to road construction and maintenance called Polystrada, has done more than this. The company's target was not only to focus sustainability on the final application but also to implement a greener mentality from the cradle to the grave. Starting from production, Polyglass has made important improvements finalized to increase efficiency and minimize waste. The installation of a trigeneration plant and the usage of selected production scraps inside the products as well as the reduction of emissions into the environment, are one of the main efforts of the company to reduce impact during final product build-up. Moreover, the benefit given by installing Polystrada products brings a significant improvement in road lifetime. This has an impact not only on the number of maintenance or renewal that needs to be done (build less) but also on traffic density due to works and road deviation in case of operations. During the end of the life of a road, Polystrada products can be 100% recycled and milled with classical systems used without changing the normal maintenance procedures. In this work, all these contributions were quantified in terms of CO₂ emission thanks to an LCA analysis. The data obtained were compared with a classical system or a standard production of a membrane. What it is possible to see is that the usage of Polyglass products for street maintenance and building gives a significant reduction of emissions in case of membrane installation under the road wearing course.

Keywords: CO₂ emission, LCA, maintenance, sustainability

Procedia PDF Downloads 65
1573 Impact of Youth Corners and Knowledge about Human Sexuality among Young Adults and Adolescents of Nigerian Population in the Prevention of Sexually Transmitted Diseases

Authors: Gabriel I. Oke, Faremi O. Ayodeji

Abstract:

Background: Access to youth Friendly Health Corners is vital for ensuring sexual reproductive health and total well being of young Adults since human sexuality has been widely misunderstood. Meanwhile, behavior of young people towards it remains at variance with the alarm. This study attempt to access the impact of youth corners also called Adolescent Friendly Health Corners on manifestation of human sexual behavior among Nigerian adolescent and young adults. Description: Hundred young adults and adolescents of both sex between the Age range of 12-25years were randomly selected from 5 secondary schools and 3 prominent universities in Southwestern Nigeria and focal group discussions (FGD) were conducted among them. Fifty secondary and primary health facilities were visited between February and June 2017 to conduct interviews for health workers and to ascertain the presence or absence of youth corners. Results: 95% of the health facilities visited lack Youth Corners section neither are they willing to make provision for it due to lack of workmanship and sponsorship. However, 5% with Youth corners does not have well-trained Counselors or a Health Educator but health professionals from nursing profession. 90% of the respondents of which 16-17 years of Age is the mean age had their first sexual exposure with no use of protection even before been introduced to what Sexuality is all about. Virtually, none of the respondents had ever visited a Youth Corner before or heard the term before. 86% have heard about the term STI before of which 60% are using protection, 10% care less about any information attached to the term STI, 4% have not heard of the term STI before even when translated to their local dialect. 20% are abstaining as at the time the study was conducted and they attribute their sexual decision to religion and parental influence. Of the age group 20-25, 45% claimed they have had symptoms of one STI or the other and 40% claimed they have been tested positive for an STI before of which 12% have positive HIV status. Promiscuous behaviors were found among them before they reach the age 16years with pornography ranking the highest, followed by masturbation. Respondents blame this on peer pressure, the lack of Youth Friendly Centers in their locality and lack of proper Sexual Orientation on time. About half of the respondents make use of contraceptives while others have varying views. We found out that inability to access Youth Friendly Centers amongst the respondents might be one of the singular reasons of their early experimentation of their sex life and lack of healthy sexual lifestyle. (95% CI, P=0.922) Conclusion: The study reveals that a connection between youth Friendly Centers and Prevention of Sexually Transmitted Diseases, therefore more sustainable Friendly Youth Corners with well-trained educators are needed in various Health facilities to checkmate the numerous risks of Young People along the path of adulthood.

Keywords: adolescents, sexually transmitted infections, reproductive health, youth corners

Procedia PDF Downloads 230
1572 The Role of Entrepreneur University in the Development of Entrepreneurship Education

Authors: Ramin Tafazzoli, Rahime Zamanfashami, Amir Mohagheghzadeh

Abstract:

Entrepreneurship is the driving engine of countries’ economic development and has a determinant role in the economic, social and cultural improvement of the societies. Entrepreneurship and its impact on countries’ destiny, result in the planner and policy makers’ attempts to explore and extend it in various aspects. These days, all countries follow their social capital development and human resource quality improvement to achieve the strategic national objectives, economic growth, value creation, cultural dynamism, civil excellence and social solidarity, pursuing the sustainable development based on innovation, entrepreneurial technology , knowledge management and knowledge-focused in various levels and areas. Because of the rapid economic and cultural changes in recent decades and also the emerged need for reinforcing the knowledge-based structures and wealth generation via knowledge, a convenient infrastructure is strongly required for generating science and technology. Devoting attention to entrepreneurship and training and fostering the students who have the essential abilities and skills for creating a suitable business unit, is one of the duties of each university. New expectations necessitate that universities in the development trend by way of entrepreneurship, play a prominent role. Since, higher education has an important role in training and fostering the specialist human resource in the society, attention to the academic entrepreneurship help to develop this issue better. The higher education, relying on its core mission (training and researching) be expected to help the path where exploit and apply the created capabilities and also to cause the development in the society. In this term, the higher education play an essential role to expanse and extent the entrepreneurial concepts by establishing the entrepreneurship universities. Therefore, it is necessary to constitute and establish the entrepreneurship university to solve the problems and improve the development trend. The entrepreneurial courses follow the objectives such as: informing, creating culture, entrepreneurial morality, technical knowledge, entrepreneurial skills transferring, preparing the audiences or researching, job creation, business establishing and its preservation. According to the vision 1404 of Islamic republic of Iran in which the society has to include the advanced knowledge in the field of technology and science generation and also economic growth. In this essay, we investigate the entrepreneurship concepts, entrepreneurship university characteristics, entrepreneurship organizations values, entrepreneurship education process, meanwhile paying attention to that fact which the university can play an essential role in entrepreneurs training by education, culture and science. At the end, we present some suggestion and some solution for obstacles, emphasizing on the vision.

Keywords: entrepreneurship, entrepreneur university, higher education, university

Procedia PDF Downloads 433
1571 Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction

Authors: P. Acosta-Santamaría, A. Ibatá-Soto, A. López-Vásquez

Abstract:

Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author’s knowledge, catalysts such as TiO2 doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO2 was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H2O2) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.

Keywords: black sand mineral, methyl orange, oxidation, photocatalysis, reduction

Procedia PDF Downloads 383
1570 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants

Authors: Mehmet Akif Bütüner, İlhan Koşalay

Abstract:

Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.

Keywords: hydroelectric, governor, anomaly detection, machine learning, regression

Procedia PDF Downloads 97
1569 Ecological Engineering Through Organic Amendments: Enhancing Pest Regulation, Beneficial Insect Populations, and Rhizosphere Microbial Diversity in Cabbage Ecosystems

Authors: Ravi Prakash Maurya, Munaswamyreddygari Sreedhar

Abstract:

The present studies on ecological engineering through soil amendments in cabbage crops for insect pests regulation were conducted at G. B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, India. Ten treatments viz., Farm Yard Manure (FYM), Neem cake (NC), Vermicompost (VC), Poultry manure (PM), PM+FYM, NC+VC, NC+PM, VC+FYM, Urea+ SSP+MOP (Standard Check) and Untreated Check were evaluated to study the effect of these amendments on the population of insect pests, natural enemies and the microbial community of the rhizosphere in the cabbage crop ecosystem. The results revealed that most of the cabbage pests, viz., aphids, head borer, gram pod borer, and armyworm, were more prevalent in FYM, followed by PM and NC-treated plots. The best cost-benefit ratio was found in PM + FYM treatment, which was 1: 3.62, while the lowest, 1: 0.97, was found in the VC plot. The population of natural enemies like spiders, coccinellids, syrphids, and other hymenopterans and dipterans was also found to be prominent in organic plots, namely FYM, followed by VC and PM plots. Diversity studies on organic manure-treated plots were also carried out, which revealed a total of nine insect orders (Hymenoptera, Hemiptera, Lepidoptera, Coleoptera, Neuroptera, Diptera, Orthoptera, Dermaptera, Thysanoptera, and one arthropodan class, Arachnida) in different treatments. The Simpson Diversity Index was also studied and found to be maximum in FYM plots. The metagenomic analysis of the rhizosphere microbial community revealed that the highest bacterial count was found in NC+PM plot as compared to standard check and untreated check. The diverse microbial population contributes to soil aggregation and stability. Healthier soil structures can improve water retention, aeration, and root penetration, which are all crucial for crop health. The further analysis also identified a total of 39 bacterial phyla, among which the most abundant were Actinobacteria, Firmicutes, and the SAR324 clade. Actinobacteria and Firmicutes are known for their roles in decomposing organic matter and mineralizing nutrients. Their highest abundance suggests improved nutrient cycling and availability, which can directly enhance plant growth. Hence, organic amendments in cabbage farming can transform the rhizosphere microbiome, reduce pest pressure, and foster populations of beneficial insects, leading to healthier crops and a more sustainable agricultural ecosystem.

Keywords: cabbage ecosystem, organic amendments, rhizosphere microbiome, pest and natural enemy diversity

Procedia PDF Downloads 13
1568 Magnetoresistance Transition from Negative to Positive in Functionalization of Carbon Nanotube and Composite with Polyaniline

Authors: Krishna Prasad Maity, Narendra Tanty, Ananya Patra, V. Prasad

Abstract:

Carbon nanotube (CNT) is a well-known material for very good electrical, thermal conductivity and high tensile strength. Because of that, it’s widely used in many fields like nanotechnology, electronics, optics, etc. In last two decades, polyaniline (PANI) with CNT and functionalized CNT (fCNT) have been promising materials in application of gas sensing, electromagnetic shielding, electrode of capacitor etc. So, the study of electrical conductivity of PANI/CNT and PANI/fCNT is important to understand the charge transport and interaction between PANI and CNT in the composite. It is observed that a transition in magnetoresistance (MR) with lowering temperature, increasing magnetic field and decreasing CNT percentage in CNT/PANI composite. Functionalization of CNT prevent the nanotube aggregation, improves interfacial interaction, dispersion and stabilized in polymer matrix. However, it shortens the length, breaks C-C sp² bonds and enhances the disorder creating defects on the side walls. We have studied electrical resistivity and MR in PANI with CNT and fCNT composites for different weight percentages down to the temperature 4.2K and up to magnetic field 5T. Resistivity increases significantly in composite at low temperature due to functionalization of CNT compared to only CNT. Interestingly a transition from negative to positive magnetoresistance has been observed when the filler is changed from pure CNT to functionalized CNT after a certain percentage (10wt%) as the effect of more disorder in fCNT/PANI composite. The transition of MR has been explained on the basis of polaron-bipolaron model. The long-range Coulomb interaction between two polarons screened by disorder in the composite of fCNT/PANI, increases the effective on-site Coulomb repulsion energy to form bipolaron which leads to change the sign of MR from negative to positive.

Keywords: coulomb interaction, magnetoresistance transition, polyaniline composite, polaron-bipolaron

Procedia PDF Downloads 172
1567 Safety Testing of Commercial Lithium-Ion Batteries and Failure Modes Analysis

Authors: Romeo Malik, Yashraj Tripathy, Anup Barai

Abstract:

Transportation safety is a major concern for vehicle electrification on a large-scale. The failure cost of lithium-ion batteries is substantial and is significantly impacted by higher liability and replacement cost. With continuous advancement on the material front in terms of higher energy density, upgrading safety characteristics are becoming more crucial for broader integration of lithium-ion batteries. Understanding and impeding thermal runaway is the prime issue for battery safety researchers. In this study, a comprehensive comparison of thermal runaway mechanisms for two different cathode types, Li(Ni₀.₃Co₀.₃Mn₀.₃)O₂ and Li(Ni₀.₈Co₀.₁₅Al₀.₀₅)O₂ is explored. Both the chemistries were studied for different states of charge, and the various abuse scenarios that lead to thermal runaway is investigated. Abuse tests include mechanical abuse, electrical abuse, and thermal abuse. Batteries undergo thermal runaway due to a series of combustible reactions taking place internally; this is observed as multiple jets of flame reaching temperatures of the order of 1000ºC. The physicochemical characterisation was performed on cells, prior to and after abuse. Battery’s state of charge and chemistry have a significant effect on the flame temperature profiles which is otherwise quantified as heat released. Majority of the failures during transportation is due to these external short circuit. Finally, a mitigation approach is proposed to impede the thermal runaway hazard. Transporting lithium-ion batteries under low states of charge is proposed as a way forward. Batteries at low states of charge have demonstrated minimal heat release under thermal runaway reducing the risk of secondary hazards such as thermal runaway propagation.

Keywords: battery reliability, lithium-ion batteries, thermal runaway characterisation, tomography

Procedia PDF Downloads 122
1566 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads

Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani

Abstract:

The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 35
1565 Preliminary Result on the Impact of Anthropogenic Noise on Understory Bird Population in Primary Forest of Gaya Island

Authors: Emily A. Gilbert, Jephte Sompud, Andy R. Mojiol, Cynthia B. Sompud, Alim Biun

Abstract:

Gaya Island of Sabah is known for its wildlife and marine biodiversity. It has marks itself as one of the hot destinations of tourists from all around the world. Gaya Island tourism activities have contributed to Sabah’s economy revenue with the high number of tourists visiting the island. However, it has led to the increased anthropogenic noise derived from tourism activities. This may greatly interfere with the animals such as understory birds that rely on acoustic signals as a tool for communication. Many studies in other parts of the regions reveal that anthropogenic noise does decrease species richness of avian community. However, in Malaysia, published research regarding the impact of anthropogenic noise on the understory birds is still very lacking. This study was conducted in order to fill up this gap. This study aims to investigate the anthropogenic noise’s impact towards understory bird population. There were three sites within the Primary forest of Gaya Island that were chosen to sample the level of anthropogenic noise in relation to the understory bird population. Noise mapping method was used to measure the anthropogenic noise level and identify the zone with high anthropogenic noise level (> 60dB) and zone with low anthropogenic noise level (< 60dB) based on the standard threshold of noise level. The methods that were used for this study was solely mist netting and ring banding. This method was chosen as it can determine the diversity of the understory bird population in Gaya Island. The preliminary study was conducted from 15th to 26th April and 5th to 10th May 2015 whereby there were 2 mist nets that were set up at each of the zones within the selected site. The data was analyzed by using the descriptive analysis, presence and absence analysis, diversity indices and diversity t-test. Meanwhile, PAST software was used to analyze the obtain data. The results from this study present a total of 60 individuals that consisted of 12 species from 7 families of understory birds were recorded in three of the sites in Gaya Island. The Shannon-Wiener index shows that diversity of species in high anthropogenic noise zone and low anthropogenic noise zone were 1.573 and 2.009, respectively. However, the statistical analysis shows that there was no significant difference between these zones. Nevertheless, based on the presence and absence analysis, it shows that the species at the low anthropogenic noise zone was higher as compared to the high anthropogenic noise zone. Thus, this result indicates that there is an impact of anthropogenic noise on the population diversity of understory birds. There is still an urgent need to conduct an in-depth study by increasing the sample size in the selected sites in order to fully understand the impact of anthropogenic noise towards the understory birds population so that it can then be in cooperated into the wildlife management for a sustainable environment in Gaya Island.

Keywords: anthropogenic noise, biodiversity, Gaya Island, understory bird

Procedia PDF Downloads 365
1564 Remodeling of Gut Microbiome of Pakistani Expats in China After Intermittent Fasting/Ramadan Fasting

Authors: Hafiz Arbab Sakandar

Abstract:

Time-restricted intermittent fasting (TRIF) impacts host’s physiology and health. Plenty of health benefits have been reported for TRIF in animal models. However, limited studies have been conducted on humans especially in underdeveloped economies. Here, we designed a study to investigate the impact of TRIF/Ramadan fasting (16:8) on the modulation of gut-microbiome structure, metabolic pathways, and predicted metabolites and explored the correlation among them at different time points (during and after the month of Ramadan) in Pakistani Expats living in China. We observed different trends of Shannon-Wiener index in different subjects; however, all subjects showed substantial change in bacterial diversity with the progression of TRIF. Moreover, the changes in gut microbial structure by the end of TRIF were higher vis-a-vis in the beginning, significant difference was observed among individuals. Additionally, metabolic pathways analysis revealed that amino acid, carbohydrate and energy metabolism, glycan biosynthesis metabolism of cofactors and vitamins were significantly affected by TRIF. Pyridoxamine, glutamate, citrulline, arachidonic acid, and short chain fatty acid showed substantial difference at different time points based on the predicted metabolism. In conclusion, these results contribute to further our understanding about the key relationship among, dietary intervention (TRIF), gut microbiome structure and function. The preliminary results from study demonstrate significant potential for elucidating the mechanisms underlying gut microbiome stability and enhancing the effectiveness of microbiome-tailored interventions among the Pakistani populace. Nonetheless, extensive, and rigorous large-scale research on the Pakistani population is necessary to expound on the association between diet, gut microbiome, and overall health.

Keywords: gut microbiome, health, fasting, functionality

Procedia PDF Downloads 75
1563 Lessons Learned from a Chronic Care Behavior Change Program: Outcome to Make Physical Activity a Habit

Authors: Doaa Alhaboby

Abstract:

Behavior change is a complex process that often requires ongoing support and guidance. Telecoaching programs have emerged as effective tools in facilitating behavior change by providing personalized support remotely. This abstract explores the lessons learned from a randomized controlled trial (RCT) evaluation of a telecoaching program focused on behavior change for Diabetics and discusses strategies for implementing these lessons to overcome the challenge of making physical activity a habit. The telecoaching program involved participants engaging in regular coaching sessions delivered via phone calls. These sessions aimed to address various aspects of behavior change, including goal setting, self-monitoring, problem-solving, and social support. Over the course of the program, participants received personalized guidance tailored to their unique needs and preferences. One of the key lessons learned from the RCT was the importance of engagement, readiness to change and the use of technology. Participants who set specific, measurable, attainable, relevant, and time-bound (SMART) goals were more likely to make sustained progress toward behavior change. Additionally, regular self-monitoring of behavior and progress was found to be instrumental in promoting accountability and motivation. Moving forward, implementing the lessons learned from the RCT can help individuals overcome the hardest part of behavior change: making physical activity a habit. One strategy is to prioritize consistency and establish a regular routine for physical activity. This may involve scheduling workouts at the same time each day or week and treating them as non-negotiable appointments. Additionally, integrating physical activity into daily life routines and taking into consideration the main challenges that can stop the process of integrating physical activity routines into the daily schedule can help make it more habitual. Furthermore, leveraging technology and digital tools can enhance adherence to physical activity goals. Mobile apps, wearable activity trackers, and online fitness communities can provide ongoing support, motivation, and accountability. These tools can also facilitate self-monitoring of behavior and progress, allowing individuals to track their activity levels and adjust their goals as needed. In conclusion, telecoaching programs offer valuable insights into behavior change and provide strategies for overcoming challenges, such as making physical activity a habit. By applying the lessons learned from these programs and incorporating them into daily life, individuals can cultivate sustainable habits that support their long-term health and well-being.

Keywords: lifestyle, behavior change, physical activity, chronic conditions

Procedia PDF Downloads 59
1562 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery

Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman

Abstract:

Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.

Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium

Procedia PDF Downloads 80
1561 Performance Evaluation of Polyethyleneimine/Polyethylene Glycol Functionalized Reduced Graphene Oxide Membranes for Water Desalination via Forward Osmosis

Authors: Mohamed Edokali, Robert Menzel, David Harbottle, Ali Hassanpour

Abstract:

Forward osmosis (FO) process has stood out as an energy-efficient technology for water desalination and purification, although the practical application of FO for desalination still relies on RO-based Thin Film Composite (TFC) and Cellulose Triacetate (CTA) polymeric membranes which have a low performance. Recently, graphene oxide (GO) laminated membranes have been considered an ideal selection to overcome the bottleneck of the FO-polymeric membranes owing to their simple fabrication procedures, controllable thickness and pore size and high water permeability rates. However, the low stability of GO laminates in wet and harsh environments is still problematic. The recent developments of modified GO and hydrophobic reduced graphene oxide (rGO) membranes for FO desalination have demonstrated attempts to overcome the ongoing trade-off between desalination performance and stability, which is yet to be achieved prior to the practical implementation. In this study, acid-functionalized GO nanosheets cooperatively reduced and crosslinked by the hyperbranched polyethyleneimine (PEI) and polyethylene glycol (PEG) polymers, respectively, are applied for fabrication of the FO membrane, to enhance the membrane stability and performance, and compared with other functionalized rGO-FO membranes. PEI/PEG doped rGO membrane retained two compacted d-spacings (0.7 and 0.31 nm) compared to the acid-functionalized GO membrane alone (0.82 nm). Besides increasing the hydrophilicity, the coating layer of PEG onto the PEI-doped rGO membrane surface enhanced the structural integrity of the membrane chemically and mechanically. As a result of these synergetic effects, the PEI/PEG doped rGO membrane exhibited a water permeation of 7.7 LMH, salt rejection of 97.9 %, and reverse solute flux of 0.506 gMH at low flow rates in the FO desalination process.

Keywords: desalination, forward osmosis, membrane performance, polyethyleneimine, polyethylene glycol, reduced graphene oxide, stability

Procedia PDF Downloads 98
1560 Performance Analysis of Pumps-as-Turbine Under Cavitating Conditions

Authors: Calvin Stephen, Biswajit Basu, Aonghus McNabola

Abstract:

Market liberalization in the power sector has led to the emergence of micro-hydropower schemes that are dependent on the use of pumps-as-turbines in applications that were not suitable as potential hydropower sites in earlier years. These applications include energy recovery in water supply networks, sewage systems, irrigation systems, alcohol breweries, underground mining and desalination plants. As a result, there has been an accelerated adoption of pumpsas-turbine technology due to the economic advantages it presents in comparison to the conventional turbines in the micro-hydropower space. The performance of this machines under cavitation conditions, however, is not well understood as there is a deficiency of knowledge in literature focused on their turbine mode of operation. In hydraulic machines, cavitation is a common occurrence which needs to be understood to safeguard them and prolong their operation life. The overall purpose of this study is to investigate the effects of cavitation on the performance of a pumps-as-turbine system over its entire operating range. At various operating speeds, the cavitating region is identified experimentally while monitoring the effects this has on the power produced by the machine. Initial results indicate occurrence of cavitation at higher flow rates for lower operating speeds and at lower flow rates at higher operating speeds. This implies that for cavitation free operation, low speed pumps-as-turbine must be used for low flow rate conditions whereas for sites with higher flow rate conditions high speed turbines should be adopted. Such a complete understanding of pumps-as-turbine suction performance can aid avoid cavitation induced failures hence improved reliability of the micro-hydropower plant.

Keywords: cavitation, micro-hydropower, pumps-as-turbine, system design

Procedia PDF Downloads 119
1559 Effect of 8 Weeks of Intervention on Physical Fitness, Hepatokines, and Insulin Resistance in Obese Subjects

Authors: Adela Penesova, Zofia Radikova, Boris Bajer, Andrea Havranova, Miroslav Vlcek

Abstract:

Background: The aim of our study was to compare the effect of intensified lifestyle intervention on insulin resistance (HOMA-IR), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fibroblast growth factor (FGF) 21 after 8 weeks of lifestyle intervention. Methods: A group of 43 obese patients (13M/30F; 43.0±12.4 years; BMI (body mass index) 31.2±6.3 kg/m2 participated in a weight loss interventional program (NCT02325804) following an 8-week hypocaloric diet (-30% energy expenditure) and physical activity 150 minutes/week. Insulin sensitivity was evaluated according to the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity indices according to Matsuda and Cederholm were calculated (ISImat and ISIced). Plasma ALT, AST, Fetuin-A, FGF 21, and physical fitness were measured. Results: The average reduction of body weight was 6.8±4.9 kg (0-15 kg; p=0.0006), accompanied with a significant reduction of body fat amount of fat mass (p=0.03), and waist circumference (p=0.02). Insulin sensitivity has been improved (IR HOMA 2.71±3.90 vs 1.24±0.83; p=0.01; ISIMat 6.64±4.38 vs 8.93±5.36 p ≤ 0.001). Total, LDL cholesterol, and triglycerides decreased (p=0.05, p=0.04, p=0.04, respectively). Physical fitness significantly improved after intervention (as measure VO2 max (maximal oxygen uptake) (p ≤ 0.001). ALT decreased significantly (0.44±0.26 vs post 0.33±0.18 ukat/l, p=0.004); however, AST not (pre 0.40±0.15 vs 0.35±0.09 ukat/l, p=0.07). Hepatokine Fetuin-A significantly decreased after intervention (43.1±10.8 vs 32.6±8.6 ng/ml, p < 0.001); however, FGF 21 levels tended to decrease (146±152 vs 132±164 pg/ml, p=0.07). Conclusion: 8-weeks of diet and physical activity intervention program in obese otherwise healthy subjects led to an improvement of insulin resistance parameters and liver marker profiles, as well as increased physical fitness. This study was supported by grants APVV 15-0228; VEGA 2/0161/16.

Keywords: obesity, diet, exercice, insulin sensitivity

Procedia PDF Downloads 201