Search results for: maximum energy
1553 Infrastructure Sharing Synergies: Optimal Capacity Oversizing and Pricing
Authors: Robin Molinier
Abstract:
Industrial symbiosis (I.S) deals with both substitution synergies (exchange of waste materials, fatal energy and utilities as resources for production) and infrastructure/service sharing synergies. The latter is based on the intensification of use of an asset and thus requires to balance capital costs increments with snowball effects (network externalities) for its implementation. Initial investors must specify ex-ante arrangements (cost sharing and pricing schedule) to commit toward investments in capacities and transactions. Our model investigate the decision of 2 actors trying to choose cooperatively a level of infrastructure capacity oversizing to set a plug-and-play offer to a potential entrant whose capacity requirement is randomly distributed while satisficing their own requirements. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period. The entrant’s willingness-to-pay for the access to the infrastructure is dependent upon its standalone cost and the capacity gap that it must complete in case the available capacity is insufficient ex-post (the complement cost). Since initial capacity choices are driven by ex-ante (expected) yield extractible from the entrant we derive the expected complement cost function which helps us defining the investors’ objective function. We first show that this curve is decreasing and convex in the capacity increments and that it is shaped by the distribution function of the potential entrant’s requirements. We then derive the general form of solutions and solve the model for uniform and triangular distributions. Depending on requirements volumes and cost assumptions different equilibria occurs. We finally analyze the effect of a per-unit subsidy a public actor would apply to foster such sharing synergies.Keywords: capacity, cooperation, industrial symbiosis, pricing
Procedia PDF Downloads 2111552 Russia’s Role in Resolving the Nagorno-Karabakh Conflict 1990-2020
Authors: Friba Haidari
Abstract:
The aim of the study is to identify Russia's role in managing the Nagorno-Karabakh conflict betweenArmenia and Azerbaijan during the years 1990 to 2020. The Nagorno-Karabakh crisis can not be considered a mere territorial conflict but also a crossroads of interests of foreign actors. Geopolitical rivalries and the access to energy by regional and trans-regional actors have complicated the crisis and created a security challenge in the region, which is likely to escalate into a full-blown war between the parties involved. The geopolitical situation of Nagorno-Karabakh and its current situation have affected all peripheral states in some way. Russia, as one of the main actors in this scene, has been actively involved since the beginning of the crisis. The Russians have always sought to strengthen their influence and presence in the Nagorno-Karabakh crisis. Russia's efforts to weaken the role of the Minsk Group, The presence of Western actors, and the deployment of Russian forces in the disputed area can be assessed in this context. However, this study seeks to answer the question of what role did Russia play in managing the Nagorno-Karabakh conflict between Armenia and Azerbaijan between 1990 and 2020? The study hypothesizes that Russia has prevented the escalation of the Nagorno-Karabakh conflict through mediation and some coercion. This study is divided into four parts, including conflict management as a theoretical framework; Examining the competition and the role of actors in the Caucasus region, especially the role of the Minsk Group, and what approach or tools and methods Russia has used in its foreign policy in managing the conflict, and finally what are the relations between the countries involved and what will be Russia's role in the future? Was discussed. This study examines the analysis and transfer of ideas and information using authoritative international sources with an explanatory method and shares its results with everyone.Keywords: Russia, conflict, nagorno-karabakh, management
Procedia PDF Downloads 901551 Lateritic Soils from Ceara, Brazil: Sustainable Use in Constructive Blocks for Social Housing
Authors: Ivelise M. Strozberg, Juliana Sales Frota, Lucas de Oliveira Vale
Abstract:
The state of Ceara, located in the northeast region of Brazil, is abundant in lateritic soil which has been usually discarded due to its lack of agricultural potential while materials of similar nature have been used as constituents of housing constructive elements in many parts of the world, such as India and Portugal, for decades. Since many of the semi-arid housing conditions in the state of Ceara fail to meet the minimum criteria regarding comfort and safety requirements, this research proposed to study the Ceara lateritic soil and the possibility of its use as a sustainable building block constituent for social housings, collaborating to the improvement of the region living conditions. In order to achieve this objective, soil samples were collected from five different locations within the specific region, three of which presented lateritic nature, being characterized according to the Unified Soil Classification System and the MCT methodology, which is a Brazilian methodology developed during the 80’s that aimed to better describe and approach tropical soils, its characterization and behavior. Two of these samples were used to build two different miniature block prototypes, which were manually molded, heated at low temperatures -( < 300 ºC) in order to save energy and lessen the CO₂ high emission rate common in traditional burning methods- and then submitted to load tests. Among the soils tested, the one with the highest degree of laterization and greater presence of fines constituted the block with the best performance in terms of flexural strength tensions, presenting resistance gains when heated at increasing temperatures, which can indicate that this type of soil has potential towards being used as constructing material.Keywords: constructive blocks, lateritic soil, MCT methodology, sustainability
Procedia PDF Downloads 1241550 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 831549 The Use of Intraarticular Aqueous Sarapin for Treatment of Chronic Knee Pain in Elderly Patients in a Primary Care Setting
Authors: Robert E. Kenney, Richard B. Aguilar, Efrain Antunez, Gregory Schor-Haskin, Rafael Rey, Catie Falcon, Luis Arce
Abstract:
This study sought to explore the effect of Sarapin injections on chronic knee pain (CKP). Many adults suffer from CKP which is most often attributed to osteoarthritis. Current treatment regimens for CKP involve the use NSAIDS medications, injections with steroids/analgesic, platelet rich plasma injections, or orthopedic surgical interventions. Sarapin is a commercially available homeopathic aqueous extract from the pitcher plant. Studies on the use of Sarapin as a treatment for cervical, thoracic, and lumbosacral facet joint nerve blocks have been performed with mixed results. There is little available evidence on the use of Sarapin in CKP. This study examines the effect of a series of 3 weekly injections of aqueous Sarapin in 95 elderly patients with CKP in a primary care setting. Cano Health, a primary care group, identified 95 successive patients with CKP from its multimodal physiotherapy program for chronic pain. Patients underwent evaluation by a clinician, underwent diagnostic Xrays of the knees, and the treatment plan with three weekly Sarapin injections was discussed. A pain and functional limitation survey (a modified Lower Extremity Functional Scale (mLEFS)) was administered prior to initiating treatment (Entry Survey (ES)). Each patient received an intraarticular injection of 2 cc of aqueous Sarapin with 1cc 1% lidocaine during weeks 1, 2 and 3. The mLEFS was administered again at week 4, one week after the third Sarapin injection (Exit Survey (ExS)). Demographics: Mean Age 62 +/- 9.8; 73% female; 89% Hispanic/Latino; mean time between ES and ExS was 27.5 +/-8.2 days. Survey: The mLEFS was based on a published Lower Extremity Functional Scale and each patient rated their pain or functional limitation from 0 (no difficulty) to 5 (severe difficulty) for 10 questions. Answers were summed and compared. Maximum score for severe difficulty would be 50 points. Results: Mean pain/functional scores: ES was 30.3 +/-12.1 and ExS was 19.5 +/- 12.5. This represents a relative improvement of 35.7% (P<0.00001). A total of 81% (77/95) of the patients showed improvement in symptoms at week four as assessed by the mLEFS. There were 11 patients who reported an increase in their survey scores while 7 patients reported no change. When evaluating the cohort that reported improvement, the ES was 30.9 +/-11.4 and ExS was 16.3 +/-9.8 yielding a 47.2% relative improvement (P<0.00001). Injections were well tolerated, and no adverse events were reported. Conclusions: In this cohort of 95 elderly patients with CKP, treatment with 3 weekly injections of Sarapin significantly improved pain and function as assessed by a mLEFS survey. The majority (81%) of patients responded positively to therapy, 12% had worsening symptoms and 7% reported no change. The use of intraarticular injections of Sarapin for CKP was shown to be an effective modality of treatment. Sarapin’s low cost, tolerability, and ease of use make it an attractive alternative to NSAIDS, steroids, PRP or surgical intervention for this common debilitating condition.Keywords: Sarapin, intraarticular, chronic knee pain, osteoarthritis
Procedia PDF Downloads 871548 Outdoor Physical Play as Critical to Early Childhood Development: Findings from Saudi Arabia
Authors: Rana S. Alghamdi
Abstract:
Play in early childhood education has been stifled across the world due to an overemphasis on academic achievement and a reduced focus on physical play and motor development. In Saudi Arabia, teachers reticent to allocate more time to play for fear of retribution from parents and administrators that children are losing academic seat time. This practice has proven to be detrimental to the social, emotional, physical, and cognitive development of children. Teachers are pressured to prioritize Arabic, math, and science while providing minimal time for physical activities. Administrators tend to push for an ever-increasing emphasis on academia in order to achieve higher test scores. However, young children often find it difficult to concentrate if they are not able to get out energy through physical play. Furthermore, many youth educators are not qualified to oversee physical activities, and many facilities are unprepared for safe, outdoor play. This results in children getting little to no outdoor activity. They are stuck in a strict academic regimen that may dampen the creativity and imagination easily fostered through cooperative play. For a stronger educational system and more well-rounded students, Saudi schools should enact policies that extend the number of required hours dedicated to outdoor and physical play. They should also offer training for unqualified teachers. This training should focus on the benefits of physical play and instruct them on how to facilitate these activities safely and effectively. School administrators must focus on providing adequate equipment and safe environments for the purpose of outdoor play and education. In doing so, they will be setting their students up for a successful future and improving their abilities in all aspects of education.Keywords: early childhood education, play, outdoor, Saudi Arabia
Procedia PDF Downloads 1481547 The Per Capita Income, Energy production and Environmental Degradation: A Comprehensive Assessment of the existence of the Environmental Kuznets Curve Hypothesis in Bangladesh
Authors: Ashique Mahmud, MD. Ataul Gani Osmani, Shoria Sharmin
Abstract:
In the first quarter of the twenty-first century, the most substantial global concern is environmental contamination, and it has gained the prioritization of both the national and international community. Keeping in mind this crucial fact, this study conducted different statistical and econometrical methods to identify whether the gross national income of the country has a significant impact on electricity production from nonrenewable sources and different air pollutants like carbon dioxide, nitrous oxide, and methane emissions. Besides, the primary objective of this research was to analyze whether the environmental Kuznets curve hypothesis holds for the examined variables. After analyzing different statistical properties of the variables, this study came to the conclusion that the environmental Kuznets curve hypothesis holds for gross national income and carbon dioxide emission in Bangladesh in the short run as well as the long run. This study comes to this conclusion based on the findings of ordinary least square estimations, ARDL bound tests, short-run causality analysis, the Error Correction Model, and other pre-diagnostic and post-diagnostic tests that have been employed in the structural model. Moreover, this study wants to demonstrate that the outline of gross national income and carbon dioxide emissions is in its initial stage of development and will increase up to the optimal peak. The compositional effect will then force the emission to decrease, and the environmental quality will be restored in the long run.Keywords: environmental Kuznets curve hypothesis, carbon dioxide emission in Bangladesh, gross national income in Bangladesh, autoregressive distributed lag model, granger causality, error correction model
Procedia PDF Downloads 1481546 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties
Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa
Abstract:
Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensingKeywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing
Procedia PDF Downloads 1221545 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique
Authors: S. S. Sravanthi, Swati Ghosh Acharyya
Abstract:
Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity.Keywords: automobiles, welding, corrosion, lap joints, Micro XRD
Procedia PDF Downloads 1221544 Parental Involvement and Students' Outcomes: A Study in a Special Education School in Singapore
Authors: E. Er, Y. S. Cheng
Abstract:
The role of parents and caregivers in their children’s education is pivotal. Parental involvement (PI) is often associated with a range of student outcomes. This includes academic achievements, socioemotional development, adaptive skills, physical fitness and school attendance. This study is the first in Singapore to (1) explore the relationship between parental involvement and student outcomes; (2) determine the effects of family structure and socioeconomic status (SES) on parental involvement and (3) investigate factors that inform involvement in parents of children with specific developmental disabilities. Approval for the study was obtained from Nanyang Technological University’s Institutional Review Board in Singapore. The revised version of a comprehensive theoretical model on parental involvement was used as the theoretical framework in this study. Parents were recruited from a SPED school in Singapore which caters to school-aged children (7 to 21 years old). Pearson’s product moment correlation, analysis of variance and multiple regression analyses were used as statistical techniques in this study. Results indicate that there are significant associations between parental involvement and educational outcomes in students with developmental disabilities. Next, SES has a significant impact on levels of parental involvement. In addition, parents in the current study reported being more involved at home, in school activities and the community, when teachers specifically requested their involvement. Home-based involvement was also predicted by parents’ perceptions of their time and energy, efficacy and beliefs in supporting their child’s education, as well as their children’s invitations to be more involved. An interesting and counterintuitive inverse relationship was found between general school invitations and parental involvement at home. Research findings are further discussed, and suggestions are put forth to increase involvement for this specific group of parents.Keywords: autism, developmental disabilities, intellectual disabilities, parental involvement, Singapore
Procedia PDF Downloads 1991543 Midterm Clinical and Functional Outcomes After Treatment with Ponseti Method for Idiopathic Clubfeet: A Prospective Cohort Study
Authors: Neeraj Vij, Amber Brennan, Jenni Winters, Hadi Salehi, Hamy Temkit, Emily Andrisevic, Mohan V. Belthur
Abstract:
Idiopathic clubfoot is a common lower extremity deformity with an incidence of 1:500. The Ponseti Method is well known as the gold standard of treatment. However, there is limited functional data demonstrating correction of the clubfoot after treatment with the Ponseti method. The purpose of this study was to study the clinical and functional outcomes after the Ponseti method with the Clubfoot Disease-Specific Instrument (CDS) and pedobarography. This IRB-approved prospective study included patients aged 3-18 who were treated for idiopathic clubfoot with the Ponseti method between January 2008 and December 2018. Age-matched controls were identified through siblings of clubfoot patients and other community members. Treatment details were collected through a chart review of the included patients. Laboratory assessment included a physical exam, gait analysis, and pedobarography. The Pediatric Outcomes Data Collection Instrument and the Clubfoot Disease-Specific Instrument were also obtained on clubfoot patients (CF). The Wilcoxson rank-sum test was used to study differences between the CF patients and the typically developing (TD) patients. Statistical significance was set at p < 0.05. There were a total of 37 enrolled patients in our study. 21 were priorly treated for CF and 16 were TD. 94% of the CF patients had bilateral involvement. The age at the start of treatment was 29 days, the average total number of casts was seven to eight, and the average total number of casts after Achilles tenotomy was one. The reoccurrence rate was 25%, tenotomy was required in 94% of patients, and ≥1 tenotomy was required in 25% of patients. There were no significant differences between step length, step width, stride length, force-time integral, maximum peak pressure, foot progression angles, stance phase time, single-limb support time, double limb support time, and gait cycle time between children treated with the Ponseti method and typically developing children. The average post-treatment Pirani and Dimeglio scores were 5.50±0.58 and 15.29±1.58, respectively. The average post-treatment PODCI subscores were: Upper Extremity: 90.28, Transfers: 94.6, Sports: 86.81, Pain: 86.20, Happiness: 89.52, Global: 88.6. The average post-treatment Clubfoot Disease-Specific Instrument scores subscores were: Satisfaction: 73.93, Function: 80.32, Overall: 78.41. The Ponseti Method has a very high success rate and remains to be the gold standard in the treatment of idiopathic clubfoot. Timely management leads to good outcomes and a low need for repeated Achilles tenotomy. Children treated with the Ponseti method demonstrate good functional outcomes as measured through pedobarography. Pedobarography may have clinical utility in studying congenital foot deformities. Objective measures for hours of brace wear could represent an improvement in clubfoot care.Keywords: functional outcomes, pediatric deformity, patient-reported outcomes, talipes equinovarus
Procedia PDF Downloads 751542 The Optimization of TICSI in the Convergence Mechanism of Urban Water Management
Authors: M. Macchiaroli, L. Dolores, V. Pellecchia
Abstract:
With the recent Resolution n. 580/2019/R/idr, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) for the Urban Water Management has introduced, for water managements characterized by persistent critical issues regarding the planning and organization of the service and the implementation of the necessary interventions for the improvement of infrastructures and management quality, a new mechanism for determining tariffs: the regulatory scheme of Convergence. The aim of this regulatory scheme is the overcoming of the Water Service Divided in order to improve the stability of the local institutional structures, technical quality, contractual quality, as well as in order to guarantee transparency elements for Users of the Service. Convergence scheme presupposes the identification of the cost items to be considered in the tariff in parametric terms, distinguishing three possible cases according to the type of historical data available to the Manager. The study, in particular, focuses on operations that have neither data on tariff revenues nor data on operating costs. In this case, the Manager's Constraint on Revenues (VRG) is estimated on the basis of a reference benchmark and becomes the starting point for defining the structure of the tariff classes, in compliance with the TICSI provisions (Integrated Text for tariff classes, ARERA's Resolution n. 665/2017/R/idr). The proposed model implements the recent studies on optimization models for the definition of tariff classes in compliance with the constraints dictated by TICSI in the application of the Convergence mechanism, proposing itself as a support tool for the Managers and the local water regulatory Authority in the decision-making process.Keywords: decision-making process, economic evaluation of projects, optimizing tools, urban water management, water tariff
Procedia PDF Downloads 1181541 Photoelectrochemical Water Splitting from Earth-Abundant CuO Thin Film Photocathode: Enhancing Performance and Photo-Stability through Deposition of Overlayers
Authors: Wilman Septina, Rajiv R. Prabhakar, Thomas Moehl, David Tilley
Abstract:
Cupric oxide (CuO) is a promising absorber material for the fabrication of scalable, low cost solar energy conversion devices, due to the high abundance and low toxicity of copper. It is a p-type semiconductor with a band gap of around 1.5 eV, absorbing a significant portion of the solar spectrum. One of the main challenges in using CuO as solar absorber in an aqueous system is its tendency towards photocorrosion, generating Cu2O and metallic Cu. Although there have been several reports of CuO as a photocathode for hydrogen production, it is unclear how much of the observed current actually corresponds to H2 evolution, as the inevitability of photocorrosion is usually not addressed. In this research, we investigated the effect of the deposition of overlayers onto CuO thin films for the purpose of enhancing its photostability as well as performance for water splitting applications. CuO thin film was fabricated by galvanic electrodeposition of metallic copper onto gold-coated FTO substrates, followed by annealing in air at 600 °C. Photoelectrochemical measurement of the bare CuO film using 1 M phosphate buffer (pH 6.9) under simulated AM 1.5 sunlight showed a current density of ca. 1.5 mA cm-2 (at 0.4 VRHE), which photocorroded to Cu metal upon prolonged illumination. This photocorrosion could be suppressed by deposition of 50 nm-thick TiO2, deposited by atomic layer deposition. In addition, we found that insertion of an n-type CdS layer, deposited by chemical bath deposition, between the CuO and TiO2 layers was able to enhance significantly the photocurrent compared to without the CdS layer. A photocurrent of over 2 mA cm-2 (at 0 VRHE) was observed using the photocathode stack FTO/Au/CuO/CdS/TiO2/Pt. Structural, electrochemical, and photostability characterizations of the photocathode as well as results on various overlayers will be presented.Keywords: CuO, hydrogen, photoelectrochemical, photostability, water splitting
Procedia PDF Downloads 2191540 Assets and Health: Examining the Asset-Building Theoretical Framework and Psychological Distress
Authors: Einav Srulovici, Michal Grinstein-Weiss, George Knafl, Linda Beeber, Shawn Kneipp, Barbara Mark
Abstract:
Background: The asset-building theoretical framework (ABTF) is acknowledged as the most complete framework thus far for depicting the relationships between asset accumulation (the stock of a household’s saved resources available for future investment) and health outcomes. Although the ABTF takes into consideration the reciprocal relationship between asset accumulation and health, no ABTF based study has yet examined this relationship. Therefore, the purpose of this study was to test the ABTF and psychological distress, focusing on the reciprocal relationship between assets accumulation and psychological distress. Methods: The study employed longitudinal data from 6,295 families from the 2001 and 2007 Panel Study of Income Dynamics data sets. Structural equation modeling (SEM) was used to test the reciprocal relationship between asset accumulation and psychological distress. Results: In general, the data displayed a good fit to the model. The longitudinal SEM found that asset accumulation significantly increased with a decreased in psychological distress over time, while psychological distress significantly increased with an increase in asset accumulation over time, confirming the existence of the hypothesized reciprocal relationship. Conclusions: Individuals who are less psychological distressed might have more energy to engage in activities, such as furthering their education or obtaining better jobs that are in turn associated with greater asset accumulation, while those who have greater assets may invest those assets in riskier investments, resulting in increased psychological distress. The confirmation of this reciprocal relationship highlights the importance of conducting longitudinal studies and testing the reciprocal relationship between asset accumulation and other health outcomes.Keywords: asset-building theoretical framework, psychological distress, structural equation modeling, reciprocal relationship
Procedia PDF Downloads 3921539 The Effect of General Corrosion on the Guided Wave Inspection of the Pipeline
Authors: Shiuh-Kuang Yang, Sheam-Chyun Lin, Jyin-Wen Cheng, Deng-Guei Hsu
Abstract:
The torsional mode of guided wave, T(0,1), has been applied to detect characteristics and defects in pipelines, especially in the cases of coated, elevated and buried pipes. The signals of minor corrosions would be covered by the noise, unfortunately, because the coated material and buried medium always induce a strong attenuation of the guided wave. Furthermore, the guided wave would be attenuated more seriously and make the signals hard to be identified when setting the array ring of the transducers on a general corrosion area of the pipe. The objective of this study is then to discuss the effects of the above-mentioned general corrosion on guided wave tests by experiments and signal processing techniques, based on the use of the finite element method, the two-dimensional Fourier transform and the continuous wavelet transform. Results show that the excitation energy would be reduced when the array ring set on the pipe surface having general corrosion. The non-uniformed contact surface also produces the unwanted asymmetric modes of the propagating guided wave. Some of them are even mixing together with T(0,1) mode and increase the difficulty of measurements, especially when a defect or local corrosion merged in the general corrosion area. It is also showed that the guided waves attenuation are increasing with the increasing corrosion depth or the rising inspection frequency. However, the coherent signals caused by the general corrosion would be decayed with increasing frequency. The results obtained from this research should be able to provide detectors to understand the impact when the array ring set on the area of general corrosion and the way to distinguish the localized corrosion which is inside the area of general corrosion.Keywords: guided wave, finite element method, two-dimensional fourier transform, wavelet transform, general corrosion, localized corrosion
Procedia PDF Downloads 4021538 In-Flight Aircraft Performance Model Enhancement Using Adaptive Lookup Tables
Authors: Georges Ghazi, Magali Gelhaye, Ruxandra Botez
Abstract:
Over the years, the Flight Management System (FMS) has experienced a continuous improvement of its many features, to the point of becoming the pilot’s primary interface for flight planning operation on the airplane. With the assistance of the FMS, the concept of distance and time has been completely revolutionized, providing the crew members with the determination of the optimized route (or flight plan) from the departure airport to the arrival airport. To accomplish this function, the FMS needs an accurate Aircraft Performance Model (APM) of the aircraft. In general, APMs that equipped most modern FMSs are established before the entry into service of an individual aircraft, and results from the combination of a set of ordinary differential equations and a set of performance databases. Unfortunately, an aircraft in service is constantly exposed to dynamic loads that degrade its flight characteristics. These degradations endow two main origins: airframe deterioration (control surfaces rigging, seals missing or damaged, etc.) and engine performance degradation (fuel consumption increase for a given thrust). Thus, after several years of service, the performance databases and the APM associated to a specific aircraft are no longer representative enough of the actual aircraft performance. It is important to monitor the trend of the performance deterioration and correct the uncertainties of the aircraft model in order to improve the accuracy the flight management system predictions. The basis of this research lies in the new ability to continuously update an Aircraft Performance Model (APM) during flight using an adaptive lookup table technique. This methodology was developed and applied to the well-known Cessna Citation X business aircraft. For the purpose of this study, a level D Research Aircraft Flight Simulator (RAFS) was used as a test aircraft. According to Federal Aviation Administration the level D is the highest certification level for the flight dynamics modeling. Basically, using data available in the Flight Crew Operating Manual (FCOM), a first APM describing the variation of the engine fan speed and aircraft fuel flow w.r.t flight conditions was derived. This model was next improved using the proposed methodology. To do that, several cruise flights were performed using the RAFS. An algorithm was developed to frequently sample the aircraft sensors measurements during the flight and compare the model prediction with the actual measurements. Based on these comparisons, a correction was performed on the actual APM in order to minimize the error between the predicted data and the measured data. In this way, as the aircraft flies, the APM will be continuously enhanced, making the FMS more and more precise and the prediction of trajectories more realistic and more reliable. The results obtained are very encouraging. Indeed, using the tables initialized with the FCOM data, only a few iterations were needed to reduce the fuel flow prediction error from an average relative error of 12% to 0.3%. Similarly, the FCOM prediction regarding the engine fan speed was reduced from a maximum error deviation of 5.0% to 0.2% after only ten flights.Keywords: aircraft performance, cruise, trajectory optimization, adaptive lookup tables, Cessna Citation X
Procedia PDF Downloads 2631537 Analysis on the Need of Engineering Drawing and Feasibility Study on 3D Model Based Engineering Implementation
Authors: Parthasarathy J., Ramshankar C. S.
Abstract:
Engineering drawings these days play an important role in every part of an industry. By and large, Engineering drawings are influential over every phase of the product development process. Traditionally, drawings are used for communication in industry because they are the clearest way to represent the product manufacturing information. Until recently, manufacturing activities were driven by engineering data captured in 2D paper documents or digital representations of those documents. The need of engineering drawing is inevitable. Still Engineering drawings are disadvantageous in re-entry of data throughout manufacturing life cycle. This document based approach is prone to errors and requires costly re-entry of data at every stage in the manufacturing life cycle. So there is a requirement to eliminate Engineering drawings throughout product development process and to implement 3D Model Based Engineering (3D MBE or 3D MBD). Adopting MBD appears to be the next logical step to continue reducing time-to-market and improve product quality. Ideally, by fully applying the MBD concept, the product definition will no longer rely on engineering drawings throughout the product lifecycle. This project addresses the need of Engineering drawing and its influence in various parts of an industry and the need to implement the 3D Model Based Engineering with its advantages and the technical barriers that must be overcome in order to implement 3D Model Based Engineering. This project also addresses the requirements of neutral formats and its realisation in order to implement the digital product definition principles in a light format. In order to prove the concepts of 3D Model Based Engineering, the screw jack body part is also demonstrated. At ZF Windpower Coimbatore Limited, 3D Model Based Definition is implemented to Torque Arm (Machining and Casting), Steel tube, Pinion shaft, Cover, Energy tube.Keywords: engineering drawing, model based engineering MBE, MBD, CAD
Procedia PDF Downloads 4331536 Mistletoe Supplementation and Exercise Training on IL-1β and TNF-α Levels
Authors: Alireza Barari, Ahmad Abdi
Abstract:
Introduction: Plyometric training (PT) is popular among individuals involved in dynamic sports, and is executed with a goal to improve muscular performance. Cytokines are considered as immunoregulatory molecules for regulation of immune function and other body responses. In addition, the pro-inflammatory cytokines, TNF-α andIL-1β, have been reported to be increased during and after exercises. If some of the cytokines which cause responses such as inflammation of cells in skeletal muscles, with manipulating of training program or optimizing nutrition, it can be avoided or limited from those injuries caused by cytokines release. Its shows that mistletoe extracts show immune-modulating effects. Materials and methods: present study was to investigate the effect of six weeks PT with or without mistletoe supplementation (MS)(10 mg/kg) on cytokine responses and performance in male basketball players. This study is semi-experimental. Statistic society of this study was basketball player’s male students of Mahmoud Abad city. Statistic samples are concluded of 32 basketball players with an age range of 14–17 years was selected from randomly. Selection of samples in four groups of 8 individuals Participants were randomly assigned to either an experimental group (E, n=16) that performed plyometric exercises with (n=8) or without (n=8) MS, or a control group that rested (C, n=16) with (n=8) or without (n=8) MS. Plants were collected in June from the Mazandaran forest in north of Iran. Then they dried in exposure to air without any exposition to sunlight, on a clean textile. For better drying the plants were high and down until they lost their water. Each subject consumed 10 mg/kg/day of extract for six weeks of intervention. Pre and post-testing was performed in the afternoon of the same day. Blood samples (10 ml) were collected from the intermediate cubital vein of the subjects. Serum concentration of IL-1β and TNF-α were measured by ELISA method. Data analysis was performed using pretest to posttest changes that assessed by t-test for paired samples. After the last plyometric training program, the second blood samples were in the next day. Group differences at baseline were evaluated using One-way ANOVA (post-hock Tukey) test is used for analysis and comparison of three group’s variables. Results: PT with or without MS improved the one repetition maximum leg and chest press, Sargeant test and power in RAST (P < 0.05). However there were no statistically significant differences between groups in Vo2max measures (P > 0.05). PT resulted in a significant increase in plasma IL-1β concentration from 1.08±0.4 mg/ml in pre-training to 1.68±0.18 mg/ml in post-training (P=0.006). While the MS significantly decreased the training-induced increment of IL-1β (P=0.007). In contrast, neither PT nor MS had any effect on TNF-α levels (P > 0.05). Discussion: The results of this investigation indicate that PT improved muscular performance and increases the IL-1β concentration. Increasing of IL-1β after exercise in damaged skeletal muscle has shown of the role of this cytokine in inflammation processes and damaged skeletal muscle repair. However mistletoe supplementation ameliorates the increment of IL-1β levels, indicating the beneficial effect of mistletoe on immune response following plyometric training.Keywords: mistletoe supplementation, training, IL-1β, TNF-α
Procedia PDF Downloads 6501535 Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae
Authors: Spandana Ramisetty, Mandan Chidambaram, Ramesh Bhujade
Abstract:
Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.Keywords: astaxanthin, extraction, high value chemicals, hydrothermal liquefaction
Procedia PDF Downloads 3051534 Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin
Authors: María D. Groppa, Andrea Trentini, Myriam Zawoznik, Roxana Bigi, Carlos Nadra, Patricia L. Marconi
Abstract:
In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae Chlorella vulgaris immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cildáñez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of Escherichia coli and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using Allium cepa seeds and Cildáñez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cildáñez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cildáñez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.Keywords: bioreactor, bioremediation, Chlorella vulgaris, Matanza-Riachuelo Basin, microalgae
Procedia PDF Downloads 2481533 Dissolution Kinetics of Chevreul’s Salt in Ammonium Cloride Solutions
Authors: Mustafa Sertçelik, Turan Çalban, Hacali Necefoğlu, Sabri Çolak
Abstract:
In this study, Chevreul’s salt solubility and its dissolution kinetics in ammonium chloride solutions were investigated. Chevreul’s salt that we used in the studies was obtained by using the optimum conditions (ammonium sulphide concentration; 0,4 M, copper sulphate concentration; 0,25 M, temperature; 60°C, stirring speed; 600 rev/min, pH; 4 and reaction time; 15 mins) determined by T. Çalban et al. Chevreul’s salt solubility in ammonium chloride solutions and the kinetics of dissolution were investigated. The selected parameters that affect solubility were reaction temperature, concentration of ammonium chloride, stirring speed, and solid/liquid ratio. Correlation of experimental results had been achieved using linear regression implemented in the statistical package program statistica. The effect of parameters on Chevreul’s salt solubility was examined and integrated rate expression of dissolution rate was found using kinetic models in solid-liquid heterogeneous reactions. The results revealed that the dissolution rate of Chevreul’s salt was decreasing while temperature, concentration of ammonium chloride and stirring speed were increasing. On the other hand, dissolution rate was found to be decreasing with the increase of solid/liquid ratio. Based on result of the applications of the obtained experimental results to the kinetic models, we can deduce that Chevreul’s salt dissolution rate is controlled by diffusion through the ash (or product layer). Activation energy of the reaction of dissolution was found as 74.83 kJ/mol. The integrated rate expression along with the effects of parameters on Chevreul's salt solubility was found to be as follows: 1-3(1-X)2/3+2(1-X)= [2,96.1013.(CA)3,08 .(S/L)-038.(W)1,23 e-9001,2/T].tKeywords: Chevreul's salt, copper, ammonium chloride, ammonium sulphide, dissolution kinetics
Procedia PDF Downloads 3051532 Numerical Simulation of a Combined Impact of Cooling and Ventilation on the Indoor Environmental Quality
Authors: Matjaz Prek
Abstract:
Impact of three different combinations of cooling and ventilation systems on the indoor environmental quality (IEQ) has been studied. Comparison of chilled ceiling cooling in combination with displacement ventilation, cooling with fan coil unit and cooling with flat wall displacement outlets was performed. All three combinations were evaluated from the standpoint of whole-body and local thermal comfort criteria as well as from the standpoint of ventilation effectiveness. The comparison was made on the basis of numerical simulation with DesignBuilder and Fluent. Numerical simulations were carried out in two steps. Firstly the DesignBuilder software environment was used to model the buildings thermal performance and evaluation of the interaction between the environment and the building. Heat gains of the building and of the individual space, as well as the heat loss on the boundary surfaces in the room, were calculated. In the second step Fluent software environment was used to simulate the response of the indoor environment, evaluating the interaction between building and human, using the simulation results obtained in the first step. Among the systems presented, the ceiling cooling system in combination with displacement ventilation was found to be the most suitable as it offers a high level of thermal comfort with adequate ventilation efficiency. Fan coil cooling has proved inadequate from the standpoint of thermal comfort whereas flat wall displacement outlets were inadequate from the standpoint of ventilation effectiveness. The study showed the need in evaluating indoor environment not solely from the energy use point of view, but from the point of view of indoor environmental quality as well.Keywords: cooling, ventilation, thermal comfort, ventilation effectiveness, indoor environmental quality, IEQ, computational fluid dynamics
Procedia PDF Downloads 1861531 Spectroscopic Studies on Solubilization of Polycyclic Aromatic Hydrocarbons in Structurally Different Gemini Surfactants
Authors: Toshikee Yadav, Deepti Tikariha, Jyotsna Lakra, Kallol K. Ghosh
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants that consist of two or more benzene rings. PAHs have low solubility in water. Their slow dissolution can contaminate large amounts of ground water for long period. They are hydrophobic, non-polar and neutral in nature and are known to have potential mutagenic or carcinogenic activity. In current scenario their removal from the environment, water and soil is still a great challenge and scientists worldwide are engaged to invent and design novel separation technology and decontaminating systems. Various physical, chemical, biological and their combined technologies have been applied to remediate organic-contaminated soils and groundwater. Surfactants play a vital role in the solubilization of these hydrophobic organic compounds. In the present investigation Solubilization capabilities of structurally different gemini surfactants i.e. butanediyl-1,4-bis(dimethyldodecylammonium bromide) (C12-4-C12,2Br−), 2-butanol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)-C12,2Br−), 2,3-butanediol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)2-C12,2Br−) for three polycyclic aromatic hydrocarbons (PAHs); phenanthrene (Phe),fluorene (Fluo) and acenaphthene (Ace) have been studied spectrophotometrically at 300 K. The result showed that the solubility of PAHs increases linearly with increasing surfactant concentration, as an implication of association between the PAHs and micelles. Molar solubilization ratio (MSR), micelle–water partition coefficient (Km) and Gibb's free energy of solubilization (ΔG°s) for PAHs have been determined in aqueous medium. (C12-4(OH)2-C12,2Br−) shows the higher solubilization for all PAHs. Findings of the present investigation may be useful to understand the role of appropriate surfactant system for the solubilization of toxic hydrophobic organic compounds.Keywords: gemini surfactant, molar solubilization ratio, polycyclic aromatic hydrocarbon, solubilization
Procedia PDF Downloads 4441530 Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream
Authors: Piotr Kunecki, Magdalena Wdowin
Abstract:
The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214.Keywords: fly ash, synthetic zeolites, elemental mercury removal, sorption, simulated gas stream
Procedia PDF Downloads 831529 China's BRI and Germany's Baghdad Railroad – a Realist Analysis of Hegemonic Conflict and the Circumvention of Maritime Power
Authors: Kamen Kirov
Abstract:
In the late 19th and early 20th centuries, Britain dominated global trade and finance in large part due to its maritime superiority. Germany, a land power, sought to undermine Britain’s position as the primary hegemon but ultimately could not challenge Britain’s maritime position or capabilities. This drove Germany to seek alternative strategies to weaken Britain’s position. Notably, it pushed Germany to create a reliable overland link through the Balkans to the Middle East via railroad. This article will seek to draw parallels between the German-British hegemonic conflict of the early 20th century and the Chinese-American hegemonic conflict taking place today using both secondary historical sources and current scholarly discussions of the changing international sphere. In doing so, it will provide useful insights into how China might attempt to outflank American power. The article will demonstrate that in many ways, the strategic positions and approaches of the early-20th century Germany and modern China are similar. Both countries were faced with a vastly superior foe with respect to maritime and economic power, and in both cases, their response was to undermine their rival hegemon by creating new overland infrastructure. Furthermore, in both cases, a major goal of creating new overland links was to gain further access to and control over Middle Eastern energy markets. It seems that in the modern day, China is conducting such a policy on a much grander scale than Germany did in the early 20th century—which may result in negative consequences for the US strategic position.Keywords: belt and road Initiative, hegemonic conflict, maritime power, realism
Procedia PDF Downloads 1811528 Flux-Gate vs. Anisotropic Magneto Resistance Magnetic Sensors Characteristics in Closed-Loop Operation
Authors: Neoclis Hadjigeorgiou, Spyridon Angelopoulos, Evangelos V. Hristoforou, Paul P. Sotiriadis
Abstract:
The increasing demand for accurate and reliable magnetic measurements over the past decades has paved the way for the development of different types of magnetic sensing systems as well as of more advanced measurement techniques. Anisotropic Magneto Resistance (AMR) sensors have emerged as a promising solution for applications requiring high resolution, providing an ideal balance between performance and cost. However, certain issues of AMR sensors such as non-linear response and measurement noise are rarely discussed in the relevant literature. In this work, an analog closed loop compensation system is proposed, developed and tested as a means to eliminate the non-linearity of AMR response, reduce the 1/f noise and enhance the sensitivity of magnetic sensor. Additional performance aspects, such as cross-axis and hysteresis effects are also examined. This system was analyzed using an analytical model and a P-Spice model, considering both the sensor itself as well as the accompanying electronic circuitry. In addition, a commercial closed loop architecture Flux-Gate sensor (calibrated and certified), has been used for comparison purposes. Three different experimental setups have been constructed for the purposes of this work, each one utilized for DC magnetic field measurements, AC magnetic field measurements and Noise density measurements respectively. The DC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to calibrate and characterize the system under consideration. A high-accuracy DC power supply has been used for providing the operating current to the Helmholtz coils. The results were recorded by a multichannel voltmeter The AC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to examine the effective bandwidth not only of the proposed system but also for the Flux-Gate sensor. A voltage controlled current source driven by a function generator has been utilized for the Helmholtz coil excitation. The result was observed by the oscilloscope. The third experimental apparatus incorporated an AC magnetic shielding construction composed of several layers of electric steel that had been demagnetized prior to the experimental process. Each sensor was placed alone and the response was captured by the oscilloscope. The preliminary experimental results indicate that closed loop AMR response presented a maximum deviation of 0.36% with respect to the ideal linear response, while the corresponding values for the open loop AMR system and the Fluxgate sensor reached 2% and 0.01% respectively. Moreover, the noise density of the proposed close loop AMR sensor system remained almost as low as the noise density of the AMR sensor itself, yet considerably higher than that of the Flux-Gate sensor. All relevant numerical data are presented in the paper.Keywords: AMR sensor, chopper, closed loop, electronic noise, magnetic noise, memory effects, flux-gate sensor, linearity improvement, sensitivity improvement
Procedia PDF Downloads 4191527 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 3271526 Methodological Approach for the Prioritization of Different Micro-Contaminants as Potential River Basin Specific Pollutants in the Upper Tisza River Watershed
Authors: Mihail Simion Beldean-Galea, Virginia Coman, Florina Copaciu, Mihaela Vlassa, Radu Mihaiescu, Adina Croitoru, Viorel Arghius, Modest Gertsiuk, Mikola Gertsiuk
Abstract:
Taking into consideration the huge number of chemicals released into environment compartments a proper environmental risk assessment is difficult to predict due to the gap of legislation and improper toxicological assessment of chemicals compounds. In Romania as well as in many other countries from Europe, the chemical status of the water body is characterized taking into consideration the Water Framework Directive (WFD) and the substances listed in Annex X. This Annex includes 45 substances from different classes of organic compounds and heavy metals for which AA-EQS and MAC-EQS have been established. For other compounds which are not included in Annex X, different methodologies to prioritize chemicals for risk assessment and monitoring has been proposed. These methodologies take into account Predicted No-Effect Concentrations (PNECs) of different classes of chemicals compounds available from existing risk assessments or from read-across models for acute toxicity to the standard test organisms such as Daphnia magna and Selenastrum capricornutum. Our work presents the monitoring results of 30 priority substances including polyaromatic hydrocarbons, pesticides, halogenated compounds, plasticizers and heavy metals and other 34 substances from different classes of pesticides and pharmaceuticals which are not included on the list of priority substances, performed in the Upper Tisza River Watershed from Romania and Ukraine. The obtained monitoring data were used for the establishment of the list of more relevant pollutants in the studied area and to establish the potential river basin specific pollutants. For this purpose, two indicators such as the Frequency of exceedance and Extent of exceedance of Predicted no-Effect Concentration (PNEC) were evaluated. These two indicators are based on maximum environmental concentrations (MECs) of priority substances and for other pollutants is use statistically based averages of obtained measured concentration compared to the lowest PNEC thresholds. From the obtained results it can be concluded that polyaromatic hydrocarbon such as Fluoranthene, Benzo[a]pyrene, Benzo[b]fluorathene, benzo[k]fluoranthene, Benzo(g.h.i)perylene, Indeno(1.2.3-cd)-pyrene, heavy metals such as Cadmium, Lead and Nickel can be considered as river basin specific pollutants, their concentration exceeding the Annual Average EQS concentration. Other compounds such as estrone, estriol, 174-β estradiol, naproxen or some antibiotics (Penicillin G, Tetracycline or Ceftazidime) should be taken into account for a long monitoring, in some cases their concentration exceeding PNEC. Acknowledgements: This work is performed in the frame of NATO SfP Programme, Project no. 984440.Keywords: prioritization, river basin specific pollutants, Tisza River, water framework directive
Procedia PDF Downloads 3031525 Product Architecture and Production Process of Battery Modules from Prismatic Lithium-Ion-Battery Cells
Authors: Achim Kampker, Heiner Hans Heimes, Nemanja Sarovic, Jan-Philip Ganser, Saskia Wessel, Christoph Lienemann
Abstract:
The electrification of the power train is a fundamental technical transition in the automotive industry and poses a major challenge for established car companies. Providing the traction energy, requiring an ever greater amount of space within the car and having a high share of value-add the lithium-ion battery is a central component of the electric power train and a completely new component to car manufacturers at the same time. Being relatively new to the automotive industry, the current design of the product architecture and production process (including manufacturing and assembling processes) of lithium-ion battery modules do not allow for an easy and cost-efficient disassembly or product design change. Yet these two requirements will increase in importance with rising sales volumes of electric cars in the near future and need to be addressed for the electric car to be competitive with conventional power train systems. This paper focuses on the current product architecture and production process of common automotive battery modules from prismatic lithium-ion battery cells to derive impacts for a remanufacturing concept. The information necessary for this purpose were gathered by literature research, patent inquiries, industry expert interviews and first-hand experiences of the authors. On the basis of these results, the underlying causes for the design´s lack of remanufacturability and flexibility with regards to product design changes are examined. In all, this paper gives an extensive and detailed overview of the state of the art of the product architecture and production process of lithium-ion battery modules from prismatic battery cells, identifies its deficiencies and derives improvement measures.Keywords: battery module, prismatic lithium-ion battery cell, product architecture, production process, remanufacturing, flexibility
Procedia PDF Downloads 2661524 Achieving Sustainable Agriculture with Treated Municipal Wastewater
Authors: Reshu Yadav, Himanshu Joshi, S. K. Tripathi
Abstract:
Fresh water is a scarce resource which is essential for humans and ecosystems, but its distribution is uneven. Agricultural production accounts for 70% of all surface water supplies. It is projected that against the expansion in the area equipped for irrigation by 0.6% per year, the global potential irrigation water demand would rise by 9.5% during 2021-25. This would, on one hand, have to compete against the sharply rising urban water demand. On the other, it would also have to face the fear of climate change, as temperatures rise and crop yields could drop from 10-30% in many large areas. The huge demand for irrigation combined with fresh water scarcity encourages to explore the reuse of wastewater as a resource. However, the use of such wastewater is often linked to the safety issues when used non judiciously or with poor safeguards while irrigating food crops. Paddy is one of the major crops globally and amongst the most important in South Asia and Africa. In many parts of the world, use of municipal wastewater has been promoted as a viable option in this regard. In developing and fast growing countries like India, regularly increasing wastewater generation rates may allow this option to be considered quite seriously. In view of this, a pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town of Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2966.538 m3/ton. Most of the wastewater irrigated varieties displayed upto 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. Percentage increase of GHG gases on irrigation with treated municipal waste water as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4 ,CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce existing use of fresh water sources in agricultural sector.Keywords: greenhouse gases, nutrients, water footprint, wastewater irrigation
Procedia PDF Downloads 319