Search results for: accessible natural green space standards (ANGSt)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12748

Search results for: accessible natural green space standards (ANGSt)

2518 Chemical Analysis, Antioxidant Activity and Antimicrobial Activity of Isolated Compounds and Essential Oil from Callistemon citrinus Leaf

Authors: Manal M. Hamed, Mosad A. Ghareeb, Abdel-Aleem H. Abdel-Aleem, Amal M. Saad, Mohamed S. Abdel-Aziz, Asmaa H. Hadad

Abstract:

Natural products derived from medicinal plants provide unlimited opportunities for a new medication leads because of the unmatched accessibility of chemical variation. Six compounds were isolated from the n-butanol extract of Callistemon citrinus (Family Myrtaceae), they were identified as; nepetolide (1), callislignan A (2), 6,8-dimethoxy-4,5-dimethyl-3-methyleneisochroman-1-one (3), 3-methyl-7-O-benzoyl-β-D-glucopyranoside (4), 5, 7, 3', 5'-tetrahydroxy-6, 8-di-C-methyl flavanone (5), and (2R,3R,4S,5S)-2,4-bis(4-hydroxyphenyl)-3,5-dihydroxy-tetrahydropyran (6). The isolated compounds were evaluated as antioxidant and antimicrobial agents. The antioxidant activities of the compounds were determined using DPPH-radical scavenging and total antioxidant capacity (TAC) assays. The results indicated that compound (5) was most active in its capacity to scavenge free radicals in the DPPH assay [SC50 value, 4.65 ± 0.74μg/mL] compared to the standard ascorbic acid and exhibited the highest activity in the TAC assay (610.45 ± 1.67mg AAE/g compound). The pure isolates were tested for their antimicrobial activity against four pathogenic microbial strains including Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Candida albicans. Also, the GC/MS analysis of its leaves essential oil presented nine identified compounds representing 91% of the total oil constituents. The outcomes got from this study give a reasonable justification for the medicinal uses of Callistemon citrinus plant.

Keywords: Callistemon citrinus, flavanone, antioxidant activity, antimicrobial activity, essential oil, Myrtaceae

Procedia PDF Downloads 278
2517 Causes and Consequences of Intuitive Animal Communication: A Case Study at Panthera Africa

Authors: Cathrine Scharning Cornwall-Nyquist, David Rafael Vaz Fernandes

Abstract:

Since its origins, mankind has been dreaming of communicating directly with other animals. Past civilizations interacted on different levels with other species and recognized them in their rituals and daily activities. However, recent scientific developments have limited the ability of humans to consider deeper levels of interaction beyond observation and/or physical behavior. In recent years, animal caretakers and facilities such as sanctuaries or rescue centers have been introducing new techniques based on intuition. Most of those initiatives are related to specific cases, such as the incapacity to understand an animal’s behavior. Respected organizations also include intuitive animal communication (IAC) sessions to follow up on past interventions with their animals. Despite the lack of credibility of this discipline, some animal caring structures have opted to integrate IAC into their daily routines and approaches to animal welfare. At this stage, animal communication will be generally defined as the ability of humans to communicate with animals on an intuitive level. The trend in the field remains to be explored. The lack of theory and previous research urges the scientific community to improve the description of the phenomenon and its consequences. Considering the current scenario, qualitative approaches may become a suitable pathway to explore this topic. The purpose of this case study is to explore the beliefs behind and the consequences of an approach based on intuitive animal communication techniques for Panthera Africa (PA), an ethical sanctuary located in South Africa. Due to their personal experience, the Sanctuary’s founders have developed a philosophy based on IAC while respecting the world's highest standards for big cat welfare. Their dual approach is reflected in their rescues, daily activities, and healing animals’ trauma. The case study's main research questions will be: (i) Why do they choose to apply IAC in their work? (ii) What consequences to their activities do IAC bring? (iii) What effects do IAC techniques bring in their interactions with the outside world? Data collection will be gathered on-site via: (i) Complete participation (field notes); (ii) Semi-structured interviews (audio transcriptions); (iii) Document analysis (internal procedures and policies); (iv) Audio-visual material (communication with third parties). The main researcher shall become an active member of the Sanctuary during a 30-day period and have full access to the site. Access to documents and audio-visual materials will be granted on a request basis. Interviews are expected to be held with PA founders and staff members and with IAC practitioners related to the facility. The information gathered shall enable the researcher to provide an extended description of the phenomenon and explore its internal and external consequences for Panthera Africa.

Keywords: animal welfare, intuitive animal communication, Panthera Africa, rescue

Procedia PDF Downloads 77
2516 Environment and Social Management Strategy at Kuwait Integrated Petroleum Industries Company

Authors: Hannan Al-Qanai, Haitham Mustafa, Rajeswaran Sivasankar

Abstract:

Kuwait Integrated Petroleum Industries Company (KIPIC, Company), established in 2016 as a subsidiary to Kuwait Petroleum Corporation (KPC), is responsible for operating and managing the largest grassroots integrated complex for refining, petrochemicals manufacture businesses, and liquefied natural gas import facilities at Al-Zour, Kuwait. KIPIC and its Contractors/sub-contractors employ over 69,000 staff in its current projects at Al-Zour during peak construction activity. KIPIC holds a unique responsibility to the society, which includes all stakeholders, and demonstrates its social commitment in developing an integrated environment & social management system (ESMS) and ensuring sustainability. This paper mainly demonstrates the knowledge on corporate branding from a corporate social responsibility (CSR) perspective and presents the achievements and best practices of KIPIC in the field of CSR and the challenges faced in handling social issues. Moreover, the study is based on qualitative data abstracted from KIPIC Health, Safety, Security & Environment Management System (HSSE MS) procedures, audit reports, the outcome of counseling sessions, national and international laws and regulations, and International Guidelines on Environment and Social Management System (ESMS). KIPIC has committed to caring for the environmental concerns and acting on social as they do on profits and economic growth. The main findings of this paper are that the successful implementation and operationalization of CSR within an organization depends on a simple but stringent process with both top-down and bottom-up commitment.

Keywords: welfare, corporate social responsibility, social management, sustainability

Procedia PDF Downloads 197
2515 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters

Authors: Bekir Turedi

Abstract:

Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.

Keywords: perovskite, solar cell, single crystal, diffusion length

Procedia PDF Downloads 38
2514 Nature-based Solutions for Mitigating the Impact of Climate Change on Plants: Utilizing Encapsulated Plant Growth Regulators and Associative Microorganisms

Authors: Raana Babadi Fathipour

Abstract:

Over the past decades, the climatic CO2 concentration and worldwide normal temperature have been expanding, and this drift is anticipated to before long gotten to be more extreme. This situation of climate alter escalate abiotic stretch components (such as dry spell, flooding, saltiness, and bright radiation) that debilitate timberland and related environments as well as trim generation. These variables can contrarily influence plant development and advancement with a ensuing lessening in plant biomass aggregation and surrender, in expansion to expanding plant defenselessness to biotic stresses. As of late, biostimulants have ended up a hotspot as an viable and economical elective to reduce the negative impacts of stresses on plants. In any case, the larger part of biostimulants has destitute solidness beneath natural conditions, which leads to untimely debasement, shortening their organic movement. To unravel these bottlenecks, small scale- and nano-based definitions containing biostimulant atoms and/or microorganisms are picking up consideration as they illustrate a few points of interest over their routine details. In this survey, we center on the embodiment of plant development controllers and plant acquainted microorganisms as a technique to boost their application for plant assurance against abiotic stresses. We moreover address the potential restrictions and challenges confronted for the execution of this innovation, as well as conceivable outcomes with respect to future inquire about.

Keywords: bio stimulants, Seed priming, nano biotechnology, plant growth-promoting, rhizobacteria, plant growth regulators, microencapsulation

Procedia PDF Downloads 53
2513 Adopting Structured Mini Writing Retreats as a Tool for Undergraduate Researchers

Authors: Clare Cunningham

Abstract:

Whilst there is a strong global research base on the benefits of structured writing retreats and similar provisions, such as Shut Up and Write events, for academic staff and postgraduate researchers, very little has been published about the worth of such events for undergraduate students. This is despite the fact that, internationally, undergraduate student researchers experience similar pressures, distractions and feelings towards writing as those who are at more senior levels within the academy. This paper reports on a mixed-methods study with cohorts of third-year undergraduate students over the course of four academic years. This involved a range of research instruments adopted over the four years of the study. They include the administration of four questionnaires across three academic years, a collection of ethnographic recordings in the second year, and the collation of reflective journal entries and evaluations from all four years. The final two years of data collection took place during the period of Covid-19 restrictions when writing retreats moved to the virtual space which adds an additional dimension of interest to the analysis. The analysis involved the collation of quantitative questionnaire data to observe patterns in expressions of attitudes towards writing. Qualitative data were analysed thematically and used to corroborate and support the quantitative data when appropriate. The resulting data confirmed that one of the biggest challenges for undergraduate students mirrors those reported in the findings of studies focused on more experienced researchers. This is not surprising, especially given the number of undergraduate students who now work alongside their studies, as well as the increasing number who have caring responsibilities, but it has, as yet, been under-reported. The data showed that the groups of writing retreat participants all had very positive experiences, with accountability, a sense of community and procrastination avoidance some of the key aspects. The analysis revealed the sometimes transformative power of these events for a number of these students in terms of changing the way they viewed writing and themselves as writers. The data presented in this talk will support the proposal that retreats should much more widely be offered to undergraduate students across the world.

Keywords: academic writing, students, undergraduates, writing retreat

Procedia PDF Downloads 185
2512 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 312
2511 Urban Search, Rescue and Rapid Field Assessment of Damaged and Collapsed Building Structures

Authors: Abid I. Abu-Tair, Gavin M. Wilde, John M. Kinuthia

Abstract:

Urban Search and Rescue (USAR) is a functional capability that has been developed to allow the United Kingdom Fire and Rescue Service to deal with ‘major incidents’ primarily involving structural collapse. The nature of the work undertaken by USAR means that staying out of a damaged or collapsed building structure is not usually an option for search and rescue personnel. As a result, there is always a risk that they could become victims. For this paper, a systematic and investigative review using desk research was undertaken to explore the role which structural engineering can play in assisting search and rescue personnel to conduct structural assessments when in the field. The focus is on how search and rescue personnel can assess damaged and collapsed building structures, not just in terms of the structural damage that may be countered, but also in relation to structural stability. Natural disasters, accidental emergencies, acts of terrorism and other extreme events can vary significantly in nature and ferocity, and can cause a wide variety of damage to building structures. It is not possible or, even realistic, to provide search and rescue personnel with definitive guidelines and procedures to assess damaged and collapsed building structures as there are too many variables to consider. However, understanding what implications damage may have upon the structural stability of a building structure will enable search and rescue personnel to judge better and quantify the risk from a life-safety standpoint. It is intended that this will allow search and rescue personnel to make informed decisions and ensure every effort is made to mitigate risk so that they do not become victims.

Keywords: damaged and collapsed building structures, life safety, quantifying risk, search and rescue personnel, structural assessments in the field

Procedia PDF Downloads 383
2510 The Combination of Porcine Plasma Protein and Maltodextrin as Wall Materials on Microencapsulated Turmeric Oil Powder Quality

Authors: Namfon Samsalee, Rungsinee Sothornvit

Abstract:

Turmeric is a natural plant herb and generally extracted as essential oil and widely used in food, cosmetic, pharmaceutical products including insect repellent. However, turmeric oil is a volatile essential oil which is easy to be lost during storage or exposure to light. Therefore, biopolymers such as protein and polysaccharide can be used as wall materials to encapsulate the essential oil which will solve this drawback. Approximately 60% plasma from porcine blood contains 6-7% of protein content mainly albumin and globulin which can be a good source of animal protein at the low-cost biopolymer from by-product. Microencapsulation is a useful technique to entrap volatile compounds in the biopolymer matrix and protect them to degrade. The objective of this research was to investigate the different ratios of two biopolymers (PPP and maltodextrin; MD) as wall materials at 100:0, 75:25, 50:50, 25:75 and 0:100 at a fixed ratio of wall material: core material (turmeric oil) at 3:1 (oil in water) on the qualities of microencapsulated powder using freeze drying. It was found that the combination of PPP and MD showed higher solubility of microencapsules compared to the use of PPP alone (P < 0.05). Moreover, the different ratios of wall materials also affected on color (L*, a* and b*) of microencapsulated powder. Morphology of microencapsulated powder using a scanning electron microscope showed holes on the surface reflecting on free oil content and encapsulation efficiency of microencapsules. At least 50% of MD was needed to increase encapsulation efficiency of microencapsulates rather than using only PPP as the wall material (P < 0.05). Microencapsulated turmeric oil powder can be useful as food additives to improve food texture, as a biopolymer material for edible film and coating to maintain quality of food products.

Keywords: microencapsulation, turmeric oil, porcine plasma protein, maltodextrin

Procedia PDF Downloads 173
2509 Methane versus Carbon Dioxide Mitigation Prospects

Authors: Alexander J. Severinsky, Allen L. Sessoms

Abstract:

Atmospheric carbon dioxide (CO₂) has dominated the discussion about the causes of climate change. This is a reflection of the time horizon that has become the norm adopted by the IPCC as the planning horizon. Recently, it has become clear that a 100-year time horizon is much too long, and yet almost all mitigation efforts, including those in the near-term horizon of 30 years, are geared toward it. In this paper, we show that, for a 30-year time horizon, methane (CH₄) is the greenhouse gas whose radiative forcing exceeds that of CO₂. In our analysis, we used radiative forcing of greenhouse gases in the atmosphere since they directly affect the temperature rise on Earth. In 2019, the radiative forcing of methane was ~2.5 W/m² and that of carbon dioxide ~2.1 W/m². Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m² and ~3.1 W/m², respectively. There is a substantial spread in the data for anthropogenic and natural methane emissions as well as CH₄ leakages from production to consumption. We estimated the minimum and maximum effects of the reduction of these leakages. Such action may reduce the annual radiative forcing of all CH₄ emissions by between ~15% and ~30%. This translates into a reduction of the RF by 2050 from ~2.8 W/m² to ~2.5 W/m² in the case of the minimum effect and to ~2.15 W/m² in the case of the maximum. Under the BAU, we found that the RF of CO₂ would increase from ~2.1 W/m² nowadays to ~3.1 W/m² by 2050. We assumed a reduction of 50% of anthropogenic emission linearly over the next 30 years. That would reduce radiative forcing from ~3.1 W/m² to ~2.9 W/m². In the case of ‘net zero,’ the other 50% of reduction of only anthropogenic emissions would be limited to either from sources of emissions or directly from the atmosphere. The total reduction would be from ~3.1 to ~2.7, or ~0.4 W/m². To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m², then an additional reduction of radiative forcing of CO₂ would be approximately 2.7 -2.15=0.55 W/m². This is a much larger value than in expectations from ‘net zero’. In total, one needs to remove from the atmosphere ~660 GT to match the maximum reduction of current methane leakages and ~270 GT to achieve ‘net zero.’ This amounts to over 900 GT in total.

Keywords: methane leakages, methane radiative forcing, methane mitigation, methane net zero

Procedia PDF Downloads 132
2508 Variability for Nodulation and Yield Traits in Biofertilizer Treated and Untreated Pea (Pisum sativum L.) Varieties

Authors: Areej Javaid, Nishat Fatima, Mehwish Naseer

Abstract:

There is a tremendous use of biofertilizers in agriculture to increase crop productivity. Pakistan spends a huge amount on the purchase of synthetic fertilizers every year. The use of natural compounds to harness crop productivity is the major area of interest nowadays due to being safe for human health and the environment as well. Legumes have the intrinsic quality to enrich the nutrient status of soil because of the presence of nitrogen fixation bacteria on nodules. This research determined the effect of biofertilizer on nodulation attributes and yield of the pea plant. Seeds of pea varieties were treated with a slurry of biofertilizer prepared in a 10% sugar solution just before seed sowing. The impact of biofertilizer on different parameters of growth, yield and nodulation was observed. Analysis of variance showed that plant height, days to flowering, number of nodes, days to first pod, root length and plant height exhibited significant genetic variation. All the yield parameters, including the number of pods per plant, number of seeds per pod, seed fresh and dry weight showed significant results under treatment. Among nodulation parameters, nodule number responded positively to biofertilizer treatment. Genotypes 2001-40 showed better performance followed by 2001-20 and LINA-PAK in all the parameters, whereas 2001-40 and 2001-20 performed well in nodulation and yield parameters. Consequently, seed treatment with biofertilizer before sowing is recommended to obtain higher crop yield.

Keywords: biological nitrogen fixation, correlation analysis, quantitative inheritance, varietal responses

Procedia PDF Downloads 139
2507 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 126
2506 System Identification of Timber Masonry Walls Using Shaking Table Test

Authors: Timir Baran Roy, Luis Guerreiro, Ashutosh Bagchi

Abstract:

Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.

Keywords: frequency domain decomposition (fdd), modal parameters, signal processing, stochastic subspace identification (ssi), time domain decomposition

Procedia PDF Downloads 253
2505 Investigation of the Low-Level Jet Role in Transportation of Shamal Dust Storms in Southwest Iran

Authors: Nasim Hossein Hamzeh, Abbas Ranjbar Saadat Abadi, Maggie Chel Gee Ooi, Steven Soon-Kai Kong, Christian Opp

Abstract:

Dust storm is one of the most important natural disasters in the world, where the Middle East suffers frequently due to the existence of the dust belt region. As a country in the Middle East, Iran mostly is affected by the dust storms from some internal and also external dust sources, mostly originating from deserts in Iraq, Syria, and Saudi Arabia. In this study, some severe Shamal dust storms were investigated in Southwest Iran. The measured 〖PM〗_10 reached up to 834 μg m-3 in some stations in west Iran and Iran-Iraq borders, while the measured 〖PM〗_10 reached up to 4947 μg m-3 SW stations in northern shores of the Persian Gulf. During these severe dust storms, a low-level jet was observed at 930hPa atmospheric level in north Iraq and south Iraq. the jet core and its width were about 16 ms-1 and 100 km, respectively, in the cases where it is located in the NW regions of Iraq and northeastern Syria (at 35°N and 40-41°E), So the jet was stronger at higher latitudes (34°N - 35°N) than at lower latitudes (32°N). Therefore, suitable conditions have been created for lifting of dust sources located in northwestern Iraq and northeastern Syria. The topography surrounding the Mesopotamia and north of the Persian Gulf play a major role in the development of the Low-Level Jet through the interaction of meteorological conditions and mountain forcing. Also, the output of CALIPSO satellite images show dust rising to higher than 5 km in these dust cases, that confirming the influence of Shamal wind on the dust storm occurrence.

Keywords: dust storm, shamal wind, the persian gulf, southwest Iran

Procedia PDF Downloads 76
2504 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 205
2503 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows

Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican

Abstract:

This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.

Keywords: laboratory-process, optimization, pathology, computer simulation, workflow

Procedia PDF Downloads 276
2502 Intrinsic Motivational Factor of Students in Learning Mathematics and Science Based on Electroencephalogram Signals

Authors: Norzaliza Md. Nor, Sh-Hussain Salleh, Mahyar Hamedi, Hadrina Hussain, Wahab Abdul Rahman

Abstract:

Motivational factor is mainly the students’ desire to involve in learning process. However, it also depends on the goal towards their involvement or non-involvement in academic activity. Even though, the students’ motivation might be in the same level, but the basis of their motivation may differ. In this study, it focuses on the intrinsic motivational factor which student enjoy learning or feeling of accomplishment the activity or study for its own sake. The intrinsic motivational factor of students in learning mathematics and science has found as difficult to be achieved because it depends on students’ interest. In the Program for International Student Assessment (PISA) for mathematics and science, Malaysia is ranked as third lowest. The main problem in Malaysian educational system, students tend to have extrinsic motivation which they have to score in exam in order to achieve a good result and enrolled as university students. The use of electroencephalogram (EEG) signals has found to be scarce especially to identify the students’ intrinsic motivational factor in learning science and mathematics. In this research study, we are identifying the correlation between precursor emotion and its dynamic emotion to verify the intrinsic motivational factor of students in learning mathematics and science. The 2-D Affective Space Model (ASM) was used in this research in order to identify the relationship of precursor emotion and its dynamic emotion based on the four basic emotions, happy, calm, fear and sad. These four basic emotions are required to be used as reference stimuli. Then, in order to capture the brain waves, EEG device was used, while Mel Frequency Cepstral Coefficient (MFCC) was adopted to be used for extracting the features before it will be feed to Multilayer Perceptron (MLP) to classify the valence and arousal axes for the ASM. The results show that the precursor emotion had an influence the dynamic emotions and it identifies that most students have no interest in mathematics and science according to the negative emotion (sad and fear) appear in the EEG signals. We hope that these results can help us further relate the behavior and intrinsic motivational factor of students towards learning of mathematics and science.

Keywords: EEG, MLP, MFCC, intrinsic motivational factor

Procedia PDF Downloads 353
2501 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 354
2500 Influence of Humidity on Environmental Sustainability, Air Quality and Occupant Health

Authors: E. Cintura, M. I. Gomes

Abstract:

Nowadays, sustainable development issues have a key role in the planning of the man-made environment. Ensuring this development means limiting the impact of human activity on nature. It is essential to secure healthy places and good living conditions. For these reasons, indoor air quality and building materials play a fundamental role in sustainable architectural projects. These factors significantly affect human health: they can radically change the quality of the internal environment and energy consumption. The use of natural materials such as earth has many beneficial aspects in comfort and indoor air quality. As well as advantages in the environmental impact of the construction, they ensure a low energy consumption. Since they are already present in nature, their production and use do not require a high-energy consumption. Furthermore, they have a high thermo-hygrometric capacity, being able to absorb moisture, contributing positively to indoor conditions. Indoor air quality is closely related to relative humidity. For these reasons, it can be affirmed that the use of earth materials guarantees a sustainable development and at the same time improves the health of the building users. This paper summarizes several researches that demonstrate the importance of indoor air quality for human health and how it strictly depends on the building materials used. Eco-efficient plasters are also considered: earth and ash mortar. The bibliography consulted has the objective of supporting future experimental and laboratory analyzes. It is necessary to carry on with research by the use of simulations and testing to confirm the hygrothermal properties of eco-efficient plasters and therefore their ability to improve indoor air quality.

Keywords: hygroscopicity, hygrothermal comfort, mortar, plaster

Procedia PDF Downloads 127
2499 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction

Authors: Yanxue Shang, Jingbin Zeng

Abstract:

Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.

Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction

Procedia PDF Downloads 132
2498 Long-Term Sitting Posture Identifier Connected with Cloud Service

Authors: Manikandan S. P., Sharmila N.

Abstract:

Pain in the neck, intermediate and anterior, and even low back may occur in one or more locations. Numerous factors can lead to back discomfort, which can manifest into sensations in the other parts of your body. Up to 80% of people will have low back problems at a certain stage of their lives, making spine-related pain a highly prevalent ailment. Roughly twice as commonly as neck pain, low back discomfort also happens about as often as knee pain. According to current studies, using digital devices for extended periods of time and poor sitting posture are the main causes of neck and low back pain. There are numerous monitoring techniques provided to enhance the sitting posture for the aforementioned problems. A sophisticated technique to monitor the extended sitting position is suggested in this research based on this problem. The system is made up of an inertial measurement unit, a T-shirt, an Arduino board, a buzzer, and a mobile app with cloud services. Based on the anatomical position of the spinal cord, the inertial measurement unit was positioned on the inner back side of the T-shirt. The IMU (inertial measurement unit) sensor will evaluate the hip position, imbalanced shoulder, and bending angle. Based on the output provided by the IMU, the data will be analyzed by Arduino, supplied through the cloud, and shared with a mobile app for continuous monitoring. The buzzer will sound if the measured data is mismatched with the human body's natural position. The implementation and data prediction with design to identify balanced and unbalanced posture using a posture monitoring t-shirt will be further discussed in this research article.

Keywords: IMU, posture, IOT, textile

Procedia PDF Downloads 70
2497 Anti-Inflammatory, Analgesic and Antipyretic Activity of Terminalia arjuna Roxb. Extract in Animal Models

Authors: Linda Chularojmontri, Seewaboon Sireeratawong, Suvara Wattanapitayakul

Abstract:

Terminalia arjuna Roxb. (family Combretaceae) is commonly known as ‘Sa maw thet’ in Thai. The fruit is used in traditional medicine as natural mild laxatives, carminative and expectorant. Aim of the study: This research aims to study the anti-inflammatory, analgesic and antipyretic activities of Terminalia arjuna extract by using animal models in comparison to the reference drugs. Materials and Methods: The anti-inflammatory study was conducted by two experimental animal models namely ethyl phenylpropionate (EPP)-induced ear edema and carrageenan-induced paw edema. The study of analgesic activity used two methods of pain induction including acetic acid and heat-induced pain. In addition, the antipyretic activity study was performed by induced hyperthermia with yeast. Results: The results showed that the oral administration of Terminalia arjuna extract possessed acute anti-inflammatory effect in carrageenan-induced paw edema. Terminalia arjuna extract showed the analgesic activity in acetic acid-induced writhing response and heat-induced pain. This indicates its peripheral effect by inhibiting the biosynthesis and/or release of some pain mediators and some mechanism through Central nervous system. Moreover, Terminalia arjuna extract at the dose of 1000 and 1500 mg/kg body weight showed the antipyretic activity, which might be because of the inhibition of prostaglandins. Conclusion: The findings of this study indicated that the Terminalia arjuna extract possesses the anti-inflammatory, analgesic and antipyretic activities in animals.

Keywords: analgesic activity, anti-inflammatory activity, antipyretic activity, Terminalia arjuna extract

Procedia PDF Downloads 254
2496 Effect of Dual Wavelength Light Exposure on Regeneration of Dugesia dorotocephala

Authors: Zayedali Shaikh

Abstract:

Increasingly now more than ever, UV damage brings with it a litany of minor deformities that can range from mild lesions and discoloring to cataracts and blindness. Pluripotent stem cells in planaria and human skin can be used to treat wounds and skin damage, with the primary limitations being inadequate growth factors. Photobiomodulation therapy in the form of low-intensity red light therapy has been proven to provide helpful benefits in the healing of skin that displays some of the symptoms of UV damage, such as burns and lesions, along with stimulating the proliferation of stem cells in recellularizing tissue. This paper puts forth an alternate means by which to treat the effects of UV damage using the freshwater planarian model system, Dugesia dorotocephala, known for its regenerative abilities and abundance of pluripotent stem cells, which allow for the rapid growth and repair of missing or damaged structures. Our work consisted of exposing planaria to different types of light: red light, blue light, white light, darkness, red and blue light together, UV light, and finally, red and UV light together. The primary focus of this research was on the red and UV lights, with six controls acting as metrics to compare our findings. Through computer-assisted morphological analysis, the results show that there is no significant difference in the rates of regeneration of planaria treated with simultaneous exposure to red and UV light versus planaria in darkness (p > .05), a representation of their preferred natural habitat. Our research suggests the viability of red-light therapy in actively combating UV damage and expediting the growth of epidermal stem cells by acting as another growth factor.

Keywords: regenerative medicine, stem cells, planaria, photobiomodulation

Procedia PDF Downloads 60
2495 Thermal Method for Testing Small Chemisorbent Samples on the Base of Potassium Superoxide

Authors: Pavel V. Balabanov, Daria A. Liubimova, Aleksandr P. Savenkov

Abstract:

The increase of technogenic and natural accidents, accompanied by air pollution, for example, by combustion products, leads to the necessity of respiratory protection. This work is devoted to the development of a calorimetric method and a device which allow investigating quickly the kinetics of carbon dioxide sorption by chemo-sorbents on the base of potassium superoxide in order to assess the protective properties of respiratory protective closed-circuit apparatus. The features of the traditional approach for determining the sorption properties in a thin layer of chemo-sorbent are described, as well as methods and devices, which can be used for the sorption kinetics study. The authors of the paper developed an approach (as opposed to the traditional approach) based on the power measurement of internal heat sources in the chemo-sorbent layer. The emergence of the heat sources is a result of the exothermic reaction of carbon dioxide sorption. This approach eliminates the necessity of chemical analysis of samples and can significantly reduce the time and material expenses during chemo-sorbents testing. The error of determining the volume fraction of adsorbed carbon dioxide by the developed method does not exceed 12%. Taking into account the efficiency of the method, we consider that it is a good alternative to traditional methods of chemical analysis under the assessment of the protection sorbents quality.

Keywords: carbon dioxide chemisorption, exothermic reaction, internal heat sources, respiratory protective apparatus

Procedia PDF Downloads 396
2494 An Appraisal of the Knowledge Attitude and Practice (Kap) on Plastic Waste Pollution as a Resilience Pathway for Mitigating Climate Change Case of Durumi 1 Urban Slum Area of Abuja Nigeria

Authors: Pascal U. Onu, Doris A. Ogbang, Emmanuel Okechukwu.

Abstract:

Background: Plastics in their various forms have become ubiquitous in a very short space of time. This ubiquitous nature has plagued and daunted nations globally, overwhelming their ability to manage the environmental impact, especially its linkages to climate change. This has mobilized nations globally and triggered debates on the best approaches to ensure sustainability in terms of its production and utilization, as total elimination seems unrealistic. Objective: This study undertook to understand the pattern of plastic waste management, and its pollution awareness levels by the residents of the study area. Methods: Data were obtained through questionnaires designed specifically for plastic waste and qualitatively via journals and articles. Simple descriptive survey techniques with a survey population size of 300 respondents using kobo collect were employed. Results: Analysis based on disaggregated data indicated a proportionate distribution among male and female respondents (53% male and 47% female, respectively). Overall awareness levels on plastic waste's contribution to climate change, compared to its environmental impact, are reflective of a dire need for increased efforts in strengthening awareness creation, especially across gender populations and religious backgrounds. Drainage blockage topped the ranks among common problems caused by plastic waste within the area. Various plastic waste disposal methods were ranked, while pro-environmental measures for reducing the waste menace showed more willingness from males at 52%. Conclusion: These outcomes are instructive and suggest the need for renewed and increased awareness/education on the nexus of plastic pollution to climate change and also appropriate synergies/collaboration between government, private sector, and local communities, especially in the area of recycling to improve sustainability in plastic waste management.

Keywords: plastic waste, KAP, climate change, Nigeria

Procedia PDF Downloads 25
2493 Media Framing and Agenda-Setting of Hurricane Harvey’s News Coverage: A Content Analysis of The New York Times, The Wall Street Journal, and The Houston Chronicle from 2017 To 2018

Authors: S M Asger Ali, Duane A. Gill

Abstract:

During crisis moments like a natural disaster, people tend to rely on the mass media to get up-to-date information and stay informed. However, when media are covering crisis news, they may lose some objectivity, and rather than providing balanced news coverage, media may become critical towards the government and private sectors for their participation in disaster response and recovery processes. This paper investigated the print media coverage of Hurricane Harvey and utilized data from three newspapers: the New York Times (online), the Wall Street Journal (online), and the Houston Chronicle. By examining the media's use of descriptors, quotes, wording, and images, this research explored how media coverage framed government and private sectors for their role in Harvey's response and recovery. Findings revealed that the human-interest frame received the most media attention, and the morality frame received less attention. Regarding tone, this study found that the media's overall tone for government response was neutral. However, the tone for the federal government was slightly negative, while the tone for city and state level of government was slightly positive. By examining the media's tone and frame, this research contributes to the literature on risk communication, mass media, and disaster studies.

Keywords: hurricane Harvey, mass media, risk communication, disaster response, media framing, crisis news coverage

Procedia PDF Downloads 180
2492 Clinical Profile, Evaluation, Management and Visual Outcome of Idiopathic Intracranial Hypertension in a Neuro-Ophthalmology Clinic in Jeddah, Saudi Arabia

Authors: Rahaf Mandura

Abstract:

Background: Idiopathic intracranial hypertension (IIH) is a disorder with elevated intracranial pressure (ICP) more than 250 mm H₂O, without evidence of meningeal inflammation, space-occupying lesion, or venous thrombosis. The aim of this research is to study the clinical profile, evaluation, management, and visual outcome in a hospital-based population of IIH cases in Jeddah. Methodology: This is a retrospective observational study that included the medical records of all patients referred to neuro-ophthalmology service for evaluation of papilledema. The medical records have been reviewed from October 2018 to February 2020 at Jeddah Eye Hospital (JEH), Saudi Arabia. A total of fifty-one patients presented with papilledema in the studied period. Forty-seven patients met our inclusion criteria and were included in the study. Results: Most of the patients were females (43, 91.5%) with a mean age of presentation of 30.83±11.40 years. The most common presenting symptom was headache (40 patients, 85.1%), followed by transient visual obscuration (20 patients, 42.6%), and reduced visual acuity (15 patients, 31.9%). All 47 patients were started on medical treatment with oral acetazolamide with four patients (8.5%) shifted to topiramate because of the lack of response or intolerance to acetazolamide while four patients (8.5%) underwent lumbar-peritoneal shunt because of inadequate control of the disease despite the treatment with medical therapy. For both eyes, the change in visual acuity across all assessment points was statistically significant. Nevertheless, there were no significant changes in the visual field findings among all of the compared assessment points. Conclusion: The present study has shown that IIH-related papilledema is common in young female patients with headaches, transient visual obscurations and reduced visual acuity. Those are the commonest symptoms in our IIH population. Medical treatment of IIH is significantly efficacious and should be considered in order to enhance the prognosis of IIH-related complications. Therefore, the visual status should be frequently monitored for these patients.

Keywords: idiopathic intracranial hypertension, intracranial hypertension, papilledema, headache

Procedia PDF Downloads 180
2491 Acoustic Energy Harvesting Using Polyvinylidene Fluoride (PVDF) and PVDF-ZnO Piezoelectric Polymer

Authors: S. M. Giripunje, Mohit Kumar

Abstract:

Acoustic energy that exists in our everyday life and environment have been overlooked as a green energy that can be extracted, generated, and consumed without any significant negative impact to the environment. The harvested energy can be used to enable new technology like wireless sensor networks. Technological developments in the realization of truly autonomous MEMS devices and energy storage systems have made acoustic energy harvesting (AEH) an increasingly viable technology. AEH is the process of converting high and continuous acoustic waves from the environment into electrical energy by using an acoustic transducer or resonator. AEH is not popular as other types of energy harvesting methods since sound waves have lower energy density and such energy can only be harvested in very noisy environment. However, the energy requirements for certain applications are also correspondingly low and also there is a necessity to observe the noise to reduce noise pollution. So the ability to reclaim acoustic energy and store it in a usable electrical form enables a novel means of supplying power to relatively low power devices. A quarter-wavelength straight-tube acoustic resonator as an acoustic energy harvester is introduced with polyvinylidene fluoride (PVDF) and PVDF doped with ZnO nanoparticles, piezoelectric cantilever beams placed inside the resonator. When the resonator is excited by an incident acoustic wave at its first acoustic eigen frequency, an amplified acoustic resonant standing wave is developed inside the resonator. The acoustic pressure gradient of the amplified standing wave then drives the vibration motion of the PVDF piezoelectric beams, generating electricity due to the direct piezoelectric effect. In order to maximize the amount of the harvested energy, each PVDF and PVDF-ZnO piezoelectric beam has been designed to have the same structural eigen frequency as the acoustic eigen frequency of the resonator. With a single PVDF beam placed inside the resonator, the harvested voltage and power become the maximum near the resonator tube open inlet where the largest acoustic pressure gradient vibrates the PVDF beam. As the beam is moved to the resonator tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams PVDF and PVDF-ZnO have been placed inside the resonator with two different configurations: the aligned and zigzag configurations. With the zigzag configuration which has the more open path for acoustic air particle motions, the significant increases in the harvested voltage and power have been observed. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing PVDF beams near the closed tube end is not beneficial. The total output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases. This study therefore reveals that the proposed technique used to harvest sound wave energy has great potential of converting free energy into useful energy.

Keywords: acoustic energy, acoustic resonator, energy harvester, eigenfrequency, polyvinylidene fluoride (PVDF)

Procedia PDF Downloads 364
2490 Effects of Alpha Lipoic Acid on Limb Lengths in Neonatal Rats Exposed to Maternal Tobacco Smoke

Authors: Ramazan F. Akkoc, Elif Erdem, Nalan Kaya, Gonca Ozan, D. Özlem Dabak, Enver Ozan

Abstract:

Maternal tobacco smoke exposure is known to cause growth retardation in the neonatal skeletal system. Alpha lipoic acid, a natural antioxidant found in some foods, limits the activities of osteoclasts and supports the osteoblast's bone formation mechanism. In this study, it was aimed to investigate the effects of alpha lipoic acid (ALA) on the height, long bones and tail lengths of pups exposed to maternal tobacco smoke. The rats were divided into four groups: 1) control group, 2) tobacco smoke group, 3) tobacco smoke + ALA group, and 4) ALA group. Rats in the group 2 (tobacco smoke), group 3 (tobacco smoke + ALA) were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group 3 (tobacco smoke + ALA). Only alpha lipoic acid was administered to the rats in the group 4. On day 21 postpartum, the height and tail lengths of the pups in all groups were measured, and the length of the extremity long bones was measured after decapitation. All morphometric measurements performed in group 2 (tobacco smoke) showed a significant decrease compared to group 1 (control), while all measurements in group 3 (tobacco smoke + ALA) showed a significant increase compared to group 2 (tobacco smoke). It has been shown that ALA has a protective effect against the regression of height, long bones and tail lengths of pups exposed to maternal tobacco smoke.

Keywords: alpha lipoic acid, bone, morphometry, rat, tobacco smoke

Procedia PDF Downloads 352
2489 Physicochemical Characterization of Medium Alkyd Resins Prepared with a Mixture of Linum usitatissimum L. and Plukenetia volubilis L. Oils

Authors: Antonella Hadzich, Santiago Flores

Abstract:

Alkyds have become essential raw materials in the coating and paint industry, due to their low cost, good application properties and lower environmental impact in comparison with petroleum-based polymers. The properties of these oil-modified materials depend on the type of polyunsaturated vegetable oil used for its manufacturing, since a higher degree of unsaturation provides a better crosslinking of the cured paint. Linum usitatissimum L. (flax) oil is widely used to develop alkyd resins due to its high degree of unsaturation. Although it is intended to find non-traditional sources and increase their commercial value, to authors’ best knowledge a natural source that can replace flaxseed oil has not yet been found. However, Plukenetia volubilis L. oil, of Peruvian origin, contains a similar fatty acid polyunsaturated content to the one reported for Linum usitatissimum L. oil. In this perspective, medium alkyd resins were prepared with a mixture of 50% of Linum usitatissimum L. oil and 50% of Plukenetia volubilis L. oil. Pure Linum usitatissimum L. oil was also used for comparison purposes. Three different resins were obtained by varying the amount of glycerol and pentaerythritol. The synthesized alkyd resins were characterized by FT-IR, and physicochemical properties like acid value, colour, viscosity, density and drying time were evaluated by standard methods. The pencil hardness and chemical resistance behaviour of the cured resins were also studied. Overall, it can be concluded that medium alkyd resins containing Plukenetia volubilis L. oil have an equivalent behaviour compared to those prepared purely with Linum usitatissimum L. oil. Both Plukenetia volubilis L. oil and pentaerythritol have a remarkable influence on certain physicochemical properties of medium alkyd resins.

Keywords: alkyd resins, flaxseed oil, pentaerythritol, Plukenetia volubilis L. oil, protective coating

Procedia PDF Downloads 105