Search results for: urea deep placement
1751 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 641750 Plasma Biochemistry Values in Wild Hawksbill Turtles (Eretmochelys imbricata) during Nesting and Foraging Seasons in Qeshm Island, Persian Gulf
Authors: Fateme Afkhami, Mohsen Ehsanpour, Majid Afkhami, Maryam Ehsanpour
Abstract:
Normal reference ranges of biochemical parameters are considered important for assessing and monitoring the health status of sea turtles. For this means, serum biochemistry determinations were analyzed in normal adult nesting and foraging hawksbill turtles (Eretmochelys imbricata). Blood samples were collected in March–April during nesting season and December-November in the foraging season. Plasma biochemistry values, except for creatinine and lipase were significant between the two periods. FBS, cholesterol, triglycerides, ALP (alkaline phosphatase), AST (aspartate aminotransferase), bilirubin, total protein, LDH (lactate dehydrogenase), CK (creatine kinase) and amylase were significantly higher in nesting season than foraging season (P<0.05). On the other hand urea, ALT (alanine aminotransferase) and albumin in the nesting season were significantly lower than foraging season (P<0.05). It was concluded that the nesting E. imbricata showed significant variation in their biochemical profile due to reproductive output. This study has produced working reference intervals useful for hawksbill turtles for future conservation and rehabilitation projects in the Persian Gulf and may be of assistance in similar programs worldwide.Keywords: plasma biochemistry, nesting, foraging, hawksbill turtles, Persian Gulf
Procedia PDF Downloads 6171749 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 1141748 The Admitting Hemogram as a Predictor for Severity and in-Hospital Mortality in Acute Pancreatitis
Authors: Florge Francis A. Sy
Abstract:
Acute pancreatitis (AP) is an inflammatory condition of the pancreas with local and systemic complications. Severe acute pancreatitis (SAP) has a higher mortality rate. Laboratory parameters like the neutrophil-to-lymphocyte ratio (NLR), red cell distribution width (RDW), and mean platelet volume (MPV) have been associated with SAP but with conflicting results. This study aims to determine the predictive value of these parameters on the severity and in-hospital mortality of AP. This retrospective, cross-sectional study was done in a private hospital in Cebu City, Philippines. One-hundred five patients were classified according to severity based on the modified Marshall scoring. The admitting hemogram, including the NLR, RDW, and MPV, was obtained from the complete blood count (CBC). Cut-off values for severity and in-hospital mortality were derived from the ROC. Association between NLR, RDW, and MPV with SAP and mortality were determined with a p-value of < 0.05 considered significant. The mean age for AP was 47.6 years, with 50.5% being male. Most had an unknown cause (49.5%), followed by a biliary cause (37.1%). Of the 105 patients, 23 patients had SAP, and 4 died. Older age, longer in-hospital duration, congestive heart failure, elevated creatinine, urea nitrogen, and white blood cell count were seen in SAP. The NLR was associated with in-hospital mortality using a cut-off of > 10.6 (OR 1.133, 95% CI, p-value 0.003) with 100% sensitivity, 70.3% specificity, 11.76% PPV and 100% NPV (AUC 0.855). The NLR was not associated with SAP. The RDW and MPV were not associated with SAP and mortality. The admitting NLR is, therefore, an easily accessible parameter that can predict in-hospital mortality in acute pancreatitis. Although the present study did not show an association of NLR with SAP nor RDW and MPV with both SAP and mortality, further studies are suggested to establish their clinical value.Keywords: acute pancreatitis, mean platelet volume, neutrophil-lymphocyte ratio, red cell distribution width
Procedia PDF Downloads 1231747 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 3481746 Phase Synchronization of Skin Blood Flow Oscillations under Deep Controlled Breathing in Human
Authors: Arina V. Tankanag, Gennady V. Krasnikov, Nikolai K. Chemeris
Abstract:
The development of respiration-dependent oscillations in the peripheral blood flow may occur by at least two mechanisms. The first mechanism is related to the change of venous pressure due to mechanical activity of lungs. This phenomenon is known as ‘respiratory pump’ and is one of the mechanisms of venous return of blood from the peripheral vessels to the heart. The second mechanism is related to the vasomotor reflexes controlled by the respiratory modulation of the activity of centers of the vegetative nervous system. Early high phase synchronization of respiration-dependent blood flow oscillations of left and right forearm skin in healthy volunteers at rest was shown. The aim of the work was to study the effect of deep controlled breathing on the phase synchronization of skin blood flow oscillations. 29 normotensive non-smoking young women (18-25 years old) of the normal constitution without diagnosed pathologies of skin, cardiovascular and respiratory systems participated in the study. For each of the participants six recording sessions were carried out: first, at the spontaneous breathing rate; and the next five, in the regimes of controlled breathing with fixed breathing depth and different rates of enforced breathing regime. The following rates of controlled breathing regime were used: 0.25, 0.16, 0.10, 0.07 and 0.05 Hz. The breathing depth amounted to 40% of the maximal chest excursion. Blood perfusion was registered by laser flowmeter LAKK-02 (LAZMA, Russia) with two identical channels (wavelength 0.63 µm; emission power, 0.5 mW). The first probe was fastened to the palmar surface of the distal phalanx of left forefinger; the second probe was attached to the external surface of the left forearm near the wrist joint. These skin zones were chosen as zones with different dominant mechanisms of vascular tonus regulation. The degree of phase synchronization of the registered signals was estimated from the value of the wavelet phase coherence. The duration of all recording was 5 min. The sampling frequency of the signals was 16 Hz. The increasing of synchronization of the respiratory-dependent skin blood flow oscillations for all controlled breathing regimes was obtained. Since the formation of respiration-dependent oscillations in the peripheral blood flow is mainly caused by the respiratory modulation of system blood pressure, the observed effects are most likely dependent on the breathing depth. It should be noted that with spontaneous breathing depth does not exceed 15% of the maximal chest excursion, while in the present study the breathing depth was 40%. Therefore it has been suggested that the observed significant increase of the phase synchronization of blood flow oscillations in our conditions is primarily due to an increase of breathing depth. This is due to the enhancement of both potential mechanisms of respiratory oscillation generation: venous pressure and sympathetic modulation of vascular tone.Keywords: deep controlled breathing, peripheral blood flow oscillations, phase synchronization, wavelet phase coherence
Procedia PDF Downloads 2131745 Recurrent Neural Networks for Complex Survival Models
Authors: Pius Marthin, Nihal Ata Tutkun
Abstract:
Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)
Procedia PDF Downloads 891744 Preliminary Study on Milk Composition and Milk Protein Polymorphism in the Algerian Local Sheep's Breeds
Authors: A. Ameur Ameur, F. Chougrani, M. Halbouche
Abstract:
In order to characterize the sheep's milk, we analyzed and compared, in a first stage of our work, the physical and chemical characteristics in two Algerian sheep breeds: Hamra race and race Ouled Djellal breeding at the station the experimental ITELV Ain Hadjar (Saïda Province). Analyses are performed by Ekomilk Ultra-analyzer (EON TRADING LLC, USA), they focused on the pH, density, freezing, fat, total protein, solids-the total dry extract. The results obtained for these parameters showed no significant differences between the two breeds studied. The second stage of this work was the isolation and characterization of milk proteins. For this, we used the precipitation of caseins phi [pH 4.6]. For this, we used the precipitation of caseins Phi (pH 4.6). After extraction, purification and assay, both casein and serum protein fractions were then assayed by the Bradford method and controlled by polyacrylamide gel electrophoresis (PAGE) in the different conditions (native, in the presence of urea and in the presence of SDS). The electrophoretic pattern of milk samples showed the presence similarities of four major caseins variants (αs1-, αs2-β-and k-casein) and two whey proteins (β-lactoglobulin, α-lactalbumin) of two races Hamra and Ouled Djellal. But compared to bovine milk, they have helped to highlight some peculiarities as related to serum proteins (α La β Lg) as caseins, including αs1-Cn.Keywords: Hamra, Ouled Djellal, protein polymorphism, sheep breeds
Procedia PDF Downloads 5571743 Antioxidants Reveal Protection against the Biochemical Changes in Liver, Kidney, and Blood Profiles after Clindamycin/Ibuprofen Administration in Dental Patients
Authors: Gouda K. Helal, Marwa I. Shabayek, Heba A. El-Ramly, Heba A. Awida
Abstract:
The adverse effects of Clindamycin (Clind.) / Ibuprofen (Ibu.) combination on liver, kidney, blood elements and the significances of antioxidants (N-acetylcysteine and Zinc) against these effects were evaluated. The study includes: Group I; control n=30, Group II; patients on Clind.300mg/Ibu.400mg twice daily for a week n=30, Group III; patients on Clind.300mg/Ibu.400mg+N-acetylcysteine 200mg twice daily for a week n=15 and Group IV; patients on Clind.300mg/Ibu.400mg+Zinc50mg twice daily for a week n=15. Serum malondialdehyde (MDA), alanine transferase (ALT), aspartate transferase (AST), γ glutamyl transferase (GGT), creatinine, blood urea nitrogen (BUN) were measured. Applying one way ANOVA followed by Tuckey Kramer post test, Group II showed significant increase in ALT, AST, GGT, BUN and decrease in Hb, RBCs, platelets than Group I. Group III showed significant decrease in ALT, AST, GGT, BUN than Group II. Moreover, Group IV showed significant decrease in ALT, AST, GGT and increase in Hb, RBCs, and platelets than Group II. Conclusively, Adding Zinc or N-acetylcysteine buffer the oxidative stress and improve the therapeutic outcome of Clindamycin/Ibuprofen combination.Keywords: clindamycin, ibuprofen, adverse effects, antioxidant, zinc, N-acetylcysteine
Procedia PDF Downloads 3831742 Metagenomics-Based Molecular Epidemiology of Viral Diseases
Authors: Vyacheslav Furtak, Merja Roivainen, Olga Mirochnichenko, Majid Laassri, Bella Bidzhieva, Tatiana Zagorodnyaya, Vladimir Chizhikov, Konstantin Chumakov
Abstract:
Molecular epidemiology and environmental surveillance are parts of a rational strategy to control infectious diseases. They have been widely used in the worldwide campaign to eradicate poliomyelitis, which otherwise would be complicated by the inability to rapidly respond to outbreaks and determine sources of the infection. The conventional scheme involves isolation of viruses from patients and the environment, followed by their identification by nucleotide sequences analysis to determine phylogenetic relationships. This is a tedious and time-consuming process that yields definitive results when it may be too late to implement countermeasures. Because of the difficulty of high-throughput full-genome sequencing, most such studies are conducted by sequencing only capsid genes or their parts. Therefore the important information about the contribution of other parts of the genome and inter- and intra-species recombination to viral evolution is not captured. Here we propose a new approach based on the rapid concentration of sewage samples with tangential flow filtration followed by deep sequencing and reconstruction of nucleotide sequences of viruses present in the samples. The entire nucleic acids content of each sample is sequenced, thus preserving in digital format the complete spectrum of viruses. A set of rapid algorithms was developed to separate deep sequence reads into discrete populations corresponding to each virus and assemble them into full-length consensus contigs, as well as to generate a complete profile of sequence heterogeneities in each of them. This provides an effective approach to study molecular epidemiology and evolution of natural viral populations.Keywords: poliovirus, eradication, environmental surveillance, laboratory diagnosis
Procedia PDF Downloads 2811741 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer
Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom
Abstract:
Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN
Procedia PDF Downloads 751740 Phylogenetic Analysis and a Review of the History of the Accidental Phytoplankter, Phaeodactylum tricornutum Bohlin (Bacillariophyta)
Authors: Jamal S. M. Sabir, Edward C. Theriot, Schonna R. Manning, Abdulrahman L. Al-Malki, Mohammad, Mumdooh J. Sabir, Dwight K. Romanovicz, Nahid H. Hajrah, Robert K. Jansen, Matt P. Ashworth
Abstract:
The diatom Phaeodactylum tricornutum has been used as a model for cell biologists and ecologists for over a century. We have incorporated several new raphid pennates into a three-gene phylogenetic dataset (SSU, rbcL, psbC), and recover Gomphonemopsis sp. as sister to P. tricornutum with 100% BS support. This is the first time a close relative has been identified for P. tricornutum with robust statistical support. We test and reject a succession of hypotheses for other relatives. Our molecular data are statistically significantly incongruent with placement of either or both species among the Cymbellales, an order of diatoms with which both have been associated. We believe that further resolution of the phylogenetic position of P. tricornutum will rely more on increased taxon sampling than increased genetic sampling. Gomphonemopsis is a benthic diatom, and its phylogenetic relationship with P. tricornutum is congruent with the hypothesis that P. tricornutum is a benthic diatom with specific adaptations that lead to active recruitment into the plankton. We hypothesize that other benthic diatoms are likely to have similar adaptations and are not merely passively recruited into the plankton.Keywords: benthic, diatoms; ecology, Phaeodactylum tricornutum, phylogeny, tychoplankton
Procedia PDF Downloads 2381739 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)
Authors: Yujiang Wu
Abstract:
As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction
Procedia PDF Downloads 991738 Applicability of Soybean as Bio-Catalyst in Calcite Precipitated Method for Soil Improvement
Authors: Heriansyah Putra, Erizal Erizal, Sutoyo Sutoyo, Hideaki Yasuhara
Abstract:
This paper discusses the possibility of organic waste material, i.e., soybean, as the bio-catalyst agent on the calcite precipitation method. Several combinations of soybean powder and jack bean extract are used as the bio-catalyst and mixed with the reagent composed of calcium chloride and urea. Its productivity in promoting calcite crystal is evaluated through a transparent test-tube experiment. The morphological and mineralogical aspects of precipitated calcite are also investigated using scanning electromagnetic (SEM) and X-ray diffraction (XRD), respectively. The applicability of this material to improve the engineering properties of soil are examined using the direct shear and unconfined compressive test. The result of this study shows that the utilization of soybean powder brings about a significant effect on soil strength. In addition, the use of soybean powder as a substitution material of urease enzyme also increases the efficacy of calcite crystal as the binder materials. The low calcite content promotes the high strength of the soil. The strength of 300 kPa is obtained in the presence of 2% of calcite content within the soil. The result of this study elucidated that substitution of soybean to jack bean extract is the potential and valuable alternative to improve the applicability of calcite precipitation method as soil improvement technique.Keywords: calcite precipitation, jack bean, soil improvement, soybean
Procedia PDF Downloads 1271737 A Novel Software Model for Enhancement of System Performance and Security through an Optimal Placement of PMU and FACTS
Authors: R. Kiran, B. R. Lakshmikantha, R. V. Parimala
Abstract:
Secure operation of power systems requires monitoring of the system operating conditions. Phasor measurement units (PMU) are the device, which uses synchronized signals from the GPS satellites, and provide the phasors information of voltage and currents at a given substation. The optimal locations for the PMUs must be determined, in order to avoid redundant use of PMUs. The objective of this paper is to make system observable by using minimum number of PMUs & the implementation of stability software at 22OkV grid for on-line estimation of the power system transfer capability based on voltage and thermal limitations and for security monitoring. This software utilizes State Estimator (SE) and synchrophasor PMU data sets for determining the power system operational margin under normal and contingency conditions. This software improves security of transmission system by continuously monitoring operational margin expressed in MW or in bus voltage angles, and alarms the operator if the margin violates a pre-defined threshold.Keywords: state estimator (SE), flexible ac transmission systems (FACTS), optimal location, phasor measurement units (PMU)
Procedia PDF Downloads 4091736 Monitoring of Wound Healing Through Structural and Functional Mechanisms Using Photoacoustic Imaging Modality
Authors: Souradip Paul, Arijit Paramanick, M. Suheshkumar Singh
Abstract:
Traumatic injury is the leading worldwide health problem. Annually, millions of surgical wounds are created for the sake of routine medical care. The healing of these unintended injuries is always monitored based on visual inspection. The maximal restoration of tissue functionality remains a significant concern of clinical care. Although minor injuries heal well with proper care and medical treatment, large injuries negatively influence various factors (vasculature insufficiency, tissue coagulation) and cause poor healing. Demographically, the number of people suffering from severe wounds and impaired healing conditions is burdensome for both human health and the economy. An incomplete understanding of the functional and molecular mechanism of tissue healing often leads to a lack of proper therapies and treatment. Hence, strong and promising medical guidance is necessary for monitoring the tissue regeneration processes. Photoacoustic imaging (PAI), is a non-invasive, hybrid imaging modality that can provide a suitable solution in this regard. Light combined with sound offers structural, functional and molecular information from the higher penetration depth. Therefore, molecular and structural mechanisms of tissue repair will be readily observable in PAI from the superficial layer and in the deep tissue region. Blood vessel formation and its growth is an essential tissue-repairing components. These vessels supply nutrition and oxygen to the cell in the wound region. Angiogenesis (formation of new capillaries from existing blood vessels) contributes to new blood vessel formation during tissue repair. The betterment of tissue healing directly depends on angiogenesis. Other optical microscopy techniques can visualize angiogenesis in micron-scale penetration depth but are unable to provide deep tissue information. PAI overcomes this barrier due to its unique capability. It is ideally suited for deep tissue imaging and provides the rich optical contrast generated by hemoglobin in blood vessels. Hence, an early angiogenesis detection method provided by PAI leads to monitoring the medical treatment of the wound. Along with functional property, mechanical property also plays a key role in tissue regeneration. The wound heals through a dynamic series of physiological events like coagulation, granulation tissue formation, and extracellular matrix (ECM) remodeling. Therefore tissue elasticity changes, can be identified using non-contact photoacoustic elastography (PAE). In a nutshell, angiogenesis and biomechanical properties are both critical parameters for tissue healing and these can be characterized in a single imaging modality (PAI).Keywords: PAT, wound healing, tissue coagulation, angiogenesis
Procedia PDF Downloads 1061735 Kinetic Study of the Esterification of Unsaturated Fatty Acids from Salmon Oil (Salmosalar L.)
Authors: André Luis Lima de Oliveira, Vera Lúcia Viana do Nascimento, Victória Maura Silva Bermudez, Mauricio Nunes Kleinberg, João Carlos da Costa Assunção, José Osvaldo Beserra Carioca
Abstract:
The objective of this study was to synthesize a triglyceride with high content of unsaturated fatty acids from salmon oil (Salmo salar L.) by esterification with glycerol catalyzed dealuminized zeolite. A kinetic study was conducted to determine the reaction order and the activation energy. A statistical study was conducted to determine optimal reaction conditions. Initially, the crude oil was refined salmon physically and chemically. The crude oil was hydrolyzed and unsaturated free fatty acids were separated by urea complexation method. An experimental project to verify the parameters (temperature, glycerin and catalyst) with the greatest impact on the reaction was developed. In experiments aliquots were taken at predetermined times to measure the amount of free fatty acids. Pareto, surface, contour and hub graphs were used to determine the factors that maximized the reaction. According to the graphs the best reaction conditions were: temperature 80 ° C, the proportion glycerine/oil 5: 1 and 1% of catalyst. The kinetic data showed that the system was compatible with a second-order reaction. After analyzing the rate constant versus temperature charts a value of 85.31 kJ/mol was obtained for the reaction activation energy.Keywords: esterification, kinect, oil, salmon
Procedia PDF Downloads 5211734 Synthesis and Characterization of TiO₂, N Doped TiO₂ and AG Doped TiO₂ for Photocatalytic Degradation of Methylene Blue in Adwa Almeda Textile Industry, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, urea, NH₄OH, and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400°C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM, and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was an efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21% under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 400⁰C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination, methylene blue
Procedia PDF Downloads 101733 Effect of Erythropoietin Hormone Supplementation on Hypoxia-Inducible Factor1-Alpha in Rat Kidneys with Experimental Diabetic Nephropathy
Authors: Maha Deif, Alaa Eldin Hassan, Eman Shaat, Nesrine Elazhary, Eman Magdy
Abstract:
Background: Erythropoietin (EPO) is a hematopoietic factor with multiple protective effects. The aim of the present study was to investigate the potential effect of EPO administration on renal functions and hypoxia inducible factor 1-alpha (HIF-1a) in diabetic rat kidneys. Methodology: The current study was carried out on 40 male albino rats divided into four groups (n= 10 in each). Group I served as normal control, group II was the diabetic control, group III rats received EPO on the same day of diagnosis of diabetes mellitus (DM), while group IV received the first dose of EPO 2 weeks after the diagnosis of DM. Results: The results showed that EPO supplementation leads to a significant decrease in serum urea, urinary protein and creatinine clearance as well as a significant increase in renal HIF-1a in group III and IV rats compared to the diabetic control group (group II). However, fasting blood glucose was significantly decreased in group III as compared to the diabetic control group in the third week, but no significant difference was reported in the fourth week among groups II, III and IV. Conclusion: EPO administration leads to the improvement of renal functions and increased levels of HIF-1a in diabetic rats.Keywords: erythropoietin, diabetic nephropathy, hypoxia-inducible factor1-alpha, renal functions
Procedia PDF Downloads 2861732 Biological Organic or Inorganic Sulfur Sources Feeding Effects on Intake and Some Blood Metabolites of Close-Up Holstein Cows
Authors: Mehdi Kazemi-Bonchenari, Esmaeil Manidari, Vahid Keshavarz
Abstract:
This study was carried out to investigate the effects of increased level of sulfur by supplementing magnesium sulfate with or without biologically organic source in dairy cow close-up diets on dry matter intake (DMI) and some blood metabolites. The 24 multiparous close-up Holstein cows averaging body weight 687.94 kg and days until expected calving date 21.89 d were allocated in three different treatments (8 cows per each) in a completely randomized design. The first treatment (T1) has contained 0.21% sulfur (DM basis), the second treatment (T2) has contained 0.41% sulfur which entirely supplied through magnesium sulfate and the third treatment (T3) has contained 0.41% sulfur which supplied through combination of magnesium sulfate and an organic source of sulfur. All the cows were fed same diet after parturition until 21 d. The DMI for both pre-calving (P < 0.001) and post-calving was affected by treatments (P < 0.004) and T2 showed the lowest DMI among treatments. Among the blood metabolites, glucose, calcium, and copper were decreased in T2 (P < 0.05). However, blood concentrations of BHBA, NEFA, urea, CPK, and AST were increased in T2 (P < 0.05). The results of the present study indicate that although magnesium sulfate has negative effect on dairy cow health and performance, a combination of magnesium sulfate and biological organic source of sulfur in close-up diets could have positive effects on DMI and performance of Holstein dairy cows.Keywords: organic sulfur, dairy cow, intake, blood metabolites
Procedia PDF Downloads 3091731 Development of Enzymatic Amperometric Biosensors with Carbon Nanotubes Decorated with Iron Oxide Nanoparticles
Authors: Uc-Cayetano E. G., Ake-Uh O. E., Villanueva-Mena I. E., Ordonez L. C.
Abstract:
Carbon nanotubes (CNTs) and other graphitic nanostructures are materials with extraordinary physical, physicochemical and electrochemical properties which are being aggressively investigated for a variety of sensing applications. Thus, sensing of biological molecules such as proteins, DNA, glucose and other enzymes using either single wall or multiwall carbon nanotubes (MWCNTs) has been widely reported. Despite the current progress in this area, the electrochemical response of CNTs used in a variety of sensing arrangements still needs to be improved. An alternative towards the enhancement of this CNTs' electrochemical response is to chemically (or physically) modify its surface. The influence of the decoration with iron oxide nanoparticles in different types of MWCNTs on the amperometric sensing of glucose, urea, and cholesterol in solution is investigated. Commercial MWCNTs were oxidized in acid media and subsequently decorated with iron oxide nanoparticles; finally, the enzymes glucose oxidase, urease, and cholesterol oxidase are chemically immobilized to oxidized and decorated MWCNTs for glucose, urease, and cholesterol electrochemical sensing. The results of the electrochemical characterizations consistently show that the presence of iron oxide nanoparticles decorating the surface of MWCNTs enhance the amperometric response and the sensitivity to increments in glucose, urease, and cholesterol concentration when compared to non-decorated MWCNTs.Keywords: WCNTs, enzymes, oxidation, decoration
Procedia PDF Downloads 1291730 Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination and methylene blue
Procedia PDF Downloads 631729 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction
Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman
Abstract:
Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation
Procedia PDF Downloads 921728 Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study
Authors: Faris Tarlochan, Siva Mahesh Tangutooru
Abstract:
Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies, each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 µm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN.Keywords: Lateral Geniculate Nucleus, visual cortex, finite element, glaucoma, neuroprostheses
Procedia PDF Downloads 2771727 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores
Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan
Abstract:
Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics
Procedia PDF Downloads 1301726 Effect of Fiber Inclusion on the Geotechnical Parameters of Clayey Soil Subjected to Freeze-Thaw Cycles
Authors: Arun Prasad, P. B. Ramudu, Deep Shikha, Deep Jyoti Singh
Abstract:
A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive soils.Freezing and thawing of soil affects the strength, durability and permeability of soil adversely. Experiments were carried out in order to investigate the effect of inclusion of randomly distributed polypropylene fibers on the strength, hydraulic conductivity and durability of local soil (CL) subjected to freeze–thaw cycles. For evaluating the change in strength of soil, a series of unconfined compression tests as well as tri-axial tests were carried out on reinforced and unreinforced soil samples. All the samples were subjected to seven cycles of freezing and thawing. Freezing was carried out at a temperature of - 15 to -18 °C; and thawing was carried out by keeping the samples at room temperature. The reinforcement of soil samples was done by mixing with polypropylene fibers, 12 mm long and with an aspect ratio of 240. The content of fibers was varied from 0.25 to 1% by dry weight of soil. The maximum strength of soil was found in samples having a fiber content of 0.75% for all the samples that were prepared at optimum moisture content (OMC), and if the OMC was increased (+2% OMC) or decreased (-2% OMC), the maximum strength observed at 0.5% fiber inclusion. The effect of fiber inclusion and freeze–thaw on the hydraulic conductivity was studied increased from around 25 times to 300 times that of the unreinforced soil, without subjected to any freeze-thaw cycles. For studying the increased durability of soil, mass loss after each freeze-thaw cycle was calculated and it was found that samples reinforced with polypropylene fibers show 50-60% less loss in weight than that of the unreinforced soil.Keywords: fiber reinforcement, freezingand thawing, hydraulic conductivity, unconfined compressive strength
Procedia PDF Downloads 4001725 Migrant Youth: Trauma-Informed Interventions
Authors: Nancy Daly
Abstract:
Migrant youth who have experienced traumatic events in their home countries or in their passage to the United States may require interventions or formal services to support varying levels and types of needs. The manner in which such youth are engaged and evaluated, as well as the framework of evaluation, can impact their educational services and placement. Evidenced-based trauma-informed practices that engage and support migrant youth serve as an important bridge to stabilization; however, ensuring long-term growth may require a range of integrated services, including special education and mental health services. Special education evaluations which consider the eligibility of Emotional Disturbance for migrant youth must carefully weigh issues of mental health needs against the exclusionary criteria of lack of access to education, limited language skills, as well as other environmental factors. Case studies of recently arrived migrant youth reveal both commonalities and differences in types and levels of need which underscores the importance of adept evaluation and case management to ensure the provision of services that support growth and resiliency.Keywords: migrant youth, trauma-informed care, mental health services, special education
Procedia PDF Downloads 1251724 Highly Selective Conversion of CO2 to CO on Cu Nanoparticles
Authors: Rauf Razzaq, Kaiwu Dong, Muhammad Sharif, Ralf Jackstell, Matthias Beller
Abstract:
Carbon dioxide (CO2), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO2 using a heterogeneous system is regarded as an efficient process for CO2 valorization. In this regard CO2 reduction to CO via the reverse water gas shift reaction (RWGSR) has attracted much attention as a viable process for large scale commercial CO2 utilization. This process can generate syn-gas (CO+H2) which can provide an alternative route to direct CO2 conversion to methanol and/or liquid HCs from FT reaction. Herein, we report a highly active and selective silica supported copper catalyst with efficient CO2 reduction to CO in a slurry-bed batch autoclave reactor. The reactions were carried out at 200°C and 60 bar initial pressure with CO2/H2 ratio of 1:3 with varying temperature, pressure and fed-gas ratio. The gaseous phase products were analyzed using FID while the liquid products were analyzed by using FID detectors. It was found that Cu/SiO2 catalyst prepared using novel ammonia precipitation-urea gelation method achieved 26% CO2 conversion with a CO and methanol selectivity of 98 and 2% respectively. The high catalytic activity could be attributed to its strong metal-support interaction with highly dispersed and stabilized Cu+ species active for RWGSR. So, it can be concluded that reduction of CO2 to CO via RWGSR could address the problem of using CO2 gas in C1 chemistry.Keywords: CO2 reduction, methanol, slurry reactor, synthesis gas
Procedia PDF Downloads 3271723 Design and Field Programmable Gate Array Implementation of Radio Frequency Identification for Boosting up Tag Data Processing
Authors: G. Rajeshwari, V. D. M. Jabez Daniel
Abstract:
Radio Frequency Identification systems are used for automated identification in various applications such as automobiles, health care and security. It is also called as the automated data collection technology. RFID readers are placed in any area to scan large number of tags to cover a wide distance. The placement of the RFID elements may result in several types of collisions. A major challenge in RFID system is collision avoidance. In the previous works the collision was avoided by using algorithms such as ALOHA and tree algorithm. This work proposes collision reduction and increased throughput through reading enhancement method with tree algorithm. The reading enhancement is done by improving interrogation procedure and increasing the data handling capacity of RFID reader with parallel processing. The work is simulated using Xilinx ISE 14.5 verilog language. By implementing this in the RFID system, we can able to achieve high throughput and avoid collision in the reader at a same instant of time. The overall system efficiency will be increased by implementing this.Keywords: antenna, anti-collision protocols, data management system, reader, reading enhancement, tag
Procedia PDF Downloads 3061722 Design and Validation of Different Steering Geometries for an All-Terrain Vehicle
Authors: Prabhsharan Singh, Rahul Sindhu, Piyush Sikka
Abstract:
The steering system is an integral part and medium through which the driver communicates with the vehicle and terrain, hence the most suitable steering geometry as per requirements must be chosen. The function of the chosen steering geometry of an All-Terrain Vehicle (ATV) is to provide the desired understeer gradient, minimum tire slippage, expected weight transfer during turning as these are requirements for a good steering geometry of a BAJA ATV. This research paper focuses on choosing the best suitable steering geometry for BAJA ATV tracks by reasoning the working principle and using fundamental trigonometric functions for obtaining these geometries on the same vehicle itself, namely Ackermann, Anti- Ackermann, Parallel Ackermann. Full vehicle analysis was carried out on Adams Car Analysis software, and graphical results were obtained for various parameters. Steering geometries were achieved by using a single versatile knuckle for frontward and rearward tie-rod placement and were practically tested with the help of data acquisition systems set up on the ATV. Each was having certain characteristics, setup, and parameters were observed for the BAJA ATV, and correlations were created between analytical and practical values.Keywords: all-terrain vehicle, Ackermann, Adams car, Baja Sae, steering geometry, steering system, tire slip, traction, understeer gradient
Procedia PDF Downloads 154