Search results for: high structural integrity graphene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23876

Search results for: high structural integrity graphene

22886 A Framework for Secure Information Flow Analysis in Web Applications

Authors: Ralph Adaimy, Wassim El-Hajj, Ghassen Ben Brahim, Hazem Hajj, Haidar Safa

Abstract:

Huge amounts of data and personal information are being sent to and retrieved from web applications on daily basis. Every application has its own confidentiality and integrity policies. Violating these policies can have broad negative impact on the involved company’s financial status, while enforcing them is very hard even for the developers with good security background. In this paper, we propose a framework that enforces security-by-construction in web applications. Minimal developer effort is required, in a sense that the developer only needs to annotate database attributes by a security class. The web application code is then converted into an intermediary representation, called Extended Program Dependence Graph (EPDG). Using the EPDG, the provided annotations are propagated to the application code and run against generic security enforcement rules that were carefully designed to detect insecure information flows as early as they occur. As a result, any violation in the data’s confidentiality or integrity policies is reported. As a proof of concept, two PHP web applications, Hotel Reservation and Auction, were used for testing and validation. The proposed system was able to catch all the existing insecure information flows at their source. Moreover and to highlight the simplicity of the suggested approaches vs. existing approaches, two professional web developers assessed the annotation tasks needed in the presented case studies and provided a very positive feedback on the simplicity of the annotation task.

Keywords: web applications security, secure information flow, program dependence graph, database annotation

Procedia PDF Downloads 471
22885 Optimal Analysis of Structures by Large Wing Panel Using FEM

Authors: Byeong-Sam Kim, Kyeongwoo Park

Abstract:

In this study, induced structural optimization is performed to compare the trade-off between wing weight and induced drag for wing panel extensions, construction of wing panel and winglets. The aerostructural optimization problem consists of parameters with strength condition, and two maneuver conditions using residual stresses in panel production. The results of kinematic motion analysis presented a homogenization based theory for 3D beams and 3D shells for wing panel. This theory uses a kinematic description of the beam based on normalized displacement moments. The displacement of the wing is a significant design consideration as large deflections lead to large stresses and increased fatigue of components cause residual stresses. The stresses in the wing panel are small compared to the yield stress of aluminum alloy. This study describes the implementation of a large wing panel, aerostructural analysis and structural parameters optimization framework that couples a three-dimensional panel method.

Keywords: wing panel, aerostructural optimization, FEM, structural analysis

Procedia PDF Downloads 592
22884 Geographic Information System (GIS) for Structural Typology of Buildings

Authors: Néstor Iván Rojas, Wilson Medina Sierra

Abstract:

Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.

Keywords: microzonation, buildings, geo-processing, cadastral number

Procedia PDF Downloads 334
22883 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam

Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir

Abstract:

Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.

Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory

Procedia PDF Downloads 320
22882 Competing Interactions, and Magnetization Dynamics in Doped Rare-Earth Manganites Nanostructural System

Authors: Wiqar Hussain Shah

Abstract:

The Structural, magnetic and transport behavior of La1-xCaxMnO3+ (x=0.48, 0.50, 0.52 and 0.55 and =0.015) compositions close to charge ordering, was studied through XRD, resistivity, DC magnetization and AC susceptibility measurements. With time and thermal cycling (T<300 K) there is an irreversible transformation of the low-temperature phase from a partially ferromagnetic and metallic to one that is less ferromagnetic and highly resistive. For instance, an increase of resistivity can be observed by thermal cycling, where no effect is obtained for lower Ca concentration. The time changes in the magnetization are logarithmic in general and activation energies are consistent with those expected for electron transfer between Mn ions. The data suggest that oxygen non-stoichiometry results in mechanical strains in this two-phase system, leading to the development of irreversible metastable states, which relax towards the more stable charge-ordered and antiferromagnetic microdomains at the nano-meter size. This behavior is interpreted in terms of strains induced charge localization at the interface between FM/AFM domains in the antiferromagnetic matrix. Charge, orbital ordering and phase separation play a prominent role in the appearance of such properties, since they can be modified in a spectacular manner by external factor, making the different physical properties metastable. Here we describe two factors that deeply modify those properties, viz. the doping concentration and the thermal cycling. The metastable state is recovered by the high temperature annealing. We also measure the magnetic relaxation in the metastable state and also the revival of the metastable state (in a relaxed sample) due to high temperature (800 ) thermal treatment.

Keywords: Rare-earth maganites, nano-structural materials, doping effects on electrical, magnetic properties, competing interactions

Procedia PDF Downloads 125
22881 Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam

Authors: Cheng Yang Kwa, Yoke Rung Wong

Abstract:

Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency.

Keywords: structural health monitoring, NDT, cantilever, laminate

Procedia PDF Downloads 101
22880 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array

Authors: Lei Qi, Rongxin Yan, Lichen Sun

Abstract:

With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.

Keywords: acoustic sensor array, spacecraft, damage assessment, leakage location

Procedia PDF Downloads 297
22879 Influence of Structural Cracks on Transport Performance of Reinforced Concrete

Authors: V. A. Okenyi, K. Yang, P. A. M. Basheer

Abstract:

Concrete structures in service are constantly under the influence of load. Microstructural cracks often develop in them and considering those in the marine environment; these microcracks often serve as a means for transportation of harmful fluids into the concrete. This paper studies the influence of flexural tensile stress that structural elements undergo on the transport properties of such concrete in the tensile zone of the structural member. Reinforced concrete beams of 1200mm ⨉ 230mm ⨉ 150mm in dimension in a four-point bending set up were subjected to various levels of the loading required to cause a microcrack width of 100µm. The use of Autoclam permeability tests, sorptivity tests as well as the Permit chloride ion migration tests were employed, and results showed that air permeability, sorptivity and water permeability all increased as the load increased in the concrete tensile zone. For air permeability, an increase in stress levels led to more permeability, and the addition of steel macrofibers had no significant effect until at 75% of stress level where it decreased air permeability. For sorptivity, there was no absorption into concrete when no load was added, but water sorptivity index was high at 75% stress levels and higher in steel fiber reinforced concrete (SFRC). Steel macrofibers produced more water permeability into the concrete at 75% stress level under the 100µm crack width considered while steel macrofibers helped in slightly reducing the migration of chloride into concrete by 8.8% reduction, compared to control samples at 75% stress level. It is clear from this research that load-induced cracking leads to an increase in fluid permeability into concrete and the effect of the addition of steel macrofiber to concrete for durability is not significant under 100µm crack width.

Keywords: durability, microcracks, SFRC, stress Level, transport properties

Procedia PDF Downloads 131
22878 Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction

Authors: Mohamed M. El Gendy, Ibrahim A. El Arabi, Rafeek W. Abdel-Missih, Omar A. Kandil

Abstract:

Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches.

Keywords: nonlinear analysis, reinforced concrete arched structure, soil-structure interaction, geotechnical engineering

Procedia PDF Downloads 439
22877 Development of Non-Structural Crushed Palm Kernel Shell Fine Aggregate Concrete

Authors: Kazeem K. Adewole, Ismail A. Yahya

Abstract:

In the published literature, Palm Kernel Shell (PKS), an agricultural waste has largely been used as a large aggregate in PKS concrete production. In this paper, the development of Crushed Palm Kernel Shell Fine Aggregate Concrete (CPKSFAC) with crushed PKS (CPKS) as the fine aggregate and granite as the coarse aggregate is presented. 100mm x 100mm x 100mm 1:11/2:3 and 1:2:4 CPKSFAC and River Sand Fine Aggregate Concrete (RSFAC) cubes were molded, cured for 28 days and subjected to a compressive strength test. The average wet densities of the 1:11/2:3 and 1:2:4 CPKSFAC cubes are 2240kg/m3 and 2335kg/m3 respectively. The average wet densities of the 1:11/2:3 and 1:2:4 RSFAC cubes are 2606kg/m3 and 2553kg/m3 respectively. The average compressive strengths of the 1:11/2:3 and 1:2:4 CPKSFAC cubes are 15.40MPa and 14.30MPa respectively. This study demonstrates that CPKSFA is suitable for the production of non-structural C8/10 and C12/15 concrete specified in BS EN 206-1:2000.

Keywords: crushed palm kernel shell, fine aggregate, lightweight concrete, non-structural concrete

Procedia PDF Downloads 429
22876 Hypergraph for System of Systems modeling

Authors: Haffaf Hafid

Abstract:

Hypergraphs, after being used to model the structural organization of System of Sytems (SoS) at macroscopic level, has recent trends towards generalizing this powerful representation at different stages of complex system modelling. In this paper, we first describe different applications of hypergraph theory, and step by step, introduce multilevel modeling of SoS by means of integrating Constraint Programming Langages (CSP) dealing with engineering system reconfiguration strategy. As an application, we give an A.C.T Terminal controlled by a set of Intelligent Automated Vehicle.

Keywords: hypergraph model, structural analysis, bipartite graph, monitoring, system of systems, reconfiguration analysis, hypernetwork

Procedia PDF Downloads 489
22875 First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications

Authors: M. Madigoe, R. Modiba

Abstract:

High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0.

Keywords: elastic modulus, phase proportion diagram, thermo-calc, titanium alloys

Procedia PDF Downloads 187
22874 Pyridine-N-oxide Based AIE-active Triazoles: Synthesis, Morphology and Photophysical Properties

Authors: Luminita Marin, Dalila Belei, Carmen Dumea

Abstract:

Aggregation induced emission (AIE) is an intriguing optical phenomenon recently evidenced by Tang and his co-workers, for which aggregation works constructively in the improving of light emission. The AIE challenging phenomenon is quite opposite to the notorious aggregation caused quenching (ACQ) of light emission in the condensed phase, and comes in line with requirements of photonic and optoelectronic devices which need solid state emissive substrates. This paper reports a series of ten new aggregation induced emission (AIE) low molecular weight compounds based on triazole and pyridine-N-oxide heterocyclic units bonded by short flexible chains, obtained by a „click” chemistry reaction. The compounds present extremely weak luminescence in solution but strong light emission in solid state. To distinguish the influence of the crystallinity degree on the emission efficiency, the photophysical properties were explored by UV-vis and photoluminescence spectroscopy in solution, water suspension, amorphous and crystalline films. On the other hand, the compound morphology of the up mentioned states was monitored by dynamic light scattering, scanning electron microscopy, atomic force microscopy and polarized light microscopy methods. To further understand the structural design – photophysical properties relationship, single crystal X-ray diffraction on some understudy compounds was performed too. The UV-vis absorption spectra of the triazole water suspensions indicated a typical behaviour for nanoparticle formation, while the photoluminescence spectra revealed an emission intensity enhancement up to 921-fold higher of the crystalline films compared to solutions, clearly indicating an AIE behaviour. The compounds have the tendency to aggregate forming nano- and micro- crystals in shape of rose-like and fibres. The crystals integrity is kept due to the strong lateral intermolecular forces, while the absence of face-to-face forces explains the enhanced luminescence in crystalline state, in which the intramolecular rotations are restricted. The studied flexible triazoles draw attention to a new structural design in which small biologically friendly luminophore units are linked together by small flexible chains. This design enlarges the variety of the AIE luminogens to the flexible molecules, guiding further efforts in development of new AIE structures for appropriate applications, the biological ones being especially envisaged.

Keywords: aggregation induced emission, pyridine-N-oxide, triazole

Procedia PDF Downloads 469
22873 Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion

Authors: Doyoung Kim, Hyo Seon Park

Abstract:

Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared.

Keywords: modal assurance criterion, mode shape, operating deflection shape, system identification

Procedia PDF Downloads 411
22872 Impact of Very Small Power Producers (VSPP) on Control and Protection System in Distribution Networks

Authors: Noppatee Sabpayakom, Somporn Sirisumrannukul

Abstract:

Due to incentive policies to promote renewable energy and energy efficiency, high penetration levels of very small power producers (VSPP) located in distribution networks have imposed technical barriers and established new requirements for protection and control of the networks. Although VSPPs have economic and environmental benefit, they may introduce negative effects and cause several challenges on the issue of protection and control system. This paper presents comprehensive studies of possible impacts on control and protection systems based on real distribution systems located in a metropolitan area. A number of scenarios were examined primarily focusing on state of islanding, and un-disconnected VSPP during faults. It is shown that without proper measures to address the issues, the system would be unable to maintain its integrity of electricity power supply for disturbance incidents.

Keywords: control and protection systems, distributed generation, renewable energy, very small power producers

Procedia PDF Downloads 478
22871 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Authors: N. Manoj

Abstract:

The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.

Keywords: aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake

Procedia PDF Downloads 284
22870 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions

Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani

Abstract:

Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.

Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration

Procedia PDF Downloads 347
22869 Comparative Fragility Analysis of Shallow Tunnels Subjected to Seismic and Blast Loads

Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed

Abstract:

Underground structures are crucial components which required detailed analysis and design. Tunnels, for instance, are massively constructed as transportation infrastructures and utilities network especially in urban environments. Considering their prime importance to the economy and public safety that cannot be compromised, thus any instability to these tunnels will be highly detrimental to their performance. Recent experience suggests that tunnels become vulnerable during earthquakes and blast scenarios. However, a very limited amount of studies has been carried out to study and understanding the dynamic response and performance of underground tunnels under those unpredictable extreme hazards. In view of the importance of enhancing the resilience of these structures, the overall aims of the study are to evaluate probabilistic future performance of shallow tunnels subjected to seismic and blast loads by developing detailed fragility analysis. Critical non-linear time history numerical analyses using sophisticated finite element software Midas GTS NX have been presented about the current methods of analysis, taking into consideration of structural typology, ground motion and explosive characteristics, effect of soil conditions and other associated uncertainties on the tunnel integrity which may ultimately lead to the catastrophic failure of the structures. The proposed fragility curves for both extreme loadings are discussed and compared which provide significant information the performance of the tunnel under extreme hazards which may beneficial for future risk assessment and loss estimation.

Keywords: fragility analysis, seismic loads, shallow tunnels, blast loads

Procedia PDF Downloads 344
22868 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application

Authors: Paweł Żur, Alicja Żur, Andrzej Baier

Abstract:

Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.

Keywords: 3D printing, composite bushing, modal analysis, multi-material

Procedia PDF Downloads 110
22867 An Analytical Study of FRP-Concrete Bridge Superstructures

Authors: Wael I. Alnahhal

Abstract:

It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber reinforced polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.

Keywords: bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis

Procedia PDF Downloads 335
22866 Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting

Authors: Tiziana Biasutti, Daniela Rigamonti, Lorenzo Palmiotti, Adelaide Nespoli, Paolo Bettini

Abstract:

Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells.

Keywords: additive manufacturing, damper, nitinol, pseudo elastic effect, selective laser melting, shape memory alloys

Procedia PDF Downloads 108
22865 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 258
22864 Destroying the Body for the Salvation of the Soul: A Modern Theological Approach

Authors: Angelos Mavropoulos

Abstract:

Apostle Paul repeatedly mentioned the bodily sufferings that he voluntarily went through for Christ, as his body was in chains for the ‘mystery of Christ’ (Col 4:3), while on his flesh he gladly carried the ‘thorn’ and all his pains and weaknesses, which prevent him from being proud (2 Cor 12:7). In his view, God’s power ‘is made perfect in weakness’ and when we are physically weak, this is when we are spiritually strong (2 Cor 12:9-10). In addition, we all bear the death of Jesus in our bodies so that His life can be ‘revealed in our mortal body’ (2 Cor 4:10-11), and if we indeed share in His sufferings, we will share in His glory as well (Rom 8:17). Based on these passages, several Christian writers projected bodily suffering, pain, death, and martyrdom, in general, as the means to a noble Christian life and the way to attain God. Even more, Christian tradition is full of instances of voluntary self-harm, mortification of the flesh, and body mutilation for the sake of the soul by several pious men and women, as an imitation of Christ’s earthly suffering. It is a fact, therefore, that, for Christianity, he or she who not only endures but even inflicts earthly pains for God is highly appreciated and will be rewarded in the afterlife. Nevertheless, more recently, Gaudium et Spes and Veritatis Splendor decisively and totally overturned the Catholic Church’s view on the matter. The former characterised the practices that violate ‘the integrity of the human person, such as mutilation, torments inflicted on body or mind’ as ‘infamies’ (Gaudium et Spes, 27), while the latter, after confirming that there are some human acts that are ‘intrinsically evil’, that is, they are always wrong, regardless of ‘the ulterior intentions of the one acting and the circumstances’, included in this category, among others, ‘whatever violates the integrity of the human person, such as mutilation, physical and mental torture and attempts to coerce the spirit.’ ‘All these and the like’, the encyclical concludes, ‘are a disgrace… and are a negation of the honour due to the Creator’ (Veritatis Splendor, 80). For the Catholic Church, therefore, willful bodily sufferings and mutilations infringe human integrity and are intrinsically evil acts, while intentional harm, based on the principle that ‘evil may not be done for the sake of good’, is always unreasonable. On the other hand, many saints who engaged in these practices are still honoured for their ascetic and noble life, while, even today, similar practices are found, such as the well-known Good Friday self-flagellation and nailing to the cross, performed in San Fernando, Philippines. So, the viewpoint of modern Theology about these practices and the question of whether Christians should hurt their body for the salvation of their soul is the question that this paper will attempt to answer.

Keywords: human body, human soul, torture, pain, salvation

Procedia PDF Downloads 92
22863 Examination of Corrosion Durability Related to Installed Environments of Steel Bridges

Authors: Jin-Hee Ahn, Seok-Hyeon Jeon, Young-Bin Lee, Min-Gyun Ha, Yu-Chan Hong

Abstract:

Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755).

Keywords: corrosion, atmospheric environments, steel bridge, monitoring

Procedia PDF Downloads 362
22862 Pressure Induced Phase Transition of Semiconducting Alloy TlxGa1-xAs

Authors: Madhu Sarwan, Ritu Dubey, Sadhna Singh

Abstract:

We have investigated the structural phase transition from Zinc-Blende (ZB) to Rock-Salt (RS) structure of TlxGa1-xAs by using Interaction Potential Model (IPM). The IPM consists of Coulomb interaction, Three-Body Interaction (TBI), Van Der Wall (vdW) interaction and overlap repulsive short range interaction. The structural phase transition has been computed by using the vegard’s law. The volume collapse is also computed for this alloy. We have also investigated the second order elastic constants with composition for the alloy TlxGa1-xAs.

Keywords: III-V alloy, elastic moduli, phase transition, semiconductors

Procedia PDF Downloads 544
22861 Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method

Authors: Rabah Bensaha, Badreeddine Toubal

Abstract:

Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications.

Keywords: sol-gel, TiO2 thin films, CoTiO3-TiO2 nanocomposites films, Electrical conductivity

Procedia PDF Downloads 443
22860 Study of Structural Styles and Hydrocarbon Potential of Rajan Pur Area, Middle Indus Basin, Pakistan

Authors: Zakiullah Kalwar, Shabeer Abbassi

Abstract:

This research encompasses the study of structural styles and evaluation of the hydrocarbon potential of Kotrum and Drigri anticlines located in Rajanpur Area, Midddle Indus Basin of Pakistan with the approach of geophysical data integration. The study area is situated between the Sulaiman Foldbelt on the west and Indus River in the east. It is an anticlinal fold, located to the southeast of Sakhi Sarwar anticline and separated from a prominent syncline. The structure has a narrow elongated crest, with the axis running in SSW-NNE direction. In the east, the structure is bounded by a gentle syncline. Structural Styles are trending East-West and perpendicular to tectonic transport and stress direction and the base of the structures gradually dipping Eastward beneath the deformation frontal part in Eastern Sulaiman Fold Belt. Middle Indus Basin can be divided into Foreland, Sulaiman fold belt and a broad foredeep. Sulaiman represents a blind thrust front, which suggests that all frontal folds of the fold belt are cored by blind thrust. The deformation of frontal part of Sulaiman Lobe represents the passive roof duplex stacked beneath the frontal passive roof thrust. The passive roof thrust, which has a back thrust sense of motion and extends into the interior of Fold belt. Left lateral Kingri Fault separates Eastern and Central Sulaiman fold belt. In Central Sulaiman fold belt the deformation front moved further towards fore deep as compared to Eastern Sulaiman. Two wells (Kotrum-01, Drigri-01) have been drilled in the study area with the objective to determine the potential of oil and gas in Habib Rahi Limestone of Eocene age, Dunghan Limestone of Paleocene age and Pab Sandstone of cretaceous age and role of structural styles in hydrocarbon potential of study area. Kotrum-01 well was drilled to its T.D of 4798m. Besides fishing and side tracking, tight whole conditions, high pressure, and losses of circulation were also encountered. During production, testing Pab sandstone were tested but abandoned found. Drigri-01 well was drilled to its T.D 3250 m. RFT was carried out at different points, but all points showed no pressure / seal failure and the well was plugged and declared abandoned.

Keywords: hydrocarbon potential, structural style, reserve calculation, enhance production

Procedia PDF Downloads 429
22859 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals

Authors: N. Renuka, R. Ramesh Babu, N. Vijayan

Abstract:

Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.

Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer

Procedia PDF Downloads 254
22858 Architectural Advancements: Lightweight Structures and Future Applications in Ultra-High-Performance Concrete, Fabrics, and Flexible Photovoltaics

Authors: Pratik Pankaj Pawar

Abstract:

Lightweight structures - structures with reduced weight, which otherwise retain the qualities necessary for the building performance, ensuring proper durability and strength, safety, indoor environmental quality, and energy efficiency; structures that strive for the optimization of structural systems - are in tune with current trends and socio-economic, environmental, and technological factors. The growing interest in lightweight structures design makes them an ever more significant field of research. This article focuses on the architectural aspects of lightweight structures and on their contemporary and future applications. The selected advanced building technologies - i.e., Ultra-High-Performance Concrete, fabrics, and flexible photovoltaics.

Keywords: light weight building, carbyne, aerographite, geopolymer reinforced wood particles aggregate

Procedia PDF Downloads 60
22857 Advanced Nanostructured Materials and Their Application for Solar Fuel

Authors: A. Hegazy, Ahmed Elsayed, Essam El Shenawy, N. Allam, Hala Handal, K. R. Mahmoud

Abstract:

Highly crystalline, TiO₂ pristine sub-10 nm anatase nanocrystals were fabricated at low temperatures by post hydrothermal treatment of the as-prepared TiO₂ nanoparticles. This treatment resulted in bandgap narrowing and increased photocurrent density value (3.8 mA/cm²) when this material was employed in water splitting systems. The achieved photocurrent values are among the highest reported ones so far for the fabricated nanoparticles at this low temperature. This might be explained by the increased surface defects of the prepared nanoparticles. It resulted in bandgap narrowing that was further investigated using positron annihilation experiments by measuring positron lifetime and Doppler broadening. Besides, homogeneous spherical TiO₂ nanoparticles were synthesized in large diameter and high surface area and the high percentage of (001) facet by sol-gel method using potassium persulfate (K₂S₂O₈) as an oxidizing agent. The fabricated particles exhibited high exposed surface area, high photoactivity and reduced band gap. Enhanced performance for water splitting applications was displayed by formed TiO₂ nanoparticles. Their morphological and structural properties were studied to optimize their synthesis parameters in an attempt to construct more applicable fuel cells in the industry for hydrogen fuel production.

Keywords: positron annihilation, solar energy, TiO2 nanoparticles, water splitting

Procedia PDF Downloads 147