Search results for: helicopter landing zones
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1241

Search results for: helicopter landing zones

251 The Relationship between Creative Imagination and Curriculum

Authors: Faride Hashemiannejad, Shima Oloomi

Abstract:

Imagination is one of the important elements of creative thinking which as a skill needs attention by the educational system. Although most students learn reading, writing, and arithmetic skills well, they lack high level thinking skills like creative thinking. Therefore, in the information age and in the beginning of entry to knowledge-based society, the educational system needs to think over its goals and mission, and concentrate on creativity-based curriculum. From among curriculum elements-goals, content, method and evaluation “method” is a major domain whose reform can pave the way for fostering imagination and creativity. The purpose of this study was examining the relationship between creativity development and curriculum. Research questions were: (1) is there a relationship between the cognitive-emotional structure of the classroom and creativity development? (2) Is there a relationship between the environmental-social structure of the classroom and creativity development? (3) Is there a relationship between the thinking structure of the classroom and creativity development? (4) Is there a relationship between the physical structure of the classroom and creativity development? (5) Is there a relationship between the instructional structure of the classroom and creativity development? Method: This research is a applied research and the research method is Correlational research. Participants: The total number of participants in this study included 894 students from High school through 11th grade from seven schools of seven zones in Mashad city. Sampling Plan: Sampling was selected based on Random Multi State. Measurement: The dependent measure in this study was: (a) the Test of Creative Thinking, (b) The researcher-made questionnaire includes five fragments, cognitive, emotional structure, environmental social structure, thinking structure, physical structure, and instructional structure. The Results Show: There was significant relationship between the cognitive-emotional structure of the classroom and student’s creativity development (sig=0.139). There was significant relationship between the environmental-social structure of the classroom and student’s creativity development (sig=0.006). There was significant relationship between the thinking structure of the classroom and student’s creativity development (sig=0.004). There was not significant relationship between the physical structure of the classroom and student’s creativity development (sig=0.215). There was significant relationship between the instructional structure of the classroom and student’s creativity development (sig=0.003). These findings denote if students feel secure, calm and confident, they can experience creative learning. Also the quality of coping with students’ questions, imaginations and risks can influence on their creativity development.

Keywords: imagination, creativity, curriculum, bioinformatics, biomedicine

Procedia PDF Downloads 480
250 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM

Authors: Prateek Singh, Dilshad Ahmad

Abstract:

Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.

Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish

Procedia PDF Downloads 209
249 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models

Authors: Akinnubi Rufus Temidayo

Abstract:

Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.

Keywords: west africa, radiative, climate, resilence, anthropogenic

Procedia PDF Downloads 13
248 Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia

Authors: Imen Salhi, Salah Bouhlel, Bernrd Lehmann

Abstract:

The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment.

Keywords: fluid inclusion, Kebbouch South, mineralogy, MVT deposits, Pb-Zn

Procedia PDF Downloads 252
247 SynKit: A Event-Driven and Scalable Microservices-Based Kitting System

Authors: Bruno Nascimento, Cristina Wanzeller, Jorge Silva, João A. Dias, André Barbosa, José Ribeiro

Abstract:

The increasing complexity of logistics operations stems from evolving business needs, such as the shift from mass production to mass customization, which demands greater efficiency and flexibility. In response, Industry 4.0 and 5.0 technologies provide improved solutions to enhance operational agility and better meet market demands. The management of kitting zones, combined with the use of Autonomous Mobile Robots, faces challenges related to coordination, resource optimization, and rapid response to customer demand fluctuations. Additionally, implementing lean manufacturing practices in this context must be carefully orchestrated by intelligent systems and human operators to maximize efficiency without sacrificing the agility required in an advanced production environment. This paper proposes and implements a microservices-based architecture integrating principles from Industry 4.0 and 5.0 with lean manufacturing practices. The architecture enhances communication and coordination between autonomous vehicles and kitting management systems, allowing more efficient resource utilization and increased scalability. The proposed architecture focuses on the modularity and flexibility of operations, enabling seamless flexibility to change demands and the efficient allocation of resources in realtime. Conducting this approach is expected to significantly improve logistics operations’ efficiency and scalability by reducing waste and optimizing resource use while improving responsiveness to demand changes. The implementation of this architecture provides a robust foundation for the continuous evolution of kitting management and process optimization. It is designed to adapt to dynamic environments marked by rapid shifts in production demands and real-time decision-making. It also ensures seamless integration with automated systems, aligning with Industry 4.0 and 5.0 needs while reinforcing Lean Manufacturing principles.

Keywords: microservices, event-driven, kitting, AMR, lean manufacturing, industry 4.0, industry 5.0

Procedia PDF Downloads 28
246 Preferred Leadership Behaviour of Coaches by Athletes in Individual and Team Sports in Nigeria

Authors: Ali Isa Danlami

Abstract:

This study examined the coaching leadership behaviours preferred by athletes in individual and team sports in Nigeria that may lead to increased satisfaction and performance. Six leadership behaviours were identified; these are democratic, training and instruction, situational consideration, autocratic, social support and positive feedback. The six leadership behaviours relate to the preference of coaches by athletes that leads to increased performance were the focus of this study. The population of this study is comprised of male and female athletes of states sports councils in Nigeria. An ex-post facto research design was employed for this study. Stratified and purposive sampling techniques were used to select the sampled states according to the six geo-political zones of the country. Two states (North Central (FCT, Nasarawa), North East (Bauchi, Gombe), North West (Kaduna, Sokoto), South East (Anambra, Imo), South west (Ogun, Ondo), South South (Delta, and Rivers) were selected from each stratum. A modified questionnaire was used to collect data for this study, and the data collected were subjected to a reliability test using the Statistical Package for Social Science (SPSS) to analyse the data. A two sample Z-test procedure was used to test the significant differences because of the large number of subjects involved in the different groups. All hypotheses were tested at 0.05 alpha value. The findings of the study concluded that: Athletes in team and individual sports generally preferred coaches who were more disposed towards training and instructions, social support, positive feedback, situational consideration and democratic behaviours. It was also found that athletes in team sports have higher preference for coaches with democratic behaviour. The result revealed that athletes in team and individual sports did not have a preference for coaches disposed towards autocratic behaviour. Based on this, the following recommendations were made: Democratic behaviour by coaches should be encouraged in team and individual sports. Coaches should not be engaged in autocratic behaviours when coaching. These behaviours should be adopted by coaches to increase athletes’ satisfaction and enhancement in performance.

Keywords: leadership behaviour, preference, athletes, individual, team, coaches’

Procedia PDF Downloads 133
245 Geological, Engineering Geological, and Hydrogeological Characteristics of the Knowledge Economic City, Al Madinah Al Munawarah, KSA

Authors: Mutasim A. M. Ez Eldin, Tareq Saeid Al Zahrani, Gabel Zamil Al-Barakati, Ibrahim Mohamed AlHarthi, Marwan Mohamed Al Saikhan, Waleed Abdel Aziz Al Aklouk, Waheed Mohamed Saeid Ba Amer

Abstract:

The Knowledge Economic City (KEC) of Al Madinah Al Munawarah is one of the major projects and represents a cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Tests (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to moderately (W3) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO₄²⁻) and chloride (Cl⁻) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be taken into consideration.

Keywords: engineering geology, KEC, petrographic description, rock and soil investigations

Procedia PDF Downloads 84
244 The Analysis of Drill Bit Optimization by the Application of New Electric Impulse Technology in Shallow Water Absheron Peninsula

Authors: Ayshan Gurbanova

Abstract:

Despite based on the fact that drill bit which is the smallest part of bottom hole assembly costs only in between 10% and 15% of the total expenses made, they are the first equipment that is in contact with the formation itself. Hence, it is consequential to choose the appropriate type and dimension of drilling bit, which will prevent majority of problems by not demanding many tripping procedure. However, within the advance in technology, it is now seamless to be beneficial in the terms of many concepts such as subsequent time of operation, energy, expenditure, power and so forth. With the intention of applying the method to Azerbaijan, the field of Shallow Water Absheron Peninsula has been suggested, where the mainland has been located 15 km away from the wildcat wells, named as “NKX01”. It has the water depth of 22 m as indicated. In 2015 and 2016, the seismic survey analysis of 2D and 3D have been conducted in contract area as well as onshore shallow water depth locations. With the aim of indicating clear elucidation, soil stability, possible submersible dangerous scenarios, geohazards and bathymetry surveys have been carried out as well. Within the seismic analysis results, the exact location of exploration wells have been determined and along with this, the correct measurement decisions have been made to divide the land into three productive zones. In the term of the method, Electric Impulse Technology (EIT) is based on discharge energies of electricity within the corrosivity in rock. Take it simply, the highest value of voltages could be created in the less range of nano time, where it is sent to the rock through electrodes’ baring as demonstrated below. These electrodes- higher voltage powered and grounded are placed on the formation which could be obscured in liquid. With the design, it is more seamless to drill horizontal well based on the advantage of loose contact of formation. There is also no chance of worn ability as there are no combustion, mechanical power exist. In the case of energy, the usage of conventional drilling accounts for 1000 𝐽/𝑐𝑚3 , where this value accounts for between 100 and 200 𝐽/𝑐𝑚3 in EIT. Last but not the least, from the test analysis, it has been yielded that it achieves the value of ROP more than 2 𝑚/ℎ𝑟 throughout 15 days. Taking everything into consideration, it is such a fact that with the comparison of data analysis, this method is highly applicable to the fields of Azerbaijan.

Keywords: drilling, drill bit cost, efficiency, cost

Procedia PDF Downloads 74
243 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections

Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández

Abstract:

Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.

Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control

Procedia PDF Downloads 23
242 Effluent from Royal LERD Wastewater Treatment Systems to Furnish Nutrients for Phytoplankton to Generate the Abundance of Hard Clam (Meretrix spp.) on Muddy Beach

Authors: O. Phewnil, S. Khowhit, W. Inkapatanakul, A. Boutson, K. Chunkao, O. Chueawong, T. Pattamapitoon, N. Chanwong, C. Nimpee

Abstract:

The King’s Royally Initiated Laem Phak Bia Environmental Research and Development Project (“the Royal LERD Project”) is located in Laem Phak Bia Sub-District, Ban Laem District, Phetchaburi Province, Thailand. Phetchaburi municipal wastewater was treated with a simple technology by using aquatic plants, constructed wetland, oxidation ponds through a nature-by-nature process. The effluent from the Royal LERD Project was discharged into Laem Phak Bia muddy beach. The soil sediment samples were collected from two zones (200 and 600 meters from the coast of the beach), and tested for cation-exchange capacity (CEC), pH and organic matter and soil particles content. The marine water samples were also collected from the beach in wet and dry seasons and analyzed for its quality and compositions, including but not limited to, biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), nutrients, heavy metals (As, Cd, Cr, Hg, and Pb), and phytoplankton at high and low tides. The soil texture was sandy loam with high concentration of calcium and magnesium which showed a property of base (pH 8). The marine water was qualified with the standard limits of coastal water quality. A dominant species was Coscinodiscus sp. It was found approximately 70.46% of total phytoplankton species in Meretrix casta gastrointestinal tract. The concentration of the heavy metals (As, Cd, Cr, Hg, Ni and Pb) in the tissues and water content of two species of hard clams indicated that heavy metals in Meretrix casta were higher than those in Meretrix meretrix. However, the heavy metals in both species were under the standard limits and safe for consumption. It can be concluded that nutrients in effluent from the wastewater treatment systems play important role in promoting the growth of phytoplankton and generating abundance of hard clams on muddy beach.

Keywords: wastewater, phytoplankton, hard clam (Meretrix spp.), muddy beach

Procedia PDF Downloads 309
241 From Cascade to Cluster School Model of Teachers’ Professional Development Training Programme: Nigerian Experience, Ondo State: A Case Study

Authors: Oloruntegbe Kunle Oke, Alake Ese Monica, Odutuyi Olubu Musili

Abstract:

This research explores the differing effectiveness of cascade and cluster models in professional development programs for educators in Ondo State, Nigeria. The cascade model emphasizes a top-down approach, where training is cascaded from expert trainers to lower levels of teachers. In contrast, the cluster model, a bottom-up approach, fosters collaborative learning among teachers within specific clusters. Through a review of the literature and empirical studies of the implementations of the former in two academic sessions followed by the cluster model in another two, the study examined their effectiveness on teacher development, productivity and students’ achievements. The study also drew a comparative analysis of the strengths and weaknesses associated with each model, considering factors such as scalability, cost-effectiveness, adaptability in various contexts, and sustainability. 2500 teachers from Ondo State Primary Schools participated in the cascade with intensive training in five zones for a week each in two academic sessions. On the other hand, 1,980 and 1,663 teachers in 52 and 34 clusters, respectively, were in the first and the following session. The programs were designed for one week of rigorous training of teachers by facilitators in the former while the latter was made up of four components: sit-in-observation, need-based assessment workshop, pre-cluster and the actual cluster meetings in addition to sensitization, and took place one day a week for ten weeks. Validated Cluster Impact Survey Instruments, CISI and Teacher’s Assessment Questionnaire (TAQ) were administered to ascertain the effectiveness of the models during and after implementation. The findings from the literature detailed specific effectiveness, strengths and limitations of each approach, especially the potential for inconsistencies and resistance to change. Findings from the data collected revealed the superiority of the cluster model. Response to TAQ equally showed content knowledge and skill update in both but were more sustained in the cluster model. Overall, the study contributes to the ongoing discourse on effective strategies for improving teacher training and enhancing student outcomes, offering practical recommendations for the development and implementation of future professional development projects.

Keywords: cascade model, cluster model, teachers’ development, productivity, students’ achievement

Procedia PDF Downloads 48
240 Antimicrobial Effects and Phytochemical Analysis of Chrysophyllum Albidum Plant Parts (Leaves, Roots and Seeds) Extracts on Bacterial Isolates from Urinary Catheters

Authors: Ebere Christian Ugochukwu, Okafor Josephine, Oyawoye Tomisin

Abstract:

The occurrence of multidrug resistance patterns that have been developed by bacteria has made it difficult to properly treat infections using standard clinical medications. Hence, the use of herbs as an alternative source of therapy is considered cheap and easily accessible to locals. This research explored the antimicrobial effects of aqueous and ethanolic extracts obtained from Chrysophyllum albidum (commonly called ‘Agbalumo’ in southwest Nigeria and ‘Udara’ in the eastern and southern parts of Nigeria) plant parts (leaves, roots and seeds) against bacteria isolated from urinary catheter tips. The following isolates were obtained; Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Klebsiella aerogenes. The agar well diffusion method was used. The average percentages of antimicrobial resistance of the isolates to gentamycin were 45.5% for P. aeruginosa, 42.1% for E. coli, 46.9% for K. aerogenes, and ˃90% for other isolates. Qualitative phytochemical screening of the plant parts extracts was done using chemical test for the screening and identification of bioactive chemical constituents. The ethanolic extract mixtures (leaf, root and seed) had the greatest effect on all the isolates, with inhibition zones (IZs) ranging from 8-26 mm and MICs ranging from <16-32 mg/ml. The Potencies of the C. albidum extracts based on the IZ and MIC values were greater in the extract mixtures, followed by those in the roots. Phytochemical screening revealed that all the extracts contained phenol except for the seeds while tannins were present in all the extracts except the leaves. The activity of the ethanolic extracts of each part at high and low concentrations was greater than that of the aqueous extracts at the same concentrations (p<0.05). The acute toxicity results showed that the LD50 of the extracts was ˃5000 mg/body weight, indicating no toxicity. The antibacterial activities of the extract mixtures and roots on the isolates confirmed the use of C. albidum in folk medicine for the treatment of CAUTIs, hence indicating its antibacterial potential for use in novel antibiotic production.

Keywords: antimicrobials, susceptibility, minimum inhibitory concentration, extracts

Procedia PDF Downloads 32
239 Modelling Forest Fire Risk in the Goaso Forest Area of Ghana: Remote Sensing and Geographic Information Systems Approach

Authors: Bernard Kumi-Boateng, Issaka Yakubu

Abstract:

Forest fire, which is, an uncontrolled fire occurring in nature has become a major concern for the Forestry Commission of Ghana (FCG). The forest fires in Ghana usually result in massive destruction and take a long time for the firefighting crews to gain control over the situation. In order to assess the effect of forest fire at local scale, it is important to consider the role fire plays in vegetation composition, biodiversity, soil erosion, and the hydrological cycle. The occurrence, frequency and behaviour of forest fires vary over time and space, primarily as a result of the complicated influences of changes in land use, vegetation composition, fire suppression efforts, and other indigenous factors. One of the forest zones in Ghana with a high level of vegetation stress is the Goaso forest area. The area has experienced changes in its traditional land use such as hunting, charcoal production, inefficient logging practices and rural abandonment patterns. These factors which were identified as major causes of forest fire, have recently modified the incidence of fire in the Goaso area. In spite of the incidence of forest fires in the Goaso forest area, most of the forest services do not provide a cartographic representation of the burned areas. This has resulted in significant amount of information being required by the firefighting unit of the FCG to understand fire risk factors and its spatial effects. This study uses Remote Sensing and Geographic Information System techniques to develop a fire risk hazard model using the Goaso Forest Area (GFA) as a case study. From the results of the study, natural forest, agricultural lands and plantation cover types were identified as the major fuel contributing loads. However, water bodies, roads and settlements were identified as minor fuel contributing loads. Based on the major and minor fuel contributing loads, a forest fire risk hazard model with a reasonable accuracy has been developed for the GFA to assist decision making.

Keywords: forest, GIS, remote sensing, Goaso

Procedia PDF Downloads 458
238 Study of the Design and Simulation Work for an Artificial Heart

Authors: Mohammed Eltayeb Salih Elamin

Abstract:

This study discusses the concept of the artificial heart using engineering concepts, of the fluid mechanics and the characteristics of the non-Newtonian fluid. For the purpose to serve heart patients and improve aspects of their lives and since the Statistics review according to world health organization (WHO) says that heart disease and blood vessels are the first cause of death in the world. Statistics shows that 30% of the death cases in the world by the heart disease, so simply we can consider it as the number one leading cause of death in the entire world is heart failure. And since the heart implantation become a very difficult and not always available, the idea of the artificial heart become very essential. So it’s important that we participate in the developing this idea by searching and finding the weakness point in the earlier designs and hoping for improving it for the best of humanity. In this study a pump was designed in order to pump blood to the human body and taking into account all the factors that allows it to replace the human heart, in order to work at the same characteristics and the efficiency of the human heart. The pump was designed on the idea of the diaphragm pump. Three models of blood obtained from the blood real characteristics and all of these models were simulated in order to study the effect of the pumping work on the fluid. After that, we study the properties of this pump by using Ansys15 software to simulate blood flow inside the pump and the amount of stress that it will go under. The 3D geometries modeling was done using SOLID WORKS and the geometries then imported to Ansys design modeler which is used during the pre-processing procedure. The solver used throughout the study is Ansys FLUENT. This is a tool used to analysis the fluid flow troubles and the general well-known term used for this branch of science is known as Computational Fluid Dynamics (CFD). Basically, Design Modeler used during the pre-processing procedure which is a crucial step before the start of the fluid flow problem. Some of the key operations are the geometry creations which specify the domain of the fluid flow problem. Next is mesh generation which means discretization of the domain to solve governing equations at each cell and later, specify the boundary zones to apply boundary conditions for the problem. Finally, the pre–processed work will be saved at the Ansys workbench for future work continuation.

Keywords: Artificial heart, computational fluid dynamic heart chamber, design, pump

Procedia PDF Downloads 459
237 Broadening the Public Sphere: Examining the Role of Community Radio in Fostering Participatory Democracy in Selected Communities in Ondo State, Nigeria

Authors: John Ibanga

Abstract:

Since May 1999, when Nigeria returned to uninterrupted democratic rule, there have been various attempts by successive governments at committing themselves to democratic ideals. Such efforts include a revision of communication policies after repeated calls by civil society organisations, development partners, researchers, and academics to allow not only the commencement of campus radio broadcasting but also the takeoff of community radio broadcasting. Thus, in 2015, operating licenses were granted to several communities spread across the six geopolitical zones in the country for the establishment of community radio stations culminating in the establishment of the first community radio in Nigeria on July 17, 2015. And, since citizens’ involvement in policy matters and governance is one of the tenets of participatory democracy, it becomes imperative to investigate how the emerging community radio sector in Nigeria is facilitating participatory democracy among Nigerians, even in the face of attempts by the present government to silence all dissenting voices. This study, therefore, examines how residents in Ondo State, Southwest Nigeria, are utilising programmes on Ejule Nen and Kakaaki community radio stations in Ondo State, Nigeria, to deepen participatory democracy. Much of the existing studies on the role of community radio in participatory democracy and citizens' engagement efforts miss out on Nigeria because of the delayed implementation of community radio policy in Nigeria being Africa’s most populous nation as well as a major player in the affairs of the African continent. While the participatory communication and communication infrastructure theories were used as framework, data were collected from in-depth interviews with staff of the community radio station and community leaders, focus group discussions with the community residents, and qualitative content analysis of programmes on the station. The residents used the community radio stations as platforms for demanding accountability from government, mobilising resources for the execution of a number of community projects, promoting credible electoral practices, and influencing the implementation of free education policy in their communities. Hence the community radio stations became the reliable and authoritative voices of residents for participating in the public sphere and, generally, the democratic process.

Keywords: community, community radio, democracy, participatory democracy

Procedia PDF Downloads 127
236 Exploring the Rhinoceros Beetles of a Tropical Forest of Eastern Himalayas

Authors: Subhankar Kumar Sarkar

Abstract:

Beetles of the subfamily Dynastinae under the family Scarabaeidae of the insect order Coleoptera are popularly known as ‘Rhinoceros beetles’ because of the characteristic horn borne by the males on their head. These horns are dedicated in mating battle against other males and have evolved as a result of phenotypic plasticity. Scarabaeidae is the largest of all families under Coleoptera and is composed of 11 subfamilies, of which the subfamily Dynastinae is represented by approximately 300 species. Some of these beetles have been reported to cause considerable damage to agriculture and forestry both in their larval and adult stages, while many of them are beneficial as they pollinate plants and recycle plant materials. Eastern Himalayas is regarded as one of the 35 biodiversity hotspot zones of the world and one of the four of India, which is exhibited by its rich and megadiverse tropical forests. However, our knowledge on the faunal diversity of these forests is very limited, particularly for the insect fauna. One such tropical forest of Eastern Himalayas is the ‘Buxa Tiger Reserve’ located between latitudes 26°30” to 26°55” North and Longitudes 89°20” to 89˚35” East of India and occupies an area of about 759.26 square kilometers. It is with this background an attempt has been made to explore the insect fauna of the forest. Insect sampling was carried out in each beat and range of Buxa Tiger Reserve in all the three seasons viz, Premonsoon, Monsoon, and Postmonsoon. Sample collections were done by sweep nets, hand picking technique and pit fall traps. UV light trap was used to collect the nocturnal insects. Morphological examinations of the collected samples were carried out with Stereozoom Binocular Microscopes (Zeiss SV6 and SV11) and were identified up to species level with the aid of relevant literature. Survey of the insect fauna of the forest resulted in the recognition of 76 scarab species, of which 8 belong to the subfamily dealt herein. Each of the 8 species represents a separate genus. The forest is dominated by the members of Xylotrupes gideon (Linnaeus) as is represented by highest number of individuals. The recorded taxa show about 12% endemism and are of mainly oriental in distribution. Premonsoon is the most favorable season for their occurrence and activity followed by Monsoon and Postmonsoon.

Keywords: Dynastinae, Scarabaeidae, diversity, Buxa Tiger Reserve

Procedia PDF Downloads 190
235 Electrical Geophysical and Physiochemical Assessment of the Impact of Environmental Pollution on the Groundwater Potential of a Waste Land fill at Tudun Murtala in Nassarawa Local Government Area, Kano State, Nigeria

Authors: Abubakar Maitama Yusuf Hotoro, Olokpo Israel Olofu, Yusuf U. Tarauni, Mudassir A. Umar, Aliyu A, Dahiru Garba Diso, Usman H. Jamoh, M. Sale

Abstract:

The study assessed the impact of environmental pollution on groundwater potential at Tudun Murtala waste land fill using electrical resistivity, induced polarization and Physiochemical methods. The study area is located between latitude 12.023678N and longitude 8.573676 E. Geophysical data were collected at maximum length of 140m along twelve profiles using ABEM Terrameter SAS 1000. Results from the Geophysical analysis showed that the profiles were underlain by three lithological layers; the top layer consisting of Loamy and Sand soils, alluvium, granite, shale and sandstone. The second and third layers were predominantly made of weathered and fractured basements respectively. The potential groundwater water bearing zones of the study area occurred at VES2, VES4, VES5, VES6 and VES7. The thicknesses of the sounding points were found to be 20.8m at VES2; 25.2m at VES4; 13.2m at VES5; 50.8m at VES6 and 13.3m at VES7. The corresponding depths for the sounding points were 20.8m at VES2; 27.9m at VES4; 26.7m at VES5; 51.6m at VES6 and 24.9m at VES7 respectively. The Physiochemical study of selected groundwater samples assessed parameters such as the Electrical Conductivity, EC (288dS/m to 1365dS/m), TDS (170.8mg/L to 820mg/L) Pb (0.546mg/l to 0.629mg/l), Cu (-0.001mg/l to 0.004mg/l), and Cd (0.031mg/l to 0.092mg/l). The physiochemical results showed that the groundwater around the dumpsite may have been contaminated, especially in Dumpsite Hole 1 and Hole 2 at VES4 and VES6 respectively. There are indications for suspected leachate mitigation around the two VES points. Even though, the pH values of 6.4 and 6.2 at the two sounding points were considered to be within the permissible pH range (6.5 to 6.8). The values of other elements present in the groundwater for the samples at other VES points were found to be above permissible WHO and Nigerian Standards for Drinking Water.

Keywords: resistivity induced polarization, chargeability, landfill, leachate, contamination

Procedia PDF Downloads 62
234 Liquid Unloading of Wells with Scaled Perforation via Batch Foamers

Authors: Erwin Chan, Aravind Subramaniyan, Siti Abdullah Fatehah, Steve Lian Kuling

Abstract:

Foam assisted lift technology is proven across the industry to provide efficient deliquification in gas wells. Such deliquification is typically achieved by delivering the foamer chemical downhole via capillary strings. In highly liquid loaded wells where capillary strings are not readily available, foamer can be delivered via batch injection or bull-heading. The latter techniques differ from the former in that cap strings allow for liquid to be unloaded continuously, whereas foamer batches require that periodic batching be conducted for the liquid to be unloaded. Although batch injection allows for liquid to be unloaded in wells with suitable water to gas (WGR) ratio and condensate to gas (CGR) ratio without well intervention for capillary string installation, this technique comes with its own set of challenges - for foamer to de-liquify liquids, the chemical needs to reach perforation locations where gas bubbling is observed. In highly scaled perforation zones in certain wells, foamer delivered in batches is unable to reach the gas bubbling zone, thus achieving poor lift efficiency. This paper aims to discuss the techniques and challenges for unloading liquid via batch injection in scaled perforation wells X and Y, whose WGR is 6bbl/MMscf, whose scale build-up is observed at the bottom of perforation interval, whose water column is 400 feet, and whose ‘bubbling zone’ is less than 100 feet. Variables such as foamer Z dosage, batching technique, and well flow control valve opening times are manipulated during the duration of the trial to achieve maximum liquid unloading and gas rates. During the field trial, the team has found optimal values between the three aforementioned parameters for best unloading results, in which each cycle’s gas and liquid rates are compared with baselines with similar flowing tubing head pressures (FTHP). It is discovered that amongst other factors, a good agitation technique is a primary determinant for efficient liquid unloading. An average increment of 2MMscf/d against an average production of 4MMscf/d at stable FTHP is recorded during the trial.

Keywords: foam, foamer, gas lift, liquid unloading, scale, batch injection

Procedia PDF Downloads 185
233 Outwrestling Cataclysmic Tsunamis at Hilo, Hawaii: Using Technical Developments of the past 50 Years to Improve Performance

Authors: Mark White

Abstract:

The best practices for owners and urban planners to manage tsunami risk have evolved during the last fifty years, and related technical advances have created opportunities for them to obtain better performance than in earlier cataclysmic tsunami inundations. This basic pattern is illustrated at Hilo Bay, the waterfront area of Hilo, Hawaii, an urban seaport which faces the most severe tsunami hazard of the Hawaiian archipelago. Since April 1, 1946, Hilo Bay has endured tsunami waves with a maximum water height exceeding 2.5 meters following four severe earthquakes: Unimak Island (Mw 8.6, 6.1 m) in 1946; Valdiva (Mw 9.5, the largest earthquake of the 20th century, 10.6 m) in 1960; William Prince Sound (Mw 9.2, 3.8 m) in 1964; and Kalapana (Mw 7.7, the largest earthquake in Hawaii since 1868, 2.6 m) in 1975. Ignoring numerous smaller tsunamis during the same time frame, these four cataclysmic tsunamis have caused property losses in Hilo to exceed $1.25 billion and more than 150 deaths. It is reasonable to foresee another cataclysmic tsunami inundating the urban core of Hilo in the next 50 years, which, if unchecked, could cause additional deaths and losses in the hundreds of millions of dollars. Urban planners and individual owners are now in a position to reduce these losses in the next foreseeable tsunami that generates maximum water heights between 2.5 and 10 meters in Hilo Bay. Since 1946, Hilo planners and individual owners have already created buffer zones between the shoreline and its historic downtown area. As these stakeholders make inevitable improvements to the built environment along and adjacent to the shoreline, they should incorporate new methods for better managing the obvious tsunami risk at Hilo. At the planning level, new manmade land forms, such as tsunami parks and inundation reservoirs, should be developed. Individual owners should require their design professionals to include sacrificial seismic and tsunami fuses that will perform well in foreseeable severe events and that can be easily repaired in the immediate aftermath. These investments before the next cataclysmic tsunami at Hilo will yield substantial reductions in property losses and fatalities.

Keywords: hilo, tsunami parks, reservoirs, fuse systems, risk managment

Procedia PDF Downloads 165
232 Effect of Different Ground Motion Scaling Methods on Behavior of 40 Story RC Core Wall Building

Authors: Muhammad Usman, Munir Ahmed

Abstract:

The demand of high-rise buildings has grown fast during the past decades. The design of these buildings by using RC core wall have been widespread nowadays in many countries. The RC core wall (RCCW) buildings encompasses central core wall and boundary columns joined through post tension slab at different floor levels. The core wall often provides greater stiffness as compared to the collective stiffness of the boundary columns. Hence, the core wall dominantly resists lateral loading i.e. wind or earthquake load. Non-linear response history analysis (NLRHA) procedure is the finest seismic design procedure of the times for designing high-rise buildings. The modern design tools for nonlinear response history analysis and performance based design has provided more confidence to design these structures for high-rise buildings. NLRHA requires selection and scaling of ground motions to match design spectrum for site specific conditions. Designers use several techniques for scaling ground motion records (time series). Time domain and frequency domain scaling are most commonly used which comprises their own benefits and drawbacks. Due to lengthy process of NLRHA, application of only one technique is conceivable. To the best of author’s knowledge, no consensus on the best procedures for the selection and scaling of the ground motions is available in literature. This research aims to provide the finest ground motion scaling technique specifically for designing 40 story high-rise RCCW buildings. Seismic response of 40 story RCCW building is checked by applying both the frequency domain and time domain scaling. Variable sites are selected in three critical seismic zones of Pakistan. The results indicates that there is extensive variation in seismic response of building for these scaling. There is still a need to build a consensus on the subjected research by investigating variable sites and buildings heights.

Keywords: 40-storied RC core wall building, nonlinear response history analysis, ground motions, time domain scaling, frequency domain scaling

Procedia PDF Downloads 132
231 Characterization of a Broad Range Antimicrobial Substance from Pseudozyma aphidis

Authors: Raviv Harris, Maggie Levy

Abstract:

Natural product-based pesticides may serve as an alternative to the traditional synthetic pesticides, which have a potentially damaging effect, both to human health and for the environment. Along with plants, microorganisms are a prospective source of such biological pesticides. A unique and active strain of P. aphidis (designated isolate L12, Israel 2004), an epiphytic and non-pathogenic basidiomycete yeast, was isolated in our lab from strawberry leaves. P. aphidis L12 secretions were found to inhibit broad range of plant pathogens. This work demonstrates that metabolites isolated from the biocontrol agent P. aphidis (isolate L12) can inhibit varied fungal and bacterial phytopathogens. Biologically active metabolites were extracted from P. aphidis biomass, using the organic solvent ethyl acetate. The antimicrobial activity of the extract was demonstrated, both in vitro and in planta. Using disk diffusion assays, the following inhibition zones were obtained: 43cm² for Pseudomonas syringae pv. tomato, 28.5cm² for Xanthomonas campestris pv. vesicatoria, 59cm² for Clavibacter michiganensis subsp. michiganensis, 34cm² for Erwinia amylovora and 34cm² for Agrobacterium tumefaciens. Additionally, strong inhibitory activity of the extract against fungi mycelial growth was established, with IC₅₀ values of 606µg ml⁻¹ for Botrytis cinerea, 221µg ml⁻¹ for Pythium spp., 519µg ml⁻¹ for Rhizoctonia solani, 455µg ml⁻¹ for Sclerotinia sclerotiorum, 2270µg ml⁻¹ for Fusarium oxysporum f. sp. lycopersici, and 2038µg ml⁻¹ for Alternaria alternata. The results of the in planta experiments demonstrated a dose-dependent reduction in disease infection. Significant inhibition of B. cinerea lesions on tomato plants was obtained when a spore suspension of this pathogen was treated with extract concentrations higher than 4.2mg ml⁻¹. Concentration of 7mg ml⁻¹ caused a reduction of over 95% in the lesion size of B. cinerea on tomato plants. The strong antimicrobial activity demonstrated both in vitro and in planta against varied phytopathogens, may indicate that the extracted antimicrobial metabolites have potential to serve as natural pesticides in the field.

Keywords: antimicrobial, B. cinerea, metabolites, natural pesticides, P. aphidis

Procedia PDF Downloads 232
230 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 232
229 Bifurcations of the Rotations in the Thermocapillary Flows

Authors: V. Batishchev, V. Getman

Abstract:

We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.

Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer

Procedia PDF Downloads 345
228 Polygenetic Iron Mineralization in the Baba-Ali and Galali Deposits, Further Evidences from Stable (S, O, H) Isotope Data, NW Hamedan, Iran

Authors: Ghodratollah Rostami Paydar

Abstract:

The Baba-Ali and Galali iron deposits are located in northwest Hamedan and the Iranian Sanandaj-Sirjan geological structural zone. The host rocks of these deposits are metavolcanosedimentary successions of Songhor stratigraphic series with permo-trriassic age. Field investigation, ore geometry, textures and structures and paragenetic sequence of minerals, all indicate that the ore minerals are crystallized in four stages: primary volcanosedimentary stage, secondary regional metamorphism with formation of ductile shear zones, contact metamorphism and metasomatism stage and the finally late hydrothermal mineralization within uplift and exposure. Totally 29 samples of sulfide, oxide-silicate and carbonate minerals of iron orees and gangue has been purified for stable isotope analysis. The isotope ratio data assure that occurrence of dynamothermal metamorphism in these areas typically involves a lengthy period of time, which results in a tendency toward isotopic homogenization specifically in O and H stable isotopes and showing the role of metamorphic waters in mineralization process. Measurement of δ34S (CDT) in first generation of pyrite is higher than another ones, so it confirms the volcanogenic origin of primary iron mineralization. δ13C data measurements in Galali carbonate country rocks show a marine origin. δ18O in magnetite and skarn forming silicates, δ18O and δ13C in limestone and skarn calcite and δ34S in sulphides are all consistent with the interaction of a magmatic-equilibrated fluid with Galali limestone, and a dominantly magmatic source for S. All these data imply skarn formation and mineralisation in a magmatic-hydrothermal system that maintained high salinity to relatively late stages resulting in the formation of the regional Na metasomatic alteration halo. Late stage hydrothermal quartz-calcite veinlets are important for gold mineralization, but the economic evaluation is required to detailed geochemical studies.

Keywords: iron, polygenetic, stable isotope, BabaAli, Galali

Procedia PDF Downloads 302
227 Exceptional Cost and Time Optimization with Successful Leak Repair and Restoration of Oil Production: West Kuwait Case Study

Authors: Nasser Al-Azmi, Al-Sabea Salem, Abu-Eida Abdullah, Milan Patra, Mohamed Elyas, Daniel Freile, Larisa Tagarieva

Abstract:

Well intervention was done along with Production Logging Tools (PLT) to detect sources of water, and to check well integrity for two West Kuwait oil wells started to produce 100 % water. For the first well, to detect the source of water, PLT was performed to check the perforations, no production observed from the bottom two perforation intervals, and an intake of water was observed from the top most perforation. Then a decision was taken to extend the PLT survey from tag depth to the Y-tool. For the second well, the aim was to detect the source of water and if there was a leak in the 7’’liner in front of the upper zones. Data could not be recorded in flowing conditions due to the casing deformation at almost 8300 ft. For the first well from the interpretation of PLT and well integrity data, there was a hole in the 9 5/8'' casing from 8468 ft to 8494 ft producing almost the majority of water, which is 2478 bbl/d. The upper perforation from 10812 ft to 10854 ft was taking 534 stb/d. For the second well, there was a hole in the 7’’liner from 8303 ft MD to 8324 ft MD producing 8334.0 stb/d of water with an intake zone from10322.9-10380.8 ft MD taking the whole fluid. To restore the oil production, W/O rig was mobilized to prevent dump flooding, and during the W/O, the leaking interval was confirmed for both wells. The leakage was cement squeezed and tested at 900-psi positive pressure and 500-psi drawdown pressure. The cement squeeze job was successful. After W/O, the wells kept producing for cleaning, and eventually, the WC reduced to 0%. Regular PLT and well integrity logs are required to study well performance, and well integrity issues, proper cement behind casing is essential to well longevity and well integrity, and the presence of the Y-tool is essential as monitoring of well parameters and ESP to facilitate well intervention tasks. Cost and time optimization in oil and gas and especially during rig operations is crucial. PLT data quality and the accuracy of the interpretations contributed a lot to identify the leakage interval accurately and, in turn, saved a lot of time and reduced the repair cost with almost 35 to 45 %. The added value here was more related to the cost reduction and effective and quick proper decision making based on the economic environment.

Keywords: leak, water shut-off, cement, water leak

Procedia PDF Downloads 117
226 Assessment of Vehicular Emission and Its Impact on Urban Air Quality

Authors: Syed Imran Hussain Shah

Abstract:

Air pollution rapidly impacts the Earth's climate and environmental quality, causing public health nuisances and cardio-pulmonary illnesses. Air pollution is a global issue, and all population groups in all the regions in the developed and developing parts of the world were affected by it. The promise of a reduction in deaths and diseases as per SDG No. 3 is an international commitment towards sustainable development. In that context, assessing and evaluating the ambient air quality is paramount. This article estimates the air pollution released by the vehicles on roads of Lahore, a mega city having 13.98 million populations. A survey was conducted on different fuel stations to determine the estimated fuel pumped to different types of vehicles from different fuel stations. The number of fuel stations in Lahore is around 350. Another survey was also conducted to interview the drivers to know the per-litre fuel consumption of other vehicles. Therefore, a survey was conducted on 189 fuel stations and 400 drivers using a combination of random sampling and convenience sampling methods. The sampling was done in a manner to cover all areas of the city including central commercial hubs, modern housing societies, industrial zones, main highways, old traditional population centres, etc. Mathematical equations were also used to estimate the emissions from different modes of vehicles. Due to the increase in population, the number of vehicles is increasing, and consequently, traffic emissions were rising at a higher level. Motorcycles, auto rickshaws, motor cars, and vans were the main contributors to Carbon dioxide and vehicular emissions in the air. It has been observed that vehicles that use petrol fuel produce more Carbon dioxide emissions in the air. Buses and trucks were the main contributors to NOx in the air due to the use of diesel fuel. Whereas vans, buses, and trucks produce the maximum amount of SO2. PM10 and PM2.5 were mainly produced by motorcycles and motorcycle two-stroke rickshaws. Auto rickshaws and motor cars mainly produce benzene emissions. This study may act as a major tool for traffic and vehicle policy decisions to promote better fuel quality and more fuel-efficient vehicles to reduce emissions.

Keywords: particulate matter, nitrogen dioxide, climate change, pollution control

Procedia PDF Downloads 15
225 Valorization, Conservation and Sustainable Production of Medicinal Plants in Morocco

Authors: Elachouri Mostafa, Fakchich Jamila, Lazaar Jamila, Elmadmad Mohammed, Marhom Mostafa

Abstract:

Of course, there has been a great growth in scientific information about medicinal plants in recent decades, but in many ways this has proved poor compensation, because such information is accessible, in practice, only to a very few people and anyway, rather little of it is relevant to problems of management and utilization, as encountered in the field. Active compounds are used in most traditional medicines and play an important role in advancing sustainable rural livelihoods through their conservation, cultivation, propagation, marketing and commercialization. Medicinal herbs are great resources for various pharmaceutical compounds and urgent measures are required to protect these plant species from their natural destruction and disappearance. Indeed, there is a real danger of indigenous Arab medicinal practices and knowledge disappearing altogether, further weakening traditional Arab culture and creating more insecurity, as well as forsaking a resource of inestimable economic and health care importance. As scientific approach, the ethnopharmacological investigation remains the principal way to improve, evaluate, and increase the odds of finding of biologically active compounds derived from medicinal plants. As developing country, belonging to the Mediterranean basin, Morocco country is endowed with resources of medicinal and aromatic plants. These plants have been used over the millennia for human welfare, even today. Besides, Morocco has a large plant biodiversity, in fact, its medicinal flora account more than 4200 species growing on various bioclimatic zones from subhumide to arid and Saharan. Nevertheless, the human and animal pressure resulting from the increase of rural population needs has led to degradation of this patrimony. In this paper, we focus our attention on ethnopharmacological studies carried out in Morocco. The goal of this work is to clarify the importance of herbs as platform for drugs discovery and further development, to highlight the importance of ethnopharmacological study as approach on discovery of natural products in the health care field, and to discuss the limit of ethnopharmacological investigation of drug discovery in Morocco.

Keywords: Morocco, medicinal plants, ethnopharmacology, natural products, drug-discovery

Procedia PDF Downloads 317
224 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values

Authors: Burçin Saltık, Levent Genç

Abstract:

In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.

Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice

Procedia PDF Downloads 228
223 Comparison of Rainfall Trends in the Western Ghats and Coastal Region of Karnataka, India

Authors: Vinay C. Doranalu, Amba Shetty

Abstract:

In recent days due to climate change, there is a large variation in spatial distribution of daily rainfall within a small region. Rainfall is one of the main end climatic variables which affect spatio-temporal patterns of water availability. The real task postured by the change in climate is identification, estimation and understanding the uncertainty of rainfall. This study intended to analyze the spatial variations and temporal trends of daily precipitation using high resolution (0.25º x 0.25º) gridded data of Indian Meteorological Department (IMD). For the study, 38 grid points were selected in the study area and analyzed for daily precipitation time series (113 years) over the period 1901-2013. Grid points were divided into two zones based on the elevation and situated location of grid points: Low Land (exposed to sea and low elevated area/ coastal region) and High Land (Interior from sea and high elevated area/western Ghats). Time series were applied to examine the spatial analysis and temporal trends in each grid points by non-parametric Mann-Kendall test and Theil-Sen estimator to perceive the nature of trend and magnitude of slope in trend of rainfall. Pettit-Mann-Whitney test is applied to detect the most probable change point in trends of the time period. Results have revealed remarkable monotonic trend in each grid for daily precipitation of the time series. In general, by the regional cluster analysis found that increasing precipitation trend in shoreline region and decreasing trend in Western Ghats from recent years. Spatial distribution of rainfall can be partly explained by heterogeneity in temporal trends of rainfall by change point analysis. The Mann-Kendall test shows significant variation as weaker rainfall towards the rainfall distribution over eastern parts of the Western Ghats region of Karnataka.

Keywords: change point analysis, coastal region India, gridded rainfall data, non-parametric

Procedia PDF Downloads 295
222 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data

Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang

Abstract:

The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.

Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds

Procedia PDF Downloads 116