Search results for: climate responsive
2087 The Effects of Extreme Precipitation Events on Ecosystem Services
Authors: Szu-Hua Wang, Yi-Wen Chen
Abstract:
Urban ecosystems are complex coupled human-environment systems. They contain abundant natural resources for producing natural assets and attract urban assets to consume natural resources for urban development. Urban ecosystems provide several ecosystem services, including provisioning services, regulating services, cultural services, and supporting services. Rapid global climate change makes urban ecosystems and their ecosystem services encountering various natural disasters. Lots of natural disasters have occurred around the world under the constant changes in the frequency and intensity of extreme weather events in the past two decades. In Taiwan, hydrological disasters have been paid more attention due to the potential high sensitivity of Taiwan’s cities to climate change, and it impacts. However, climate change not only causes extreme weather events directly but also affects the interactions among human, ecosystem services and their dynamic feedback processes indirectly. Therefore, this study adopts a systematic method, solar energy synthesis, based on the concept of the eco-energy analysis. The Taipei area, the most densely populated area in Taiwan, is selected as the study area. The changes of ecosystem services between 2015 and Typhoon Soudelor have been compared in order to investigate the impacts of extreme precipitation events on ecosystem services. The results show that the forest areas are the largest contributions of energy to ecosystem services in the Taipei area generally. Different soil textures of different subsystem have various upper limits of water contents or substances. The major contribution of ecosystem services of the study area is natural hazard regulation provided by the surface water resources areas. During the period of Typhoon Soudelor, the freshwater supply in the forest areas had become the main contribution. Erosion control services were the main ecosystem service affected by Typhoon Soudelor. The second and third main ecosystem services were hydrologic regulation and food supply. Due to the interactions among ecosystem services, fresh water supply, water purification, and waste treatment had been affected severely.Keywords: ecosystem, extreme precipitation events, ecosystem services, solar energy synthesis
Procedia PDF Downloads 1482086 An Activatable Prodrug for the Treatment of Metastatic Tumors
Authors: Eun-Joong Kim, Sankarprasad Bhuniya, Hyunseung Lee, Hyun Min Kim, Chaejoon Cheong, Su-khendu Maiti, Kwan Soo Hong, Jong Seung Kim
Abstract:
Metastatic cancers have historically been difficult to treat. However, metastatic tumors have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential anti-metastatic therapy. In this study, prodrug 7 was designed to be activated by H2O2-mediated boronate oxidation, resulting in activation of the fluorophore for detection and release of the therapeutic agent, SN-38. Drug release from prodrug 7 was investigated by monitoring fluorescence after addition of H2O2 to the cancer cells. Prodrug 7 activated by H2O2 selectively inhibited tumor cell growth. Furthermore, intratracheally administered prodrug 7 showed effective anti-tumor activity in a mouse model of metastatic lung disease. Thus, this H2O2-responsive prodrug has therapeutic potential as a novel treatment for metastatic cancer via cellular imaging with fluorescence as well as selective release of the anti-cancer drug, SN-38.Keywords: hydrogen peroxide, prodrug, metastatic tumors, fluorescence
Procedia PDF Downloads 4532085 Leveraging the HDAC Inhibitory Pharmacophore to Construct Deoxyvasicinone Based Tractable Anti-Lung Cancer Agent and pH-Responsive Nanocarrier
Authors: Ram Sharma, Esha Chatterjee, Santosh Kumar Guru, Kunal Nepali
Abstract:
A tractable anti-lung cancer agent was identified via the installation of a Ring C expanded synthetic analogue of the alkaloid vasicinone [7,8,9,10-tetrahydroazepino[2,1-b] quinazolin-12(6H)-one (TAZQ)] as a surface recognition part in the HDAC inhibitory three-component model. Noteworthy to mention that the candidature of TAZQ was deemed suitable for accommodation in HDAC inhibitory pharmacophore as per the results of the fragment recruitment process conducted by our laboratory. TAZQ was pinpointed through the fragment screening program as a synthetically flexible fragment endowed with some moderate cell growth inhibitory activity against the lung cancer cell lines, and it was anticipated that the use of the aforementioned fragment to generate hydroxamic acid functionality (zinc-binding motif) bearing HDAC inhibitors would boost the antitumor efficacy of TAZQ. Consistent with our aim of applying epigenetic targets to the treatment of lung cancer, a strikingly potent anti-lung cancer scaffold (compound 6) was pinpointed through a series of in-vitro experiments. Notably, the compounds manifested a magnificent activity profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80 - 0.96 µM), and the effects were found to be mediated through preferential HDAC6 inhibition (IC50 = 12.9 nM). In addition to HDAC6 inhibition, the compounds also elicited HDAC1 and HDAC3 inhibitory activity with an IC50 value of 49.9 nM and 68.5 nM, respectively. The HDAC inhibitory ability of compound 6 was also confirmed from the results of the western blot experiment that revealed its potential to decrease the expression levels of HDAC isoforms (HDAC1, HDAC3, and HDAC6). Noteworthy to mention that complete downregulation of the HDAC6 isoform was exerted by compound 6 at 0.5 and 1 µM. Moreover, in another western blot experiment, treatment with hydroxamic acid 6 led to upregulation of H3 acK9 and α-Tubulin acK40 levels, ascertaining its inhibitory activity toward both the class I HDACs and Class II B HDACs. The results of other assays were also encouraging as treatment with compound 6 led to the suppression of the colony formation ability of A549 cells, induction of apoptosis, and increase in autophagic flux. In silico studies led us to rationalize the results of the experimental assay, and some key interactions of compound 6 with the amino acid residues of HDAC isoforms were identified. In light of the impressive activity spectrum of compound 6, a pH-responsive nanocarrier (hyaluronic acid-compound 6 nanoparticles) was prepared. The dialysis bag approach was used for the assessment of the nanoparticles under both normal and acidic circumstances, and the pH-sensitive nature of hyaluronic acid-compound 6 nanoparticles was confirmed. Delightfully, the nanoformulation was devoid of cytotoxicity against the L929 mouse fibroblast cells (normal settings) and exhibited selective cytotoxicity towards the A549 lung cancer cell lines. In a nutshell, compound 6 appears to be a promising adduct, and a detailed investigation of this compound might yield a therapeutic for the treatment of lung cancer.Keywords: HDAC inhibitors, lung cancer, scaffold, hyaluronic acid, nanoparticles
Procedia PDF Downloads 952084 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering
Authors: Youssef I. Hafez
Abstract:
Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming
Procedia PDF Downloads 2232083 A Design Decision Framework for Net-Zero Carbon Buildings in Hot Climates: A Modeled Approach and Expert’s Feedback
Authors: Eric Ohene, Albert P. C. Chan, Shu-Chien HSU
Abstract:
The rising building energy consumption and related carbon emissions make it necessary to construct net-zero carbon buildings (NZCBs). The objective of net-zero buildings has raised the benchmark for building performance and will alter how buildings are designed and constructed. However, there have been growing concerns about uncertainty in net-zero building design and cost implications in decision-making. Lessons from practice have shown that a robust net-zero building design is complex, expensive, and time-consuming. Moreover, climate conditions have an enormous implication for choosing the best-optimal passive and active solutions to ensure building energy performance while ensuring the indoor comfort performance of occupants. It is observed that 20% of the design decisions made in the initial design phase influence 80% of all design decisions. To design and construct NZCBs, it is crucial to ensure adequate decision-making during the early design phases. Therefore, this study aims to explore practical strategies to design NZCBs and to offer a design framework that could help decision-making during the design stage of net-zero buildings. A parametric simulation approach was employed, and experts (i.e., architects, building designers) perspectives on the decision framework were solicited. The study could be helpful to building designers and architects to guide their decision-making during the design stage of NZCBs.Keywords: net-zero, net-zero carbon building, energy efficiency, parametric simulation, hot climate
Procedia PDF Downloads 1062082 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise
Authors: Rahman Davtalab
Abstract:
Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides, the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach (in the northeast of Florida adjacent to the Atlantic Ocean), Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24% by the mid-21st century.Keywords: groundwater, surface water, Florida, retention pond, tide, sea level rise
Procedia PDF Downloads 1852081 The Importance of School Culture in Supporting Student Mental Health Following the COVID-19 Pandemic: Insights from a Qualitative Study
Authors: Rhiannon Barker, Gregory Hartwell, Matt Egan, Karen Lock
Abstract:
Background: Evidence suggests that mental health (MH) issues in children and young people (CYP) in the UK are on the rise. Of particular concern is data that indicates that the pandemic, together with the impact of school closures, have accentuated already pronounced inequalities; children from families on low incomes or from black and minority ethnic groups are reportedly more likely to have been adversely impacted. This study aimed to help identify specific support which may facilitate the building of a positive school climate and protect student mental health, particularly in the wake of school closures following the pandemic. It has important implications for integrated working between schools and statutory health services. Methods: The research comprised of three parts; scoping, case studies, and a stakeholder workshop to explore and consolidate results. The scoping phase included a literature review alongside interviews with a range of stakeholders from government, academia, and the third sector. Case studies were then conducted in two London state schools. Results: Our research identified how student MH was being impacted by a range of factors located at different system levels, both internal to the school and in the wider community. School climate, relating both to a shared system of beliefs and values, as well as broader factors including style of leadership, teaching, discipline, safety, and relationships -all played a role in the experience of school life and, consequently, the MH of both students and staff. Participants highlighted the importance of a whole school approach and ensuring that support for student MH was not separated from academic achievement, as well as the importance of identifying and applying universal measuring systems to establish levels of MH need. Our findings suggest that a school’s climate is influenced by the style and strength of its leadership, while this school climate - together with mechanisms put in place to respond to MH needs (both statutory and non-statutory) - plays a key role in supporting student MH. Implications: Schools in England have a responsibility to decide on the nature of MH support provided for their students, and there is no requirement for them to report centrally on the form this provision takes. The reality on the ground, as our study suggests, is that MH provision varies significantly between schools, particularly in relation to ‘lower’ levels of need which are not covered by statutory requirements. A valid concern may be that in the huge raft of possible options schools have to support CYP wellbeing, too much is left to chance. Work to support schools in rebuilding their cultures post-lockdowns must include the means to identify and promote appropriate tools and techniques to facilitate regular measurement of student MH. This will help establish both the scale of the problem and monitor the effectiveness of the response. A strong vision from a school’s leadership team that emphasises the importance of student wellbeing, running alongside (but not overshadowed by) academic attainment, should help shape a school climate to promote beneficial MH outcomes. The sector should also be provided with support to improve the consistency and efficacy of MH provision in schools across the country.Keywords: mental health, schools, young people, whole-school culture
Procedia PDF Downloads 632080 Quantifying Firm-Level Environmental Innovation Performance: Determining the Sustainability Value of Patent Portfolios
Authors: Maximilian Elsen, Frank Tietze
Abstract:
The development and diffusion of green technologies are crucial for achieving our ambitious climate targets. The Paris Agreement commits its members to develop strategies for achieving net zero greenhouse gas emissions by the second half of the century. Governments, executives, and academics are working on net-zero strategies and the business of rating organisations on their environmental, social and governance (ESG) performance has grown tremendously in its public interest. ESG data is now commonly integrated into traditional investment analysis and an important factor in investment decisions. Creating these metrics, however, is inherently challenging as environmental and social impacts are hard to measure and uniform requirements on ESG reporting are lacking. ESG metrics are often incomplete and inconsistent as they lack fully accepted reporting standards and are often of qualitative nature. This study explores the use of patent data for assessing the environmental performance of companies by focusing on their patented inventions in the space of climate change mitigation and adaptation technologies (CCMAT). The present study builds on the successful identification of CCMAT patents. In this context, the study adopts the Y02 patent classification, a fully cross-sectional tagging scheme that is fully incorporated in the Cooperative Patent Classification (CPC), to identify Climate Change Adaptation Technologies. The Y02 classification was jointly developed by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO) and provides means to examine technologies in the field of mitigation and adaptation to climate change across relevant technologies. This paper develops sustainability-related metrics for firm-level patent portfolios. We do so by adopting a three-step approach. First, we identify relevant CCMAT patents based on their classification as Y02 CPC patents. Second, we examine the technological strength of the identified CCMAT patents by including more traditional metrics from the field of patent analytics while considering their relevance in the space of CCMAT. Such metrics include, among others, the number of forward citations a patent receives, as well as the backward citations and the size of the focal patent family. Third, we conduct our analysis on a firm level by sector for a sample of companies from different industries and compare the derived sustainability performance metrics with the firms’ environmental and financial performance based on carbon emissions and revenue data. The main outcome of this research is the development of sustainability-related metrics for firm-level environmental performance based on patent data. This research has the potential to complement existing ESG metrics from an innovation perspective by focusing on the environmental performance of companies and putting them into perspective to conventional financial performance metrics. We further provide insights into the environmental performance of companies on a sector level. This study has implications of both academic and practical nature. Academically, it contributes to the research on eco-innovation and the literature on innovation and intellectual property (IP). Practically, the study has implications for policymakers by deriving meaningful insights into the environmental performance from an innovation and IP perspective. Such metrics are further relevant for investors and potentially complement existing ESG data.Keywords: climate change mitigation, innovation, patent portfolios, sustainability
Procedia PDF Downloads 832079 Hydrothermal Energy Application Technology Using Dam Deep Water
Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong
Abstract:
Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.Keywords: hydrothermal energy, HVAC, internet data center, free-cooling
Procedia PDF Downloads 812078 Characterization and Evaluation of Soil Resources for Sustainable Land Use Planning of Timatjatji Community Farm, Limpopo, South Africa
Authors: M. Linda Phooko, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa, Rhandu Chauke
Abstract:
The decline of yields as a consequence of miss-informed land-use decisions poses a threat to sustainable agriculture in South Africa. The non-uniform growth pattern of wheat crop and the yields below expectations has been one of the main concerns for Timatjatji community farmers. This study was then conducted to characterize, classify, and evaluate soils of the farm for sustainable land use planning. A detailed free survey guided by surface features was conducted on a 25 ha farm to check soil variation. It was revealed that Sepane (25%), Bonheim (21%), Rensburg (18%), Katspruit (15%), Arcadia (12%) and Dundee (9%) were the dominant soil forms found across the farm. Field soil description was done to determine morphological characteristics of the soils which were matched with slope percentage and climate to assess the potential of the soils. The land capability results showed that soils were generally shallow due to high clay content in the B horizon. When the climate of the area was factored in (i.e. land potential), it further revealed that the area has low cropping potential due to heat, moisture stress and shallow soils. This implies that the farm is not suitable for annual cropping but can be highly suitable for planted pastures.Keywords: characterization, land capability, land evaluation, land potential
Procedia PDF Downloads 1992077 Blockchain for the Monitoring and Reporting of Carbon Emission Trading: A Case Study on Its Possible Implementation in the Danish Energy Industry
Authors: Nkechi V. Osuji
Abstract:
The use of blockchain to address the issue of climate change is increasingly a discourse among countries, industries, and stakeholders. For a long time, the European Union (EU) has been combating the issue of climate action in industries through sustainability programs. One of such programs is the EU monitoring reporting and verification (MRV) program of the EU ETS. However, the system has some key challenges and areas for improvement, which makes it inefficient. The main objective of the research is to look at how blockchain can be used to improve the inefficiency of the EU ETS program for the Danish energy industry with a focus on its monitoring and reporting framework. Applying empirical data from 13 semi-structured expert interviews, three case studies, and literature reviews, three outcomes are presented in the study. The first is on the current conditions and challenges of monitoring and reporting CO₂ emission trading. The second is putting into consideration if blockchain is the right fit to solve these challenges and how. The third stage looks at the factors that might affect the implementation of such a system and provides recommendations to mitigate these challenges. The first stage of the findings reveals that the monitoring and reporting of CO₂ emissions is a mandatory requirement by law for all energy operators under the EU ETS program. However, most energy operators are non-compliant with the program in reality, which creates a gap and causes challenges in the monitoring and reporting of CO₂ emission trading. Other challenges the study found out are the lack of transparency, lack of standardization in CO₂ accounting, and the issue of double-counting in the current system. The second stage of the research was guided by three case studies and requirement engineering (RE) to explore these identified challenges and if blockchain is the right fit to address them. This stage of the research addressed the main research question: how can blockchain be used for monitoring and reporting CO₂ emission trading in the energy industry. Through analysis of the study data, the researcher developed a conceptual private permissioned Hyperledger blockchain and elucidated on how it can address the identified challenges. Particularly, the smart contract of blockchain was highlighted as a key feature. This is because of its ability to automate, be immutable, and digitally enforce negotiations without a middleman. These characteristics are unique in solving the issue of compliance, transparency, standardization, and double counting identified. The third stage of the research presents technological constraints and a high level of stakeholder collaboration as major factors that might affect the implementation of the proposed system. The proposed conceptual model requires high-level integration with other technologies such as the Internet of Things (IoT) and machine learning. Therefore, the study encourages future research in these areas. This is because blockchain is continually evolving its technology capabilities. As such, it remains a topic of interest in research and development for addressing climate change. Such a study is a good contribution to creating sustainable practices to solve the global climate issue.Keywords: blockchain, carbon emission trading, European Union emission trading system, monitoring and reporting
Procedia PDF Downloads 1292076 The Systematic Impact of Climatic Disasters on the Maternal Health in Pakistan
Authors: Yiqi Zhu, Jean Francois Trani, Rameez Ulhassan
Abstract:
Extreme weather phenomena increased by 46% between 2007 and 2017 and have become more intense with the rise in global average temperatures. This increased intensity of climate variations often induces humanitarian crises and particularly affects vulnerable populations in low- and middle-income countries (LMICs). Expectant and lactating mothers are among the most vulnerable groups. Pakistan ranks 10th among the most affected countries by climate disasters. In 2022, monsoon floods submerged a third of the country, causing the loss of 1,500 lives. Approximately 650,000 expectant and lactating mothers faced systematic stress from climatic disasters. Our study used participatory methods to investigate the systematic impact of climatic disasters on maternal health. In March 2023, we conducted six Group Model Building (GMB) workshops with healthcare workers, fathers, and mothers separately in two of the most affected areas in Pakistan. This study was approved by the Islamic Relief Research Review Board. GMB workshops consist of three sessions. In the first session, participants discussed the factors that impact maternal health. After identifying the factors, they discussed the connections among them and explored the system structures that collectively impact maternal health. Based on the discussion, a causal loop diagram (CLD) was created. Finally, participants discussed action ideas that could improve the system to enhance maternal health. Based on our discussions and the causal loop diagram, we identified interconnected factors at the family, community, and policy levels. Mothers and children are directly impacted by three interrelated factors: food insecurity, unstable housing, and lack of income. These factors create a reinforcing cycle that negatively affects both mothers and newborns. After the flood, many mothers were unable to produce sufficient breastmilk due to their health status. Without breastmilk and sufficient food for complementary feeding, babies tend to get sick in damp and unhygienic environments resulting from temporary or unstable housing. When parents take care of sick children, they miss out on income-generating opportunities. At the community level, the lack of access to clean water and sanitation (WASH) and maternal healthcare further worsens the situation. Structural failures such as a lack of safety nets and programs associated with flood preparedness make families increasingly vulnerable with each disaster. Several families reported that they had not fully recovered from a flood that occurred ten years ago, and this latest disaster destroyed their lives again. Although over twenty non-profit organizations are working in these villages, few of them provide sustainable support. Therefore, participants called for systemic changes in response to the increasing frequency of climate disasters. The study reveals the systematic vulnerabilities of mothers and children after climatic disasters. The most vulnerable populations are often affected the most by climate change. Collaborative efforts are required to improve water and forest management, strengthen public infrastructure, increase access to WASH, and gradually build climate-resilient communities. Governments, non-governmental organizations, and the community should work together to develop and implement effective strategies to prevent, mitigate, and adapt to climate change and its impacts.Keywords: climatic disasters, maternal health, Pakistan, systematic impact, flood, disaster relief.
Procedia PDF Downloads 772075 Carbon Stock Estimation of Urban Forests in Selected Public Parks in Addis Ababa
Authors: Meseret Habtamu, Mekuria Argaw
Abstract:
Urban forests can help to improve the microclimate and air quality. Urban forests in Addis Ababa are important sinks for GHGs as the number of vehicles and the traffic constrain is steadily increasing. The objective of this study was to characterize the vegetation types in selected public parks and to estimate the carbon stock potential of urban forests by assessing carbon in the above, below ground biomass, in the litter and soil. Species which vegetation samples were taken using a systematic transect sampling within value DBH ≥ 5cm were recorded to measure the above, the below ground biomass and the amount of C stored. Allometric models (Y= 34.4703 - 8.0671(DBH) + 0.6589(DBH2) were used to calculate the above ground and Below ground biomass (BGB) = AGB × 0.2 and sampling of soil and litter was based on quadrates. There were 5038 trees recorded from the selected study sites with DBH ≥ 5cm. Most of the Parks had large number of indigenous species, but the numbers of exotic trees are much larger than the indigenous trees. The mean above ground and below ground biomass is 305.7 ± 168.3 and 61.1± 33.7 respectively and the mean carbon in the above ground and below ground biomass is 143.3±74.2 and 28.1 ± 14.4 respectively. The mean CO2 in the above ground and below ground biomass is 525.9 ± 272.2 and 103.1 ± 52.9 respectively. The mean carbon in dead litter and soil carbon were 10.5 ± 2.4 and 69.2t ha-1 respectively. Urban trees reduce atmospheric carbon dioxide (CO2) through sequestration which is important for climate change mitigation, they are also important for recreational, medicinal value and aesthetic and biodiversity conservation.Keywords: biodiversity, carbon sequestration, climate change, urban forests
Procedia PDF Downloads 2292074 “Presently”: A Personal Trainer App to Self-Train and Improve Presentation Skills
Authors: Shyam Mehraaj, Samanthi E. R. Siriwardana, Shehara A. K. G. H., Wanigasinghe N. T., Wandana R. A. K., Wedage C. V.
Abstract:
A presentation is a critical tool for conveying not just spoken information but also a wide spectrum of human emotions. The single most effective thing to make the presentation successful is to practice it beforehand. Preparing for a presentation has been shown to be essential for improving emotional control, intonation and prosody, pronunciation, and vocabulary, as well as the quality of the presentation slides. As a result, practicing has become one of the most critical parts of giving a good presentation. In this research, the main focus is to analyze the audio, video, and slides of the presentation uploaded by the presenters. This proposed solution is based on the Natural Language Processing and Computer Vision techniques to cater to the requirement for the presenter to do a presentation beforehand using a mobile responsive web application. The proposed system will assist in practicing the presentation beforehand by identifying the presenters’ emotions, body language, tonality, prosody, pronunciations and vocabulary, and presentation slides quality. Overall, the system will give a rating and feedback to the presenter about the performance so that the presenters’ can improve their presentation skills.Keywords: presentation, self-evaluation, natural learning processing, computer vision
Procedia PDF Downloads 1182073 The Influence of Climatic Conditions on the Religion of the Medieval Balkan States
Authors: Rastislav Stojsavljevic
Abstract:
During most of the Middle Ages, warmer-than-average weather prevailed in the Balkan Peninsula in Southeast Europe. This period is also called Medieval Climate Optimum. It had its most noticeable phases during the 12th and 13th centuries. Due to climatic conditions, the appearance of unstable weather was observed. Strong storms and hail were a frequent occurrence. From the 9th to the 15th century, the Christian religion dominated the Balkan Peninsula. From East-West Schism (1054 A.D.), most of the people in Balkan states belonged to Eastern Orthodox churches: Byzantium, Bulgaria, Serbia and Bosnia. Medieval Croatia and the coastal part (the Adriatic Sea) of Zeta belonged to the Roman Catholic church. In addition to the dominant Christian religion, a lot of pagan Slavic cults remained in the Balkans during the Middle Ages. Various superstitions were a regular occurrence. They were dominant during severe storms, floods, great droughts, the appearance of comets, etc. In this paper, the appearance of warm and cold temperature spells will be investigated. In the second half of the 14th century, the Little Ice Age began and lasted for several centuries. The period of the first half of the 15th century is characterized by cold and snowy winters. Hunger was a regular occurrence. This has given rise to many beliefs which will be researched and mentioned in the paper.Keywords: the Balkans, religion, medieval climate optimum, little ice age
Procedia PDF Downloads 732072 Sustainable Supply Chain Management Practices, Challenges, and Opportunities: A Case Study of Small and Medium-Sized Enterprises Within the Oil and Gas Sector
Authors: Igho Ekiugbo, Christos Papanagnou
Abstract:
The energy sector continues to face increased scrutiny due to climate change challenges emanating from the burning of fossil fuels, such as coal, oil, and gas. These climate change challenges have motivated industry practitioners and researchers alike to gain an interest in the way businesses operate. This paper aimed to investigate and assess how small and medium-sized enterprises (SMEs) are reducing the impact of their operations, especially those within their supply chains, by assessing the sustainability practices they have adopted and implemented as well as the benefits and challenges of adopting such practices. Data will be collected from SMEs operating across the downstream oil and gas sector in Nigeria using questionnaire surveys. To analyse the data, confirmatory factor analysis and regression analysis will be performed. This method is deemed more suitable and appropriate for testing predefined measurements of sustainable supply chain practices as contained in the extant literature. Preliminary observations indicate a consensus on the awareness of the sustainability concept amongst the target participants. To the best of our knowledge, this paper is among the first to investigate the sustainability practices of SMEs operating in the Nigerian oil and gas sector and will therefore contribute to the sustainability and circular economic literature.Keywords: small and medium-sized enterprises, sustainability practices, supply chains, sustainable supply chain management, corporate sustainability, oil and gas, business performance
Procedia PDF Downloads 1272071 The Use of Different Methodological Approaches to Teaching Mathematics at Secondary Level
Authors: M. Rodionov, N. Sharapova, Z. Dedovets
Abstract:
The article describes methods of preparation of future teachers that includes the entire diversity of traditional and computer-oriented methodological approaches. The authors reveal how, in the specific educational environment, a teacher can choose the most effective combination of educational technologies based on the nature of the learning task. The key conditions that determine such a choice are that the methodological approach corresponds to the specificity of the problem being solved and that it is also responsive to the individual characteristics of the students. The article refers to the training of students in the proper use of mathematical electronic tools for educational purposes. The preparation of future mathematics teachers should be a step-by-step process, building on specific examples. At the first stage, students optimally solve problems aided by electronic means of teaching. At the second stage, the main emphasis is on modeling lessons. At the third stage, students develop and implement strategies in the study of one of the topics within a school mathematics curriculum. The article also recommended the implementation of this strategy in preparation of future teachers and stated the possible benefits.Keywords: education, methodological approaches, teacher, secondary school
Procedia PDF Downloads 1702070 China’s Scientific Research of the Arctic (Historical Aspect)
Authors: Cui Long (Allen)
Abstract:
China's attention to the Arctic began in 1925, when the country joined the Svalbard Treaty. China's participation in Arctic exploration was determined by the second and third articles of the treaty, according to which the country could conduct scientific activities in the adjacent waters of Svalbard. The first studies of the New China began in the 50s of the twentieth century. The first scientific projects on Arctic exploration began in the 80s of the twentieth century. During these years, the "National Committee of the People's Republic of China for Arctic Expeditions" and the "Institute of Polar Research" in Shanghai were established. The beginning of Deng Xiaoping's policy of openness and reform has opened a new page in China's scientific research of the Arctic. Since the 90s, the first Chinese scientific programs have been developed with foreign partners. The Chinese Academy of Sciences and its subordinate scientific institutions are actively involved in scientific activities: the Institute of Aerophysics, the Institute of Geographical Sciences and Natural Resources, the Institute of Oceanology, etc. An important event for the development of scientific research in the Arctic was China's entry into the Arctic Council in 2013 as an observer. By 2018, China had conducted nine Arctic expeditions, their purpose was to study the melting of ice and its effects on the world's climate system, as well as the impact of the Arctic climate on China and the presence of plastic waste in the Arctic was monitored. At the beginning of the new millennium, China considers the Arctic as the most important region of a geopolitical and geostrategic nature, for its further logistical and economic development.Keywords: Arctic, China, history of Arctic research, arctic science, Chinese scientific research in the Arctic, scientific expeditions
Procedia PDF Downloads 532069 Characterization of Carbon/Polyamide 6,6 (C/PA66) Composite Material for Dry and Wet Conditions
Authors: Tariq Bashir, Muhammad Waseem Tahir, Ulf Stigh, Behnaz Baghaie, Mikael Skrifvars
Abstract:
Absorption of moisture may cause many problems in a composite material, such as delamination, degradation of the strength and increase in the weight. For small coupons, the increase in weight may be negligible, however, for large structures increase in weight due to moisture absorption may be quite significant. Polyamides (PA6, PA66) absorb more moisture as compared to other thermoplastics. There are many parameters which affect the moisture absorption of the composite material for example temperature, pressure, type of matrix and fibers, thickness of the material and relative humidity (RH) etc. So, it is utmost important to investigate the impact of moisture on PA66 based composites which can be done by characterizing the mechanical properties of composite materials both for dry and wet conditions. In this study, laminates of C/PA66 composite are manufactured by first heating the commingled material in conventional oven at a temperature of 220 °C followed by pressing in a manual hot press for 20 minutes with preheated platen at 220 °C. To observe the moisture absorption of the composite, coupons of the material were placed in a climate chamber at five different conditions 0, 25, 50, 75 and 100% RH for 24 hours. Five specimens were used for each condition. These coupons were weighed before placing in the climate chamber and just after removing from the chamber to observe the moisture absorption of the material. The mechanical characterization such as tensile strength, flexural modulus, impact strength and DMTA of C/PA66 material are performed at 0, 50 and 100 % RH. The work is going on for the testing of the material and results will be presented in full paper.Keywords: Carbon/Polyamide 66 composites, structural composites, mechanical characterizations, wet and dry conditions
Procedia PDF Downloads 2342068 Experimental Investigation of Seawater Thermophysical Properties: Understanding Climate Change Impacts on Marine Ecosystems Through Internal Pressure and Cohesion Energy Analysis
Authors: Nishaben Dholakiya, Anirban Roy, Ranjan Dey
Abstract:
The unprecedented rise in global temperatures has triggered complex changes in marine ecosystems, necessitating a deeper understanding of seawater's thermophysical properties by experimentally measuring ultrasonic velocity and density at varying temperatures and salinity. This study investigates the critical relationship between temperature variations and molecular-level interactions in Arabian Sea surface waters, specifically focusing on internal pressure (π) and cohesion energy density (CED) as key indicators of ecosystem disruption. Our experimental findings reveal that elevated temperatures significantly reduce internal pressure, weakening the intermolecular forces that maintain seawater's structural integrity. This reduction in π correlates directly with decreased habitat stability for marine organisms, particularly affecting pressure-sensitive species and their physiological processes. Similarly, the observed decline in cohesion energy density at higher temperatures indicates a fundamental shift in water molecule organization, impacting the dissolution and distribution of vital nutrients and gases. These molecular-level changes cascade through the ecosystem, affecting everything from planktonic organisms to complex food webs. By employing advanced machine learning techniques, including Stacked Ensemble Machine Learning (SEML) and AdaBoost (AB), we developed highly accurate predictive models (>99% accuracy) for these thermophysical parameters. The results provide crucial insights into the mechanistic relationship between climate warming and marine ecosystem degradation, offering valuable data for environmental policymaking and conservation strategies. The novelty of this research serves as no such thermodynamic investigation has been conducted before in literature, whereas this research establishes a quantitative framework for understanding how molecular-level changes in seawater properties directly influence marine ecosystem stability, emphasizing the urgent need for climate change mitigation efforts.Keywords: thermophysical properties, Arabian Sea, internal pressure, cohesion energy density, machine learning
Procedia PDF Downloads 82067 A Comparative Study on the Effects of Different Clustering Layouts and Geometry of Urban Street Canyons on Urban Heat Island in Residential Neighborhoods of Kolkata
Authors: Shreya Banerjee, Roshmi Sen, Subrata Chattopadhyay
Abstract:
Urbanization during the second half of the last century has created many serious environment related issues leading to global warming and climate change. India is not an exception as the country is also facing the problems of global warming and urban heat islands (UHI) in all the major metropolises. This paper discusses the effect of different housing cluster layouts, site geometry, and geometry of urban street canyons on the urban heat island profile. The study is carried out using the three dimensional microclimatic computational fluid dynamics model ENVI-met version 3.1. Simulation models are done for a typical summer day of 21st June, 2015 in four different residential neighborhoods in the city of Kolkata which predominantly belongs to Warm-Humid Monsoon Climate. The results show the changing pattern of urban heat island profile with respect to different clustering layouts, geometry, and morphology of urban street canyons. The comparison between the four neighborhoods shows that different microclimatic variables are strongly dependant on the neighborhood layout pattern and geometry. The inferences obtained from this study can be indicative towards the formulation of neighborhood design by-laws that will attenuate the urban heat island effect.Keywords: urban heat island, neighborhood morphology, site microclimate, ENVI-met, numerical analysis
Procedia PDF Downloads 3682066 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model
Authors: Aminah Muchdar, Nuraeni, Eddy
Abstract:
The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE
Procedia PDF Downloads 1802065 Living Lab as a Service: Developing Context Induced, Co-creational Innovation Routines as a Process Tool for Nature Based Solutions
Authors: Immanuel Darkwa
Abstract:
Climate change and environmental degradation are existential threats requiring urgent transnational action. The SDGs, as well as regional initiatives the like European Green Deal, as ambitious as they are, put an emphasis on innovatively tackling threats posed by climate change regionally. While co-creational approaches are being propagated, there is no reference blueprint for how potential solutions, particularly nature-based solutions, may be developed and implemented within urban-settings. Using a single case study in Zagreb, Croatia, this paper proposes a workshop-tool for a Living Lab as a Service model for sustainable Nature-Based-Thinking, Nature–Centred-Design and Nature based solutions. The approach is based on a co-creational methodology developed through literature synthesis, expert interviews, focus group discussions, surveys and synthesized through rigorous research analysis and participatory observation. The ensuing tool involves workshop-processes, tested with through-the-process identified stakeholders with distinctive roles and functions. The resulting framework proposes a Nature-Based-Centred-Thinking process tool involving ‘green’ routines supported by a focal unit and a collaborative network, and that allows for the development of nature-based solutions.Keywords: living labs, nature-based solutions, nature- based design, innovation processes, innovation routines and tools
Procedia PDF Downloads 762064 Indoor Microclimate in a Historic Library: Considerations on the Positive Effect of Historic Books on the Stability of Indoor Relative Humidity
Authors: Magda Posani, Maria Do Rosario Veiga, Vasco Peixoto De Freitas
Abstract:
The presented research considers the hygrothermal data acquired in the municipal library of Porto. The library is housed in an XVIII century convent and, among all the rooms in the construction, one, in particular, was chosen for the monitoring campaign because of the presence of a great number of historic books. Temperature and relative humidity, as well as CO₂ concentration, were measured for six consecutive months, in the period December 24th - June 24th. The indoor environment of the building is controlled with a heating and cooling system that is turned on only during the opening hours of the library. The ventilation rate is low because the windows are kept closed, and there is no forced ventilation. The micro-climate is analyzed in terms of users’ comfort and degradation risks for historic books and valuable building surfaces. Through a comparison between indoor and outdoor measured hygrothermal data, indoor relative humidity appears very stable. The influence of the hygroscopicity of books on the stabilization of indoor relative humidity is therefore investigated in detail. The paper finally discusses the benefits given by the presence of historic books in libraries with intermittent heating and cooling. The possibility of obtaining a comfortable and stable indoor climate with low use of HVAC systems in these conditions, while avoiding degradation risks for books and historic building components, is further debated.Keywords: books, historic buildings, hygroscopicity, relative humidity
Procedia PDF Downloads 1532063 Supporting Young Emergent Multilingual Learners in Prekindergarten Classrooms: Policy Implications
Authors: Tiedan Huang, Chun Zhang, Caitlin Coe
Abstract:
This study investigated the quality of instructional support for young Emergent Multilingual Learners (EMLs) in 50 Universal Prekindergarten (UPK) classroom in New York City (NYC). This is one of the first empirical studies examining the instructional support for this student population. We collected data using a mixed method of structured observations of teacher-child interactions in 50 classrooms, and surveys and interviews with program leaders and the teaching teams. We found that NYC’s UPK classrooms offered warm and supportive environments for EMLs. Nevertheless, in general, instructional support was relatively low. This study identified large mindset, knowledge, and practice gaps—and a real opportunity—among NYC early childhood professionals, specifically in the areas of providing adequate instructional and linguistic support for EMLs as well as partnering with families in capturing their cultural and home literacy assets. Consistent, rigorous, and meaningful use of data is necessary to support both EMLs’ language and literacy development and teachers’/leaders’ professional development.Keywords: high quality instruction, culturally and linguistically responsive practices, professional development, workforce development
Procedia PDF Downloads 802062 Functions and Challenges of New County-Based Regional Plan in Taiwan
Authors: Yu-Hsin Tsai
Abstract:
A new, mandated county regional plan system has been initiated since 2010 nationwide in Taiwan, with its role situated in-between the policy-led cross-county regional plan and the blueprint-led city plan. This new regional plan contain both urban and rural areas in one single plan, which provides a more complete planning territory, i.e., city region within the county’s jurisdiction, and to be executed and managed effectively by the county government. However, the full picture of its functions and characteristics seems still not totally clear, compared with other levels of plans; either are planning goals and issues that can be most appropriately dealt with at this spatial scale. In addition, the extent to which the inclusion of sustainability ideal and measures to cope with climate change are unclear. Based on the above issues, this study aims to clarify the roles of county regional plan, to analyze the extent to which the measures cope with sustainability, climate change, and forecasted declining population, and the success factors and issues faced in the planning process. The methodology applied includes literature review, plan quality evaluation, and interview with officials of the central and local governments and urban planners involved for all the 23 counties in Taiwan. The preliminary research results show, first, growth management related policies have been widely implemented and expected to have effective impact, including incorporating resources capacity to determine maximum population for the city region as a whole, developing overall vision of urban growth boundary for all the whole city region, prioritizing infill development, and use of architectural land within urbanized area over rural area to cope with urban growth. Secondly, planning-oriented zoning is adopted in urban areas, while demand-oriented planning permission is applied in the rural areas with designated plans. Then, public participation has been evolved to the next level to oversee all of government’s planning and review processes due to the decreasing trust in the government, and development of public forum on the internet etc. Next, fertile agricultural land is preserved to maintain food self-supplied goal for national security concern. More adoption-based methods than mitigation-based methods have been applied to cope with global climate change. Finally, better land use and transportation planning in terms of avoiding developing rail transit stations and corridor in rural area is promoted. Even though many promising, prompt measures have been adopted, however, challenges exist to surround: first, overall urban density, likely affecting success of UGB, or use of rural agricultural land, has not been incorporated, possibly due to implementation difficulties. Second, land-use related measures to mitigating climate change seem less clear and hence less employed. Smart decline has not drawn enough attention to cope with predicted population decrease in the next decade. Then, some reluctance from county’s government to implement county regional plan can be observed vaguely possibly since limits have be set on further development on agricultural land and sensitive areas. Finally, resolving issue on existing illegal factories on agricultural land remains the most challenging dilemma.Keywords: city region plan, sustainability, global climate change, growth management
Procedia PDF Downloads 3492061 Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection
Authors: Vijay K. Tomer, Ritu Malik, Satya P. Nehra, Anshu Sharma
Abstract:
Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance.Keywords: nanohybrids, response, sensor, VOCs, xylene
Procedia PDF Downloads 3312060 Climate Change Implications on Occupational Health and Productivity in Tropical Countries: Study Results from India
Authors: Vidhya Venugopal, Jeremiah Chinnadurai, Rebekah A. I. Lucas, Tord Kjellstrom, Bruno Lemke
Abstract:
Introduction: The effects of climate change (CC) are largely discussed across the globe in terms of impacts on the environment and the general population, but the impacts on workers remain largely unexplored. The predicted rise in temperatures and heat events in the CC scenario have health implications on millions of workers in physically exerting jobs. The current health and productivity risks associated with heat exposures are characterized, future risk estimates as temperature rises and recommendations towards developing protective and preventive occupational health and safety guidelines for India are discussed. Methodology: Cross-sectional studies were conducted in several occupational sectors with workers engaged in moderate to heavy labor (n=1580). Quantitative data on heat exposures (WBGT°C), physiological heat strain indicators viz., Core temperature (CBT), Urine specific gravity (USG), Sweat rate (SwR) and qualitative data on heat-related health symptoms and productivity losses were collected. Data were analyzed for associations between heat exposures, health and productivity outcomes related to heat stress. Findings: Heat conditions exceeded the Threshold Limit Value (TLV) for safe manual work in 66% of the workers across several sectors (Avg.WBGT of 28.7°C±3.1°C). Widespread concerns about heat-related health outcomes (86%) were prevalent among workers exposed to high TLVs, with excessive sweating, fatigue and tiredness being commonly reported by workers. The heat stress indicators, core temperature (14%), Sweat rate (8%) and USG (9%), were above normal levels in the study population. A significant association was found between rise in Core Temperatures and WBGT exposures (p=0.000179) Elevated USG and SwR in the worker population indicate moderate dehydration, with potential risks of developing heat-related illnesses. In a steel industry with high heat exposures, an alarming 9% prevalence of kidney/urogenital anomalies was observed in a young workforce. Heat exposures above TLVs were associated with significantly increased odds of various adverse health outcomes (OR=2.43, 95% CI 1.88 to 3.13, p-value = <0.0001) and productivity losses (OR=1.79, 95% CI 1.32 to 2.4, p-value = 0.0002). Rough estimates for the number of workers who would be subjected to higher than TLV levels in the various RCP scenarios are RCP2.6 =79%, RCP4.5 & RCP6 = 81% and at RCP 8.5 = 85%. Rising temperatures due to CC has the capacity to further reduce already compromised health and productivity by subjecting the workers to increased heat exposures in the RCP scenarios are of concern for the country’s occupational health and economy. Conclusion: The findings of this study clearly identify that health protection from hot weather will become increasingly necessary in the Indian subcontinent and understanding the various adaptation techniques needs urgent attention. Further research with a multi-targeted approach to develop strategies for implementing interventions to protect the millions of workers is imperative. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the “Health in All Policies” approach to avert adverse health and productivity consequences as climate change proceeds.Keywords: heat stress, occupational health, productivity loss, heat strain, adverse health outcomes
Procedia PDF Downloads 3232059 Social Aspect in Energy Transition in Frankfurt (Main)
Authors: M. Mokrzecka, A. Aly, A. K. Obwona, Piotrowska M., Richardson S.
Abstract:
Frankfurt am Main, the fifth largest city in Germany, ranked 15th by the Global Financial Centers Index in 2014, and a finalist of European Green Capital 2014, is a crucial player in German Environmental Policy. In 2012 the city authorities agreed a target to reduce the city’s energy consumption by 50%, and fully switch to renewable energy by the year 2050. To achieve this goal, the Municipality of Frankfurt has begun preparing the Master plan, which will be introduced to public by the end of 2015. Transitions theory tells, that to address challenges as complex as Climate Change and the Energiewende, the development of new technologies and systems is not sufficient. Transition by definition is a process, and in such a large scale (city and region transition) can be fulfilled only, when operates within a broad socio – technical system. Thus, the Authors believe that only by close cooperation with citizens, as well as different stakeholders, can the Transition in Frankfurt be successful. The city therefore needs a strategy which will ensure the engagement, sense of ownership and broad support within Frankfurt society for the aims of the Master plan. This paper presents a proposal for how the city can achieve this based therefore, on fostering the citizens’ engagement through a comprehensive, innovative communication strategy. The proposal was originally developed by the authors as a winning submission for the Climate-KIC Transitions PhD Summer School 2014..Keywords: city development, communication strategies, social transition, sustainability
Procedia PDF Downloads 3132058 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones
Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu
Abstract:
In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV
Procedia PDF Downloads 174