Search results for: transfer of electrical energy
1852 Sediment Trapping by Seagrass Blades under Oscillatory Flow
Authors: Aina Barcelona, Carolyn Oldham, Jordi Colomer, Jordi Garcia-Orellana, Teresa Serra
Abstract:
Seagrass meadows increase the sedimentation within the canopy. However, there is still a lack of knowledge about how seagrasses impact the vertical distribution of sediment coming from external sources and reaches the meadow. This study aims to determine the number of particles retained by a seagrass meadow. Based on the hydrodynamics in the vertical direction, a meadow can be separated into different compartments: the blades, the seabed, within the canopy layer, and the above canopy layer. A set of laboratory experiments were conducted under different hydrodynamic conditions and canopy densities with the purpose to mimic the real field conditions. This study demonstrates and quantifies that seagrass meadows decrease the volume of the suspended sediment by two mechanisms: capturing the suspended sediment by the seagrass blades and promoting the particle sedimentation to the seabed. This study also demonstrates that the number of sediment particles trapped by single seagrass blades decreases with canopy density. However, when considering the trapping by the total number of blades, the sediment captured by all the blades of the meadow increases with canopy density. Furthermore, comparing with the bare seabed, this study demonstrated that there is a reduction in the suspended particles within the canopy, which implies an improvement in the water clarity. In addition, the particle sedimentation on the seabed increases with the canopy density compared with the bare seabed, making evident the contribution of the vegetation in enhancing sedimentation.Keywords: seagrass, sediment capture, turbulent kinetic energy, oscillatory flow
Procedia PDF Downloads 2331851 Lipid Profile of Civil Servants in Abeokuta Ogun State Nigeria
Authors: Sunday Sedodo Nupo, Clara Berstien Oguntona, Babatunde Oguntona, Oluseyi Akinloye, P. A. Olunusi Adeboye
Abstract:
Cardiovascular diseases are now becoming dominant sources of morbidity and mortality worldwide. This study investigated the lipid profile of civil servants. A cross-sectional study was carried out among randomly selected 202 male and 298 female civil servants in Abeokuta Ogun state. A pretested structured questionnaire was used to elicit information on history of non-communicable diseases and physical activity pattern of the respondents. The blood pressures of the subjects were measured and classified using World Health Organization criteria. The total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL). Ethical approval was obtained from Ogun State Ministry of Health. Data collected were analysed using Statistical package for social science version 17.1. Results showed that majority (76%) of the subjects were within the age range of 20 - 40 years, 75% earned between N58,500 - N98,000 monthly and 68% were sedentary. The mean energy intake of men and women were 3942±38 kcal and 2791±3 kcal respectively, while the protein intake for men was 65±49 g/day and 54.28±40 g/day for women. Desirable TC level (<200 mg/dl) was found in 80% of the selected subjects while the normal TG (<150 mg/dl) and LDL (<129 mg/dl) was found in 95% and 90% subjects respectively. The mean TC was 78.91±11 mg/dl and 62.69±9 mg/dl in men and women respectively. The study showed that most of the subjects had normal lipid in terms of serum triglycerides, total cholesterol, HDL cholesterol and LDL cholesterol.Keywords: high density lipoprotein, morbidity, mortality, triglycerides
Procedia PDF Downloads 2311850 Characterization of Aluminosilicates and Verification of Their Impact on Quality of Ceramic Proppants Intended for Shale Gas Output
Authors: Joanna Szymanska, Paulina Wawulska-Marek, Jaroslaw Mizera
Abstract:
Nowadays, the rapid growth of global energy consumption and uncontrolled depletion of natural resources become a serious problem. Shale rocks are the largest and potential global basins containing hydrocarbons, trapped in closed pores of the shale matrix. Regardless of the shales origin, mining conditions are extremely unfavourable due to high reservoir pressure, great depths, increased clay minerals content and limited permeability (nanoDarcy) of the rocks. Taking into consideration such geomechanical barriers, effective extraction of natural gas from shales with plastic zones demands effective operations. Actually, hydraulic fracturing is the most developed technique based on the injection of pressurized fluid into a wellbore, to initiate fractures propagation. However, a rapid drop of pressure after fluid suction to the ground induces a fracture closure and conductivity reduction. In order to minimize this risk, proppants should be applied. They are solid granules transported with hydraulic fluids to locate inside the rock. Proppants act as a prop for the closing fracture, thus gas migration to a borehole is effective. Quartz sands are commonly applied proppants only at shallow deposits (USA). Whereas, ceramic proppants are designed to meet rigorous downhole conditions to intensify output. Ceramic granules predominate with higher mechanical strength, stability in strong acidic environment, spherical shape and homogeneity as well. Quality of ceramic proppants is conditioned by raw materials selection. Aim of this study was to obtain the proppants from aluminosilicates (the kaolinite subgroup) and mix of minerals with a high alumina content. These loamy minerals contain a tubular and platy morphology that improves mechanical properties and reduces their specific weight. Moreover, they are distinguished by well-developed surface area, high porosity, fine particle size, superb dispersion and nontoxic properties - very crucial for particles consolidation into spherical and crush-resistant granules in mechanical granulation process. The aluminosilicates were mixed with water and natural organic binder to improve liquid-bridges and pores formation between particles. Afterward, the green proppants were subjected to sintering at high temperatures. Evaluation of the minerals utility was based on their particle size distribution (laser diffraction study) and thermal stability (thermogravimetry). Scanning Electron Microscopy was useful for morphology and shape identification combined with specific surface area measurement (BET). Chemical composition was verified by Energy Dispersive Spectroscopy and X-ray Fluorescence. Moreover, bulk density and specific weight were measured. Such comprehensive characterization of loamy materials confirmed their favourable impact on the proppants granulation. The sintered granules were analyzed by SEM to verify the surface topography and phase transitions after sintering. Pores distribution was identified by X-Ray Tomography. This method enabled also the simulation of proppants settlement in a fracture, while measurement of bulk density was essential to predict their amount to fill a well. Roundness coefficient was also evaluated, whereas impact on mining environment was identified by turbidity and solubility in acid - to indicate risk of the material decay in a well. The obtained outcomes confirmed a positive influence of the loamy minerals on ceramic proppants properties with respect to the strict norms. This research is perspective for higher quality proppants production with costs reduction.Keywords: aluminosilicates, ceramic proppants, mechanical granulation, shale gas
Procedia PDF Downloads 1611849 Review of Influential Factors on the Personnel Interview for Employment from Point of View of Human Resources Management
Authors: Abbas Ghahremani
Abstract:
One of the most fundamental management issues in organizations and companies is the recruiting of efficient staff and compiling exact and perfect criteria for testing the applicants,which is guided and practiced by the manager of human resources of the organization. Obviously, each part of the organization seeks special features and abilities in the people apart from common features among all the staff in all units,which are called principal duties and abilities,and we will study them more. This article is trying to find out how we can identify the most efficient people among the applicants of employment by using proper methods of testing appropriate for the needs of different of employment by using proper methods of testing appropriate for the needs of different units of the organization and recruit efficient staff. Acceptable method for recruiting is to closely identify their characters from various aspects such as ability to communicate, flexibility, stress management, risk acceptance, tolerance, vision to future, familiarity with the art, amount of creativity and different thinking and by raising proper questions related with the above named features and presenting a questionnaire, evaluate them from various aspect in order to gain the proper result. According to the above explanations, it can be concluded which aspects of abilities and characteristics of a person must be evaluated in order to reduce any mistake in recruitment and approach an ideal result and ultimately gain an organized system according to the standards and avoid waste of energy for unprofessional personnel which is a marginal issue in the organizations.Keywords: human resources management, staff recuiting, employment factors, efficient staff
Procedia PDF Downloads 4611848 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application
Authors: R. P. Naik, A. K. Rakshit
Abstract:
In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing
Procedia PDF Downloads 1101847 Carbon Capture and Storage in Geological Formation, its Legal, Regulatory Imperatives and Opportunities in India
Authors: Kalbende Krunal Ramesh
Abstract:
The Carbon Capture and Storage Technology (CCS) provides a veritable platform to bridge the gap between the seemingly irreconcilable twin global challenges of ensuring a secure, reliable and diversified energy supply and mitigating climate change by reducing atmospheric emissions of carbon dioxide. Making its proper regulatory policy and making it flexible for the government and private company by law to regulate, also exploring the opportunity in this sector is the main aim of this paper. India's total annual emissions was 1725 Mt CO2 in 2011, which comprises of 6% of total global emission. It is very important to control the greenhouse gas emission for the environment protection. This paper discusses the various regulatory policy and technology adopted by some of the countries for successful using CCS technology. The brief geology of sedimentary basins in India is studied, ranging from the category I to category IV and deep water and potential for mature technology in CCS is reviewed. Areas not suitable for CO2 storage using presently mature technologies were over viewed. CSS and Clean development mechanism was developed for India, considering the various aspects from research and development, project appraisal, approval and validation, implementation, monitoring and verification, carbon credit issued, cap and trade system and its storage potential. The opportunities in oil and gas operations, power sector, transport sector is discussed briefly.Keywords: carbon credit issued, cap and trade system, carbon capture and storage technology, greenhouse gas
Procedia PDF Downloads 4321846 Preparation and Characterization of Titania-Coated Glass Fibrous Filters Using Aqueous Peroxotitanium Acid Solution
Authors: Ueda Honoka, Yasuo Hasegawa, Fumihiro Nishimura, Jae-Ho Kim, Susumu Yonezawa
Abstract:
Aqueous peroxotitanium acid solution prepared from the TiO₂ fluorinated by F₂ gas was used for the TiO₂ coating on glass fibrous filters in this study. The coating of TiO₂ on the surface of glass fibers was carried out at 120℃ and for 15 min ~ 24 h with aqueous peroxotitanium acid solution using a hydrothermal synthesis autoclave reactor. The morphology TiO₂ coating layer was largely dependent on the reaction time, as shown in the results of scanning electron microscopy and energy dispersive X-ray spectroscopy. Increasing the reaction times, the TiO₂ layer on the glass expanded uniformly. Moreover, the surface fluorination of glass fibers can promote the formation of the TiO₂ layer on the surface. The photocatalytic activity of prepared titania-coated glass fibrous filters was investigated by both the degradation test of methylene blue (MB) and the decomposition test of gaseous acetaldehyde. The MB decomposition ratio with fluorinated samples was about 95% for 30 min of UV irradiation time, and it was much higher than that (70%) with the untreated thing. The decomposition ratio (50%) of gaseous acetaldehyde with fluorinated samples was also higher than that (30%) with the untreated thing. Consequently, photocatalytic activity is enhanced by surface fluorination.Keywords: aqueous peroxotitanium acid solution, titania-coated glass fibrous filters, photocatalytic activity, surface fluorination
Procedia PDF Downloads 831845 Sustainable and Aesthetic Features of Traditional Architectures in Central Part of Iran
Authors: Azadeh Rezafar
Abstract:
Iran is one of the oldest countries with traditional culture in the world. All over the history Iranians had traditional architectural designs, which were at the same time sustainable, ecological, functional and environmental consistent. These human scale architectures were built for maximum use, comfort, climate adaptation with available resources and techniques. Climate variability of the country caused developing of variety design methods. More of these methods such as windcatchers in Yazd City or Panam (Insulation) were scientific solutions at the same time. Renewable energy resources were used in these methods that featured in them. While climate and ecological issues were dominant parts of these traditional designs, aesthetic and beauty issues were not ignored. Conformity with the community’s culture caused more compact designs that the visual aesthetics of them can be seen inside of them. Different organizations of space were used for these visual aesthetic issues inside the houses as well as historical urban designs. For example dry and hot climates in central parts of the country designed with centralized organization. Most central parts of these designs functioned as a courtyard for temperate the air in the summer. This paper will give summary descriptive information about traditional Iranian architectural style by figures all around the country with different climate conditions, while focus of the paper is traditional architectural design of the central part of the country, with dry and hot climate condition. This information may be useful for contemporary architectural designs, which are designed without noticing to the vernacular condition and caused cities look like each other.Keywords: architectural design, traditional design, Iran, sustainability
Procedia PDF Downloads 2221844 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 451843 Re-Inhabiting the Roof: Han Slawick Covered Roof Terrace, Amsterdam
Authors: Simone Medio
Abstract:
If we observe many modern cities from above, we are typically confronted with a sea of asphalt-clad flat rooftops. In contrast to the modernist expectation of a populated flat roof, flat rooftops in modern multi-story buildings are rarely used. On the contrary, they typify a desolate and abandoned landscape encouraging mechanical system allocation. Flat roof technology continues to be seen as a state-of-fact in most multi-storey building designs and its greening its prevalent environmental justification. This paper aims to seek a change in the approach to flat roofing. It makes a case for the opportunity at hand for architectonically resolute, sheltered, livable spaces that make a better use of the environment at rooftop level. The researcher is looking for the triggers that allow for that change to happen in the design process of case study buildings. The paper begins by exploring Han Slawick covered roof terrace in Amsterdam as a simple and essential example of transforming the flat roof in a usable, inhabitable space. It investigates the design challenges and the logistic, financial and legislative hurdles faced by the architect, and the outcomes in terms of building performance and occupant use and satisfaction. The researcher uses a grounded research methodology with direct interview process to the architect in charge of the building and the building user. Energy simulation tools and calculation of running costs are also used as further means of validating change.Keywords: environmental design, flat rooftop persistence, roof re-habitation, tectonics
Procedia PDF Downloads 2711842 Characteristics of the Rocks Glacier Deposits in the Southern Carpathians, Romania
Authors: Petru Urdea
Abstract:
As a distinct part of the mountain system, the rock glacier system is a particularly periglacial debris system. Being an open system, it works in a manner of interconnection with others subsystems like glacial, cliffs, rocky slopes sand talus slope subsystems, which are sources of sediments. One characteristic is that for long periods of time it is like a storage unit for debris, and ice, and temporary for snow and water. In the Southern Carpathians 306 rock glaciers were identified. The vast majority of these rock glaciers, are talus rock glaciers, 74%, and 26%, are debris rock glaciers. In the area occupied by granites and granodiorites are present, 49% of all the rock glaciers, representing 61% of the area occupied by Southern Carpathians rock glaciers. This lithological dependence also leaves its mark on the specifics of the deposits, everything bearing the imprint of the particular way the rocks respond to the physical weathering processes, all in a periglacial regime. If in the domain of granites and granodiorites the blocks are large, - of metric order, even 10 m3 - , in the domain of the metamorphic rocks only gneisses can cut similar sizes. Amphibolites, amphibolitic schists, micaschists, sericite-chlorite schists and phyllites crop out in much smaller blocks, of decimetric order, mostly in the form of slabs. In the case of rock glaciers made up of large blocks, with a strcture of open-works type, the density and volume of voids between the blocks is greater, the smaller debris generating more compact structures with fewer voids. All these influences the thermal regime, associated with a certain type of air circulation during the seasons and the emergence of permafrost formation conditions. The rock glaciers are fed by rock falls, rock avalanches, debris flows, avalanches, so that the structure is heterogeneous, which is also reflected in the detailed topography of the rock glaciers. This heterogeneity is also influenced by the spatial assembly of the rock bodies in the supply area and, an element that cannot be omitted, the behavior of the rocks during periglacial weathering. The production of small gelifracts determines the filling of voids and the appearance of more compact structures, with effects on the creep process. In general, surface deposits are coarser, those in depth are finer, their characteristics being detectable by applying geophysical methods. The electrical tomography (ERT) and georadar (GPR) investigations carried out in the Făgăraş Mountains, Retezat and the Parâng Mountains, each with a different lithological specificity, allowed the identification of some differentiations, including the presence of permafrost bodies.Keywords: rock glaciers deposits, structure, lithology, permafrost, Southern Carpathians, Romania
Procedia PDF Downloads 241841 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector
Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan
Abstract:
Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.Keywords: embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector
Procedia PDF Downloads 2061840 A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing
Authors: Kedar Hardikar, Joe Varghese
Abstract:
Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applicationsKeywords: conductive adhesives, nonlinear degradation, physics of failure, acceleration factor model.
Procedia PDF Downloads 1331839 Immunoregulatory Cytokines and Chemokines Synthesis in Endurance Exercises
Authors: Roman Khanferyan
Abstract:
Endurance exercises and strenuous muscle activity are accompanied by multiple immune dysfunctions due to the activation of cytokines and chemokines synthesis. This study assesses changes in the synthesis of immune regulatory mediators in elite athletes during endurance sports activity. The concentrations of cytokines/chemokines (IL-2, IL-6, IL-8, IL-10, IL-18, MIP-1 beta, GRO-alpha, RANTES, SDF-1a, VEGF) in sera of hockey athletes (n=33) and in supernatants of 24-h cultivated peripheral blood mononuclear cells (PBMC) of boxers (n=6) assayed by ELISA and Luminex xMAP multiplex assays. Estimation of body composition studied by using bioimpedance technology. The dietary energy consumption per person has been estimated using an album of different sizes of portions of the most frequently consumed foods. It has been demonstrated that endurance sports activity enhances the secretions of most pro- and anti-inflammatory cytokines and chemokines in more than 2-6 fold. The study demonstrated that the high increase of more than 3-4 times in the concentration of IL-18 in sera of athletes (327.86 + 45.67 pg/ml) didn’t correlate with BMI (p=0.040) but demonstrated a low correlation with MMI (p=0.234) and BMR (p=0,231). The opposite impact on the concentration of IL-10 has been demonstrated in athletes. It has been shown a negative correlation between its concentration and BMI (p= - 0.251), MMI (p= - 0.327), and BMR (p= - 0.301). In vitro studies in boxers showed greater amounts of chemokines in the PBMC supernatants, including MIP-1β, GRO-α, RANTES, SDF-1α, and IL-8 (P<0.05). At the same time, healthy controls had greater supernatant levels of MCP-1, Eotaxin, and MIP-1α. The study demonstrated a high correlation between physical activity, usual athletes' diet, and consumption of specialized sports nutrition products.Keywords: sport nutrition, cytokines, chemokines, endurace exercises
Procedia PDF Downloads 421838 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Microbiological and Physicochemical Characterization
Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John
Abstract:
Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the highest crude oil & condensate producer in Nigeria has its operational base and an oil terminal, the Qua Iboe terminal (QIT) located at Ibeno, Nigeria. Other oil companies like Network Exploration and Production Nigeria Ltd, Frontier Oil Ltd; Shell Petroleum Development Company Ltd; Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of the Italian ENI E&P operate onshore, on the continental shelf and in deep offshore of the Atlantic Ocean, respectively with the coastal waters of Ibeno, Nigeria as the nearest shoreline. This study was designed to delineate the oil-polluted sites in Ibeno, Nigeria using microbiological and physico-chemical characterization of soils, sediments and ground and surface water samples from the study area. Results obtained revealed that there have been significant recent hydrocarbon inputs into this environment as observed from the high counts of hydrocarbonoclastic microorganisms in excess of 1% at all the stations sampled. Moreover, high concentrations of THC, BTEX and heavy metals contents in all the samples analyzed corroborate the high recent crude oil input into the study area. The results also showed that the pollution of the different environmental media sampled were of varying degrees, following the trend: Ground water > surface water > sediments > soils.Keywords: microbiological characterization, oil-polluted sites, physico-chemical analyses, total hydrocarbon content
Procedia PDF Downloads 4151837 Prismatic Bifurcation Study of a Functionally Graded Dielectric Elastomeric Tube Using Linearized Incremental Theory of Deformations
Authors: Sanjeet Patra, Soham Roychowdhury
Abstract:
In recent times, functionally graded dielectric elastomer (FGDE) has gained significant attention within the realm of soft actuation due to its dual capacity to exert highly localized stresses while maintaining its compliant characteristics on application of electro-mechanical loading. Nevertheless, the full potential of dielectric elastomer (DE) has not been fully explored due to their susceptibility to instabilities when subjected to electro-mechanical loads. As a result, study and analysis of such instabilities becomes crucial for the design and realization of dielectric actuators. Prismatic bifurcation is a type of instability that has been recognized in a DE tube. Though several studies have reported on the analysis for prismatic bifurcation in an isotropic DE tube, there is an insufficiency in studies related to prismatic bifurcation of FGDE tubes. Therefore, this paper aims to determine the onset of prismatic bifurcations on an incompressible FGDE tube when subjected to electrical loading across the thickness of the tube and internal pressurization. The analysis has been conducted by imposing two axial boundary conditions on the tube, specifically axially free ends and axially clamped ends. Additionally, the rigidity modulus of the tube has been linearly graded in the direction of thickness where the inner surface of the tube has a lower stiffness than the outer surface. The static equilibrium equations for deformation of the axisymmetric tube are derived and solved using numerical technique. The condition for prismatic bifurcation of the axisymmetric static equilibrium solutions has been obtained by using the linearized incremental constitutive equations. Two modes of bifurcations, corresponding to two different non-circular cross-sectional geometries, have been explored in this study. The outcomes reveal that the FGDE tubes experiences prismatic bifurcation before the Hessian criterion of failure is satisfied. It is observed that the lower mode of bifurcation can be triggered at a lower critical voltage as compared to the higher mode of bifurcation. Furthermore, the tubes with larger stiffness gradient require higher critical voltages for triggering the bifurcation. Moreover, with the increase in stiffness gradient, a linear variation of the critical voltage is observed with the thickness of the tube. It has been found that on applying internal pressure to a tube with low thickness, the tube becomes less susceptible to bifurcations. A thicker tube with axially free end is found to be more stable than the axially clamped end tube at higher mode of bifurcation.Keywords: critical voltage, functionally graded dielectric elastomer, linearized incremental approach, modulus of rigidity, prismatic bifurcation
Procedia PDF Downloads 761836 Monte Carlo Simulation of X-Ray Spectra in Diagnostic Radiology and Mammography Using MCNP4C
Authors: Sahar Heidary, Ramin Ghasemi Shayan
Abstract:
The overall goal Monte Carlo N-atom radioactivity transference PC program (MCNP4C) was done for the regeneration of x-ray groups in diagnostic radiology and mammography. The electrons were transported till they slow down and stopover in the target. Both bremsstrahlung and characteristic x-ray creation were measured in this study. In this issue, the x-ray spectra forecast by several computational models recycled in the diagnostic radiology and mammography energy kind have been calculated by appraisal with dignified spectra and their outcome on the scheming of absorbed dose and effective dose (ED) told to the adult ORNL hermaphroditic phantom quantified. This comprises practical models (TASMIP and MASMIP), semi-practical models (X-rayb&m, X-raytbc, XCOMP, IPEM, Tucker et al., and Blough et al.), and Monte Carlo modeling (EGS4, ITS3.0, and MCNP4C). Images got consuming synchrotron radiation (SR) and both screen-film and the CR system were related with images of the similar trials attained with digital mammography equipment. In sight of the worthy feature of the effects gained, the CR system was used in two mammographic inspections with SR. For separately mammography unit, the capability acquiesced bilateral mediolateral oblique (MLO) and craniocaudal(CC) mammograms attained in a woman with fatty breasts and a woman with dense breasts. Referees planned the common groups and definite absences that managed to a choice to miscarry the part that formed the scientific imaginings.Keywords: mammography, monte carlo, effective dose, radiology
Procedia PDF Downloads 1291835 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method
Authors: Felix Jr. Garde, Eric Augustus Tingatinga
Abstract:
Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method
Procedia PDF Downloads 3211834 Effects of Titanium Dioxide Coatings on Building Composites for Sustainable Construction Applications
Authors: Ifeyinwa Ijeoma Obianyo, Luqman Adedeji Taiwo, Olugbenga O. Amu, Azikiwe Peter Onwualu
Abstract:
Improving the durability of building materials saves maintenance costs, construction time, and energy. In this study, titanium dioxide coated conventional and non-conventional composites were produced, and the effects of titanium dioxide coatings were investigated. Conventional composites were produced using river sand and Portland cement, whereas non-conventional composites were produced by partially replacing river sand and Portland cement with quarry dust and rice husk ash. Water absorption and thickness swelling tests were conducted on the produced coated and non-coated block samples. A reduction in water absorption was observed in the coated composite samples when compared to the non-coated composite samples, and this is an indication of the improved durability of the samples coated with titanium dioxide. However, there was an increase in the thickness swelling of coatings on the coated block samples, but this increase has a slight influence on the compressive strength of the coated samples. The outcome of this study indicates that coating composite building blocks with titanium dioxide will improve theirdurability. Also, the site exposure experiments revealed the self-cleansing properties of TiO2-coated composite block samples, while the Rhodamine B discolouration test confirmed the photocatalytic features of TiO2-coated composite block samples.Keywords: titanium dioxide, water absorption, durability, mechanical properties, building composite
Procedia PDF Downloads 1101833 Impact of Lifestyle and User Expectations on the Demand of Compact Living Spaces in the Home Interiors in Indian Cities
Authors: Velly Kapadia, Reenu Singh
Abstract:
This report identifies the long-term driving forces behind urbanization and the impact of compact living on both society and the home and proposes a concept to create smarter and more sustainable homes. Compact living has been trending across India as a sustainable housing solution, and the reality is that India is currently facing a housing shortage in urban areas of around 10 million units. With the rising demand for housing, urban land prices have been rising and the cost of homes. The paper explores how and why the interior design of the homes can be improved to relieve the housing demand in an environmentally, socially and economically sustainable manner. A questionnaire survey was conducted to determine living patterns, area requirements, ecological footprints, energy consumption, purchasing patterns, and various pro-environmental behaviors of people who downsize to compact homes. Quantitative research explores sustainable material choices, durability, functionality, cost, and reusability of furniture. Besides addressing the need for smart and sustainable designed compact homes, a conceptual model is proposed, including options of ideal schematic layouts for homes in urban areas. In the conclusions, suggestions to improve space planning and suitable interior entities have been made to support the fact that compact homes are an eminently practical and sensible solution for the urban citizen.Keywords: compact living, housing shortage, lifestyle, sustainable interior design
Procedia PDF Downloads 2011832 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques
Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang
Abstract:
Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern
Procedia PDF Downloads 2361831 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4881830 Performance Analysis of High Temperature Heat Pump Cycle for Industrial Process
Authors: Seon Tae Kim, Robert Hegner, Goksel Ozuylasi, Panagiotis Stathopoulos, Eberhard Nicke
Abstract:
High-temperature heat pumps (HTHP) that can supply heat at temperatures above 200°C can enhance the energy efficiency of industrial processes and reduce the CO₂ emissions connected with the heat supply of these processes. In the current work, the thermodynamic performance of 3 different vapor compression cycles, which use R-718 (water) as a working medium, have been evaluated by using a commercial process simulation tool (EBSILON Professional). All considered cycles use two-stage vapor compression with intercooling between stages. The main aim of the study is to compare different intercooling strategies and study possible heat recovery scenarios within the intercooling process. This comparison has been carried out by computing the coefficient of performance (COP), the heat supply temperature level, and the respective mass flow rate of water for all cycle architectures. With increasing temperature difference between the heat source and heat sink, ∆T, the COP values decreased as expected, and the highest COP value was found for the cycle configurations where both compressors have the same pressure ratio (PR). The investigation on the HTHP capacities with optimized PR and exergy analysis has also been carried out. The internal heat exchanger cycle with the inward direction of secondary flow (IHX-in) showed a higher temperature level and exergy efficiency compared to other cycles. Moreover, the available operating range was estimated by considering mechanical limitations.Keywords: high temperature heat pump, industrial process, vapor compression cycle, R-718 (water), thermodynamic analysis
Procedia PDF Downloads 1471829 Combat Capability Improvement Using Sleep Analysis
Authors: Gabriela Kloudova, Miloslav Stehlik, Peter Sos
Abstract:
The quality of sleep can affect combat performance where the vigilance, accuracy and reaction time are a decisive factor. In the present study, airborne and special units are measured on duty using actigraphy fingerprint scoring algorithm and QEEG (quantitative EEG). Actigraphic variables of interest will be: mean nightly sleep duration, mean napping duration, mean 24-h sleep duration, mean sleep latency, mean sleep maintenance efficiency, mean sleep fragmentation index, mean sleep onset time, mean sleep offset time and mean midpoint time. In an attempt to determine the individual somnotype of each subject, the data like sleep pattern, chronotype (morning and evening lateness), biological need for sleep (daytime and anytime sleepability) and trototype (daytime and anytime wakeability) will be extracted. Subsequently, a series of recommendations will be included in the training plan based on daily routine, timing of the day and night activities, duration of sleep and the number of sleeping blocks in a defined time. The aim of these modifications in the training plan is to reduce day-time sleepiness, improve vigilance, attention, accuracy, speed of the conducted tasks and to optimize energy supplies. Regular improvement of the training supposed to have long-term neurobiological consequences including neuronal activity changes measured by QEEG. Subsequently, that should enhance cognitive functioning in subjects assessed by the digital cognitive test batteries and improve their overall performance.Keywords: sleep quality, combat performance, actigraph, somnotype
Procedia PDF Downloads 1641828 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major
Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd
Abstract:
Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania
Procedia PDF Downloads 4471827 Design and Manufacture of an Autonomous Agricultural Robot for Pesticide Application
Authors: Caner Koc, Dilara Gerdan Koc, Emrah Saka, H. Ibrahim Karagol
Abstract:
The use of pesticides in agricultural activities is the most harmful to the environment and farmers' health, and it also has the greatest input prices, along with fertilizers. In this study, an electric, electrostatically charged, autonomous agricultural robot was developed, modeled, and prototyped and manufactured. It allows for sensitive pesticide applications with variable levels, has controllable spray nozzles, and uses camera distance sensors to detect and spray into tree canopies. The created prototype was produced with flexibility in mind. Two stages of prototype manufacture were completed. The initial stage involved designing and producing the flexible primary body of the autonomous vehicle. Detachable hanger assemblies are employed so that the main body robot can perform a variety of agricultural tasks. The design of the spraying devices and their fitting to the autonomous vehicle was completed as the second stage of the prototype. The built prototype spraying robot's itinerary was planned using the free, open-source program Mission Planner. PX4, telemetry, and RTK GPS are used to maneuver the autonomous car along the designated path. To avoid potential obstructions, the robot uses ultrasonic and lidar sensors. The developed autonomous vehicle's energy needs are intended to be met entirely by electric batteries. In the event that the batteries run out of power, the sockets are set up to be recharged both by using the generator and the main power source through the specifically constructed panel.Keywords: autonomous agricultural robot, pesticide, smart farming, spraying, variable rate application
Procedia PDF Downloads 821826 Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability
Authors: Hosein Faramarzpour
Abstract:
This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared.Keywords: thermophotovoltaic generator, micro combustor, micro power generator, combustion regimes, flame dynamic
Procedia PDF Downloads 991825 In vitro Comparison Study of Biologically Synthesized Cupper-Disulfiram Nanoparticles with Its Free Corresponding Complex as Therapeutic Approach for Breast and Liver Cancer
Authors: Marwa M. Abu-Serie, Marwa M. Eltarahony
Abstract:
The search for reliable, effective, and safe nanoparticles (NPs) as a treatment for cancer is a pressing priority. In this study, Cu-NPs were fabricated by Streptomyces cyaneofuscatus through simultaneous bioreduction strategy of copper nitrate salt. The as-prepared Cu-NPs subjected to structural analysis; energy-dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction, transmission electron microscopy, and ζ-potential. These biological synthesized Cu-NPs were mixed with disulfiram (DS), forming a nanocomplex of Cu-DS with a size of ~135 nm. The prepared nanocomplex (nanoCu-DS) exhibited higher anticancer activity than that of free complex of DS-Cu, Cu-NPs, and DS alone. This was illustrated by the lowest IC50 of nanoCu-DS (< 4 µM) against human breast and liver cancer cell lines comparing with DS-Cu, Cu-NPs, and DS (~8, 22.98-33.51 and 11.95-14.86, respectively). Moreover, flow cytometric analysis confirmed that higher apoptosis percentage range of nanoCu-DS-treated in MDA-MB 231, MCF-7, Huh-7, and HepG-2 cells (51.24-65.28%) than free complex of Cu-DS ( < 4.5%). Regarding inhibition potency of liver and breast cancer cell migration, no significant difference was recorded between free and nanocomplex. Furthermore, nanoCu-DS suppressed gene expression of β-catenine, Akt, and NF-κB and upregulated p53 expression (> 3, >15, > 5 and ≥ 3 folds, respectively) more efficiently than free complex (all ~ 1 fold) in MDA-MB 231 and Huh-7 cells. Our finding proved this prepared nano complex has a powerful anticancer activity relative to free complex, thereby offering a promising cancer treatment.Keywords: biologically prepared Cu-NPs, breast cancer cell lines, liver cancer cell lines, nanoCu- disulfiram
Procedia PDF Downloads 1871824 Spirituality in Education (Enhance the Human Mind Competencies)
Authors: Kshama Sharma
Abstract:
Education is one of the most powerful tools to transform the world into a just, sustainable, and more peaceful place for existing lives across the globe. However, its recent objective approach focused on materialistic, factual, and existing knowledge, has a constraint of human experiences that is limited to certain dimensions only. And leads to a materialistic world which is deprived of spiritual approaches and makes it less compassionate, and more grades oriented. To make it more comprehensive, education should explore the subjective approaches towards spiritualism to connect lives with the greater self and consciousness of cosmic intelligence. This approach will bring a major shift in the orientation of pedagogical processes, assessment strategies, and administrative management of the present education system. Spirituality often related to the religious aspect of human civilization and development, however, when universal consciousness /cosmic intelligence (which is often claimed as dark energy) and the human mind competencies works in coherence and coordination then the efficiency of human mind reaches to a different dimension and achieve extraordinary level of human understanding. Quantitative analysis of the existing secondary data from the different agencies working in the field of meditation had been analyzed to conclude its implications on human mind and further how it can effectively use in education to bring the desired and expected results. Any kind of meditation practice affects the cognitive, mental, physical, emotional, and conscious state of mind. If aligned with the teaching and learning methodology will lead to conscious learner and peaceful world.Keywords: spirituality, cosmic intelligence, consciousness, mind competencies
Procedia PDF Downloads 521823 Experimental and Theoretical Investigation of Slow Reversible Deformation of Concrete in Surface-Active Media
Authors: Nika Botchorishvili, Olgha Giorgishvili
Abstract:
Many-year investigations of the nature of damping creep of rigid bodies and materials led to the discovery of the fundamental character of this phenomenon. It occurs only when a rigid body comes in contact with a surface-active medium (liquid or gaseous), which brings about a decrease of the free surface energy of a rigid body as a result of adsorption, chemo-sorption or wetting. The reversibility of the process consists of a gradual disappearance of creep deformation when the action of a surface-active medium stops. To clarify the essence of processes, a physical model is constructed by using Griffith’s scheme and the well-known representation formulas of deformation origination and failure processes. The total creep deformation is caused by the formation and opening of microcracks throughout the material volume under the action of load. This supposedly happens in macroscopically homogeneous silicate and organic glasses, while in polycrystals (tuff, gypsum, steel) contacting with a surface-active medium micro crack are formed mainly on the grain boundaries. The creep of rubber is due to its swelling activated by stress. Acknowledgment: All experiments are financially supported by Shota Rustaveli National Science Foundation of Georgia. Study of Properties of Concretes (Both Ordinary and Compacted) Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building. DP2016_26. 22.12.2016.Keywords: process reversibility, surface-active medium, Rebinder’s effect, micro crack, creep
Procedia PDF Downloads 133