Search results for: weather detection
3270 Subpixel Corner Detection for Monocular Camera Linear Model Research
Authors: Guorong Sui, Xingwei Jia, Fei Tong, Xiumin Gao
Abstract:
Camera calibration is a fundamental issue of high precision noncontact measurement. And it is necessary to analyze and study the reliability and application range of its linear model which is often used in the camera calibration. According to the imaging features of monocular cameras, a camera model which is based on the image pixel coordinates and three dimensional space coordinates is built. Using our own customized template, the image pixel coordinate is obtained by the subpixel corner detection method. Without considering the aberration of the optical system, the feature extraction and linearity analysis of the line segment in the template are performed. Moreover, the experiment is repeated 11 times by constantly varying the measuring distance. At last, the linearity of the camera is achieved by fitting 11 groups of data. The camera model measurement results show that the relative error does not exceed 1%, and the repeated measurement error is not more than 0.1 mm magnitude. Meanwhile, it is found that the model has some measurement differences in the different region and object distance. The experiment results show this linear model is simple and practical, and have good linearity within a certain object distance. These experiment results provide a powerful basis for establishment of the linear model of camera. These works will have potential value to the actual engineering measurement.Keywords: camera linear model, geometric imaging relationship, image pixel coordinates, three dimensional space coordinates, sub-pixel corner detection
Procedia PDF Downloads 2773269 Assay for SARS-Cov-2 on Chicken Meat
Authors: R. Mehta, M. Ghogomu, B. Schoel
Abstract:
Reports appeared in 2020 about China detecting SARS-Cov-2 (Covid-19) on frozen meat, shrimp, and food packaging material. In this study, we examined the use of swabs for the detection of Covid-19 on meat samples, and chicken breast (CB) was used as a model. Methods: Heat inactivated SARS-Cov-2 virus (IV) from Microbiologics was loaded onto the CB, swabbing was done, and the recovered inactivated virus was subjected to the Machery & Nagel NucleoSpin RNAVirus kit for RNA isolation according to manufacturer's instructions. For RT-PCR, the IDT 2019-nCoV RUO Covid-19 test kit was used with the Taqman Fast Virus 1-step master mix. The limit of detection (LOD) of viral load recovered from the CB was determined under various conditions: first on frozen CB where the IV was introduced on a defined area, then on frozen CB, with IV spread-out, and finally, on thawed CB. Results: The lowest amount of IV which can be reliably detected on frozen CB was a load of 1,000 - 2,000 IV copies where the IV was loaded on one spot of about 1 square inch. Next, the IV was spread out over a whole frozen CB about 16 square inches. The IV could be recovered at a lowest load of 4,000 to 8,000 copies. Furthermore, the effects of temperature change on viral load recovery was investigated i.e., if raw unfrozen meat became contaminated and remains for 1 hour at 4°C or gets refrozen. The amount of IV recovered successfully from CB kept at 4°C and the refrozen CB was similar to the recovery gotten from loading the IV directly on the frozen CB. In conclusion, an assay using swabs was successfully established for the detection of SARS-Cov-2 on frozen or raw (unfrozen) CB with a minimal load of up to 8,000 copies spread over 16 square inches.Keywords: assay, COVID-19, meat, SARS-Cov-2
Procedia PDF Downloads 2033268 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)
Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj
Abstract:
Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.Keywords: ROP, ridge, multilevel vessel enhancement, biomedical
Procedia PDF Downloads 4103267 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals
Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar
Abstract:
Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks
Procedia PDF Downloads 1863266 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking
Authors: Noga Bregman
Abstract:
Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves
Procedia PDF Downloads 523265 Cost Overrun in Construction Projects
Authors: Hailu Kebede Bekele
Abstract:
Construction delays are suitable where project events occur at a certain time expected due to causes related to the client, consultant, and contractor. Delay is the major cause of the cost overrun that leads to the poor efficiency of the project. The cost difference between completion and the originally estimated is known as cost overrun. The common ways of cost overruns are not simple issues that can be neglected, but more attention should be given to prevent the organization from being devastated to be failed, and financial expenses to be extended. The reasons that may raised in different studies show that the problem may arise in construction projects due to errors in budgeting, lack of favorable weather conditions, inefficient machinery, and the availability of extravagance. The study is focused on the pace of mega projects that can have a significant change in the cost overrun calculation.15 mega projects are identified to study the problem of the cost overrun in the site. The contractor, consultant, and client are the principal stakeholders in the mega projects. 20 people from each sector were selected to participate in the investigation of the current mega construction project. The main objective of the study on the construction cost overrun is to prioritize the major causes of the cost overrun problem. The methodology that was employed in the construction cost overrun is the qualitative methodology that mostly rates the causes of construction project cost overrun. Interviews, open-ended and closed-ended questions group discussions, and rating qualitative methods are the best methodologies to study construction projects overrun. The result shows that design mistakes, lack of labor, payment delay, old equipment and scheduling, weather conditions, lack of skilled labor, payment delays, transportation, inflation, and order variations, market price fluctuation, and people's thoughts and philosophies, the prior cause of the cost overrun that fail the project performance. The institute shall follow the scheduled activities to bring a positive forward in the project life.Keywords: cost overrun, delay, mega projects, design
Procedia PDF Downloads 623264 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection
Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs
Abstract:
Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance
Procedia PDF Downloads 1143263 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)
Procedia PDF Downloads 4353262 Self-Directed-Car on GT Road: Grand Trunk Road
Authors: Rameez Ahmad, Aqib Mehmood, Imran Khan
Abstract:
Self-directed car (SDC) that can drive itself from one fact to another without support from a driver. Certain trust that self-directed car obligate the probable to transform the transportation manufacturing while essentially removing coincidences, and cleaning up the environment. This study realizes the effects that SDC (also called a self-driving, driver or robotic) vehicle travel demands and ride scheme is likely to have. Without the typical obstacles that allows detection of a audio vision based hardware and software construction (It (SDC) and cost benefits, the vehicle technologies, Gold (Generic Obstacle and Lane Detection) to a knowledge-based system to predict their potential and consider the shape, color, or balance) and an organized environment with colored lane patterns, lane position ban. Discovery the problematic consequence of (SDC) on GT (grand trunk road) road and brand the car further effectual.Keywords: SDC, gold, GT, knowledge-based system
Procedia PDF Downloads 3703261 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets
Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson
Abstract:
Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime
Procedia PDF Downloads 943260 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 823259 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation
Procedia PDF Downloads 4463258 Refractometric Optical Sensing by Using Photonics Mach–Zehnder Interferometer
Authors: Gong Zhang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu
Abstract:
An on-chip refractive index sensor with high sensitivity and large measurement range is demonstrated in this paper. The sensing structures are based on Mach-Zehnder interferometer configuration, built on the SOI substrate. The wavelength sensitivity of the sensor is estimated to be 3129 nm/RIU. Meanwhile, according to the interference pattern period changes, the measured period sensitivities are 2.9 nm/RIU (TE mode) and 4.21 nm/RIU (TM mode), respectively. As such, the wavelength shift and the period shift can be used for fine index change detection and larger index change detection, respectively. Therefore, the sensor design provides an approach for large index change measurement with high sensitivity.Keywords: Mach-Zehnder interferometer, nanotechnology, refractive index sensing, sensors
Procedia PDF Downloads 4453257 Application of Remote Sensing and GIS in Assessing Land Cover Changes within Granite Quarries around Brits Area, South Africa
Authors: Refilwe Moeletsi
Abstract:
Dimension stone quarrying around Brits and Belfast areas started in the early 1930s and has been growing rapidly since then. Environmental impacts associated with these quarries have not been documented, and hence this study aims at detecting any change in the environment that might have been caused by these activities. Landsat images that were used to assess land use/land cover changes in Brits quarries from 1998 - 2015. A supervised classification using maximum likelihood classifier was applied to classify each image into different land use/land cover types. Classification accuracy was assessed using Google Earth™ as a source of reference data. Post-classification change detection method was used to determine changes. The results revealed significant increase in granite quarries and corresponding decrease in vegetation cover within the study region.Keywords: remote sensing, GIS, change detection, granite quarries
Procedia PDF Downloads 3143256 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge
Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert
Abstract:
The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis
Procedia PDF Downloads 1043255 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 883254 High-Performance Liquid Chromatographic Method with Diode Array Detection (HPLC-DAD) Analysis of Naproxen and Omeprazole Active Isomers
Authors: Marwa Ragab, Eman El-Kimary
Abstract:
Chiral separation and analysis of omeprazole and naproxen enantiomers in tablets were achieved using high-performance liquid chromatographic method with diode array detection (HPLC-DAD). Kromasil Cellucoat chiral column was used as a stationary phase for separation and the eluting solvent consisted of hexane, isopropanol and trifluoroacetic acid in a ratio of: 90, 9.9 and 0.1, respectively. The chromatographic system was suitable for the enantiomeric separation and analysis of active isomers of the drugs. Resolution values of 2.17 and 3.84 were obtained after optimization of the chromatographic conditions for omeprazole and naproxen isomers, respectively. The determination of S-isomers of each drug in their dosage form was fully validated.Keywords: chiral analysis, esomeprazole, S-Naproxen, HPLC-DAD
Procedia PDF Downloads 3013253 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 1733252 A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins
Authors: Haiyang Su, Kun Qian
Abstract:
We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis.Keywords: plasmonic materials, laser desorption/ionization, mass spectrometry, small nutrients, toxins
Procedia PDF Downloads 2113251 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection
Procedia PDF Downloads 4693250 Principle Component Analysis on Colon Cancer Detection
Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti
Abstract:
Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis
Procedia PDF Downloads 2053249 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 2343248 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform
Authors: David Jurado, Carlos Ávila
Abstract:
Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis
Procedia PDF Downloads 833247 Detection of Cryptosporidium Oocysts by Acid-Fast Staining Method and PCR in Surface Water from Tehran, Iran
Authors: Mohamad Mohsen Homayouni, Niloofar Taghipour, Ahmad Reza Memar, Niloofar Khalaji, Hamed Kiani, Seyyed Javad Seyyed Tabaei
Abstract:
Background and Objective: Cryptosporidium is a coccidian protozoan parasite; its oocysts in surface water are a global health problem. Due to the low number of parasites in the water resources and the lack of laboratory culture, rapid and sensitive method for detection of the organism in the water resources is necessarily required. We applied modified acid-fast staining and PCR for the detection of the Cryptosporidium spp. and analysed the genotypes in 55 samples collected from surface water. Methods: Over a period of nine months, 55 surface water samples were collected from the five rivers in Tehran, Iran. The samples were filtered by using cellulose acetate membrane filters. By acid fast method, initial identification of Cryptosporidium oocyst were carried out on surface water samples. Then, nested PCR assay was designed for the specific amplification and analysed the genotypes. Results: Modified Ziehl-Neelsen method revealed 5–20 Cryptosporidium oocysts detected per 10 Liter. Five out of the 55 (9.09%) surface water samples were found positive for Cryptosporidium spp. by Ziehl-Neelsen test and seven (12.7%) were found positive by nested PCR. The staining results were consistent with PCR. Seven Cryptosporidium PCR products were successfully sequenced and five gp60 subtypes were detected. Our finding of gp60 gene revealed that all of the positive isolates were Cryptosporidium parvum and belonged to subtype families IIa and IId. Conclusion: Our investigations were showed that collection of water samples were contaminated by Cryptosporidium, with potential hazards for the significant health problem. This study provides the first report on detection and genotyping of Cryptosporidium species from surface water samples in Iran, and its result confirmed the low clinical incidence of this parasite on the community.Keywords: Cryptosporidium spp., membrane filtration, subtype, surface water, Iran
Procedia PDF Downloads 4163246 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors
Authors: Darshna Sharma, Suban K. Sahoo
Abstract:
The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT
Procedia PDF Downloads 4003245 Efficient Passenger Counting in Public Transport Based on Machine Learning
Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa
Abstract:
Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.Keywords: computer vision, object detection, passenger counting, public transportation
Procedia PDF Downloads 1543244 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System
Authors: Lixin Tian, Wei Xue
Abstract:
Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.Keywords: cyclic shift, multiple detection, parallel combined spread spectrum, PN code
Procedia PDF Downloads 1373243 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition
Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil
Abstract:
The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.Keywords: DT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.
Procedia PDF Downloads 2363242 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution
Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani Alghamdi
Abstract:
Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.Keywords: binary segmentation, change point, exponentialLomax distribution, information criterion
Procedia PDF Downloads 1753241 Truthful or Untruthful Social Media Posts: Applying Statement Analysis to Decode online Deception
Authors: Christa L. Arnold, Margaret C. Stewart
Abstract:
This research shares the results of an exploratory study examining Statement Analysis (SA) to detect deception in online truthful and untruthful social media posts. Applying a Law Enforcement methodology SA, used in criminal interview statements, this research analyzes what is stated to assist in evaluating written deceptive information. Preliminary findings reveal qualitative and quantitative nuances for SA in online deception detection and uncover insights regarding digital deceptive behavior. Thus far, findings reveal truthful statements tend to differ from untruthful statements in both content and quality.Keywords: deception detection, online deception, social media content, statement analysis
Procedia PDF Downloads 64