Search results for: one-dimensional models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6801

Search results for: one-dimensional models

5841 Analysis of Network Performance Using Aspect of Quantum Cryptography

Authors: Nisarg A. Patel, Hiren B. Patel

Abstract:

Quantum cryptography is described as a point-to-point secure key generation technology that has emerged in recent times in providing absolute security. Researchers have started studying new innovative approaches to exploit the security of Quantum Key Distribution (QKD) for a large-scale communication system. A number of approaches and models for utilization of QKD for secure communication have been developed. The uncertainty principle in quantum mechanics created a new paradigm for QKD. One of the approaches for use of QKD involved network fashioned security. The main goal was point-to-point Quantum network that exploited QKD technology for end-to-end network security via high speed QKD. Other approaches and models equipped with QKD in network fashion are introduced in the literature as. A different approach that this paper deals with is using QKD in existing protocols, which are widely used on the Internet to enhance security with main objective of unconditional security. Our work is towards the analysis of the QKD in Mobile ad-hoc network (MANET).

Keywords: cryptography, networking, quantum, encryption and decryption

Procedia PDF Downloads 188
5840 The Relationship Between Hourly Compensation and Unemployment Rate Using the Panel Data Regression Analysis

Authors: S. K. Ashiquer Rahman

Abstract:

the paper concentrations on the importance of hourly compensation, emphasizing the significance of the unemployment rate. There are the two most important factors of a nation these are its unemployment rate and hourly compensation. These are not merely statistics but they have profound effects on individual, families, and the economy. They are inversely related to one another. When we consider the unemployment rate that will probably decline as hourly compensations in manufacturing rise. But when we reduced the unemployment rates and increased job prospects could result from higher compensation. That’s why, the increased hourly compensation in the manufacturing sector that could have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, we use panel data regression models to evaluate the expected link between hourly compensation and unemployment rate in order to determine the effect of hourly compensation on unemployment rate. We estimate the fixed effects model, evaluate the error components, and determine which model (the FEM or ECM) is better by pooling all 60 observations. We then analysis and review the data by comparing 3 several countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of the extensive research on how the hourly compensation effects on the unemployment rate. Additionally, this paper offers relevant and useful informational to help the government and academic community use an econometrics and social approach to lessen on the effect of the hourly compensation on Unemployment rate to eliminate the problem.

Keywords: hourly compensation, Unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model

Procedia PDF Downloads 86
5839 Flexural Strengthening of Steel Beams Using Fiber Reinforced Polymers

Authors: Sally Hosny, Mona G. Ibrahim, N. K. Hassan

Abstract:

Fiber reinforced polymers (FRP) is one of the most environmentally method for strengthening and retrofitting steel structure buildings. The behaviour of flexural strengthened steel I-beams using FRP was investigated. The finite element (FE) models were developed using ANSYS® as verification cases to simulate the experimental behaviour of using FRP strips to flexure strengthen steel I-beam. Two experimental studies were selected for verification; first examined the effect of different thicknesses and modulus of elasticity while the second studied the effect of applying different carbon fiber reinforced polymers (CFRP) bond lengths. The proposed FE models were in good agreement with the experimental results in terms of failure modes, load bearing capacities and strain distribution on CFRP strips. The verified FE models can be utilized to conduct a parametric study where various widths (40, 50, 60, 70 and 80 mm), thickness (1.2, 2 and 4 mm) and lengths (1500, 1700 and 1800 mm) of CFRP were analyzed. The results presented clearly revealed that the load bearing capacity was significantly increased (+7%) when the width and thickness were increased. However, load bearing capacity was slightly affected using longer CFRP strips. Moreover, applying another glass fiber reinforced polymers (GFRP) of 1500 mm in length, 50 mm in width and thicknesses of 1.2, 2 and 4 mm were investigated. Load bearing capacity of strengthened I-beams using GFRP is less than CFRP by average 8%. Statistical analysis has been conducted using Minitab®.

Keywords: FRP, strengthened steel I-beams, flexural, FEM, ANSYS

Procedia PDF Downloads 284
5838 Modeling and Analysis Of Occupant Behavior On Heating And Air Conditioning Systems In A Higher Education And Vocational Training Building In A Mediterranean Climate

Authors: Abderrahmane Soufi

Abstract:

The building sector is the largest consumer of energy in France, accounting for 44% of French consumption. To reduce energy consumption and improve energy efficiency, France implemented an energy transition law targeting 40% energy savings by 2030 in the tertiary building sector. Building simulation tools are used to predict the energy performance of buildings but the reliability of these tools is hampered by discrepancies between the real and simulated energy performance of a building. This performance gap lies in the simplified assumptions of certain factors, such as the behavior of occupants on air conditioning and heating, which is considered deterministic when setting a fixed operating schedule and a fixed interior comfort temperature. However, the behavior of occupants on air conditioning and heating is stochastic, diverse, and complex because it can be affected by many factors. Probabilistic models are an alternative to deterministic models. These models are usually derived from statistical data and express occupant behavior by assuming a probabilistic relationship to one or more variables. In the literature, logistic regression has been used to model the behavior of occupants with regard to heating and air conditioning systems by considering univariate logistic models in residential buildings; however, few studies have developed multivariate models for higher education and vocational training buildings in a Mediterranean climate. Therefore, in this study, occupant behavior on heating and air conditioning systems was modeled using logistic regression. Occupant behavior related to the turn-on heating and air conditioning systems was studied through experimental measurements collected over a period of one year (June 2023–June 2024) in three classrooms occupied by several groups of students in engineering schools and professional training. Instrumentation was provided to collect indoor temperature and indoor relative humidity in 10-min intervals. Furthermore, the state of the heating/air conditioning system (off or on) and the set point were determined. The outdoor air temperature, relative humidity, and wind speed were collected as weather data. The number of occupants, age, and sex were also considered. Logistic regression was used for modeling an occupant turning on the heating and air conditioning systems. The results yielded a proposed model that can be used in building simulation tools to predict the energy performance of teaching buildings. Based on the first months (summer and early autumn) of the investigations, the results illustrate that the occupant behavior of the air conditioning systems is affected by the indoor relative humidity and temperature in June, July, and August and by the indoor relative humidity, temperature, and number of occupants in September and October. Occupant behavior was analyzed monthly, and univariate and multivariate models were developed.

Keywords: occupant behavior, logistic regression, behavior model, mediterranean climate, air conditioning, heating

Procedia PDF Downloads 66
5837 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: bioheat transfer, electrode, neuroprosthetics, TENS, transcutaneous stimulation

Procedia PDF Downloads 242
5836 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports

Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani

Abstract:

In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.

Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method

Procedia PDF Downloads 298
5835 Design of a Tool for Generating Test Cases from BPMN

Authors: Prat Yotyawilai, Taratip Suwannasart

Abstract:

Business Process Model and Notation (BPMN) is more important in the business process and creating functional models, and is a standard for OMG, which becomes popular in various organizations and in education. Researches related to software testing based on models are prominent. Although most researches use the UML model in software testing, not many researches use the BPMN Model in creating test cases. Therefore, this research proposes a design of a tool for generating test cases from the BPMN. The model is analyzed and the details of the various components are extracted before creating a flow graph. Both details of components and the flow graph are used in generating test cases.

Keywords: software testing, test case, BPMN, flow graph

Procedia PDF Downloads 558
5834 Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing

Authors: Khaled Salah

Abstract:

Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools.

Keywords: genetic algorithm, simulated annealing, model reduction, transfer function

Procedia PDF Downloads 144
5833 Simultaneous Determination of Six Characterizing/Quality Parameters of Biodiesels via 1H NMR and Multivariate Calibration

Authors: Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

The characterization and the quality of biodiesel samples are checked by determining several parameters. Considering a large number of analysis to be performed, as well as the disadvantages of the use of toxic solvents and waste generation, multivariate calibration is suggested to reduce the number of tests. In this work, hydrogen nuclear magnetic resonance (1H NMR) spectra were used to build multivariate models, from partial least squares (PLS) regression, in order to determine simultaneously six important characterizing and/or quality parameters of biodiesels: density at 20 ºC, kinematic viscosity at 40 ºC, iodine value, acid number, oxidative stability, and water content. Biodiesels from twelve different oils sources were used in this study: babassu, brown flaxseed, canola, corn, cottonseed, macauba almond, microalgae, palm kernel, residual frying, sesame, soybean, and sunflower. 1H NMR reflects the structures of the compounds present in biodiesel samples and showed suitable correlations with the six parameters. The PLS models were constructed with latent variables between 5 and 7, the obtained values of r(cal) and r(val) were greater than 0.994 and 0.989, respectively. In addition, the models were considered suitable to predict all the six parameters for external samples, taking into account the analytical speed to perform it. Thus, the alliance between 1H NMR and PLS showed to be appropriate to characterize and evaluate the quality of biodiesels, reducing significantly analysis time, the consumption of reagents/solvents, and waste generation. Therefore, the proposed methods can be considered to adhere to the principles of green chemistry.

Keywords: biodiesel, multivariate calibration, nuclear magnetic resonance, quality parameters

Procedia PDF Downloads 548
5832 Communicative and Artistic Machines: A Survey of Models and Experiments on Artificial Agents

Authors: Artur Matuck, Guilherme F. Nobre

Abstract:

Machines can be either tool, media, or social agents. Advances in technology have been delivering machines capable of autonomous expression, both through communication and art. This paper deals with models (theoretical approach) and experiments (applied approach) related to artificial agents. On one hand it traces how social sciences' scholars have worked with topics such as text automatization, man-machine writing cooperation, and communication. On the other hand it covers how computer sciences' scholars have built communicative and artistic machines, including the programming of creativity. The aim is to present a brief survey on artificially intelligent communicators and artificially creative writers, and provide the basis to understand the meta-authorship and also to new and further man-machine co-authorship.

Keywords: artificial communication, artificial creativity, artificial writers, meta-authorship, robotic art

Procedia PDF Downloads 296
5831 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands

Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert

Abstract:

Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.

Keywords: damping, energy-based seismic design, hysteretic energy, input energy

Procedia PDF Downloads 172
5830 Design and Analysis of a Lightweight Fire-Resistant Door

Authors: Zainab Fadil, Mouath Alawadhi, Abdullah Alhusainan, Fahad Alqadiri, Abdulaziz Alqadiri

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire-resistance doors. Fire-rated doors specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 92
5829 Towards A New Maturity Model for Information System

Authors: Ossama Matrane

Abstract:

Information System has become a strategic lever for enterprises. It contributes effectively to align business processes on strategies of enterprises. It is regarded as an increase in productivity and effectiveness. So, many organizations are currently involved in implementing sustainable Information System. And, a large number of studies have been conducted the last decade in order to define the success factors of information system. Thus, many studies on maturity model have been carried out. Some of this study is referred to the maturity model of Information System. In this article, we report on development of maturity models specifically designed for information system. This model is built based on three components derived from Maturity Model for Information Security Management, OPM3 for Project Management Maturity Model and processes of COBIT for IT governance. Thus, our proposed model defines three maturity stages for corporate a strong Information System to support objectives of organizations. It provides a very practical structure with which to assess and improve Information System Implementation.

Keywords: information system, maturity models, information security management, OPM3, IT governance

Procedia PDF Downloads 449
5828 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 101
5827 Comparative Study of Ecological City Criteria in Traditional Iranian Cities

Authors: Zahra Yazdani Paraii, Zohreh Yazdani Paraei

Abstract:

Many urban designers and planners have been involved in the design of environmentally friendly or nature adaptable urban development models due to increase in urban populations in the recent century, limitation on natural resources, climate change, and lack of enough water and food. Ecological city is one of the latest models proposed to accomplish the latter goal. In this work, the existing establishing indicators of the ecological city are used regarding energy, water, land use and transportation issues. The model is used to compare the function of traditional settlements of Iran. The result of investigation shows that the specifications and functions of the traditional settlements of Iran fit well into the ecological city model. It is found that the inhabitants of the old cities and villages in Iran had founded ecological cities based on their knowledge of the environment and its natural opportunities and limitations.

Keywords: ecological city, traditional city, urban design, environment

Procedia PDF Downloads 259
5826 Numerical Simulation of Structural Behavior of NSM CFRP Strengthened RC Beams Using Finite Element Analysis

Authors: Faruk Ortes, Baris Sayin, Tarik Serhat Bozkurt, Cemil Akcay

Abstract:

The technique using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) composites has proved to be an reliable strengthening technique. However, the effects of different parameters for the use of NSM CFRP are not fully developed yet. This study focuses on the development of a numerical modeling that can predict the behavior of reinforced concrete (RC) beams strengthened with NSM FRP rods exposed to bending loading and the efficiency of various parameters such as CFRP rod size and filling material type are evaluated by using prepared models. For this purpose, three different models are developed and implemented in the ANSYS® software using Finite Element Analysis (FEA). The numerical results indicate that CFRP rod size and filling material type are significant factors in the behavior of the analyzed RC beams.

Keywords: numerical model, FEA, RC beam, NSM technique, CFRP rod, filling material

Procedia PDF Downloads 609
5825 Performances of Two-Segment Crash Box with Holes under Oblique Load

Authors: Moch Agus Choiron

Abstract:

Crash box design has been developed to obtain optimum energy absorption. In this study, two-segment crash box design with holes is investigated under oblique load. The deformation behavior and crash energy absorption are observed. The analysis was performed using finite element method. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. The models consist of 2 and 4 holes laid within ¼, ½ and ¾ from first segment length. 100 mm aluminum crash box and frontal crash velocity of 16 km/jam were selected. Based on simulation results, it can be concluded that 2 holes located at ¾ has the largest crash energy absorption. This behavior associated with deformation pattern, which produces higher number of folding than other models.

Keywords: crash Box, two-segments, holes configuration, oblique load, deformation pattern

Procedia PDF Downloads 364
5824 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations

Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan

Abstract:

In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.

Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, bifurcation analysis, neuron modeling

Procedia PDF Downloads 325
5823 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 28
5822 Horizontal Cooperative Game Theory in Hotel Revenue Management

Authors: Ririh Rahma Ratinghayu, Jayu Pramudya, Nur Aini Masruroh, Shi-Woei Lin

Abstract:

This research studies pricing strategy in cooperative setting of hotel duopoly selling perishable product under fixed capacity constraint by using the perspective of managers. In hotel revenue management, competitor’s average room rate and occupancy rate should be taken into manager’s consideration in determining pricing strategy to generate optimum revenue. This information is not provided by business intelligence or available in competitor’s website. Thus, Information Sharing (IS) among players might result in improved performance of pricing strategy. IS is widely adopted in the logistics industry, but IS within hospitality industry has not been well-studied. This research put IS as one of cooperative game schemes, besides Mutual Price Setting (MPS) scheme. In off-peak season, hotel manager arranges pricing strategy to offer promotion package and various kinds of discounts up to 60% of full-price to attract customers. Competitor selling homogenous product will react the same, then triggers a price war. Price war which generates lower revenue may be avoided by creating collaboration in pricing strategy to optimize payoff for both players. In MPS cooperative game, players collaborate to set a room rate applied for both players. Cooperative game may avoid unfavorable players’ payoff caused by price war. Researches on horizontal cooperative game in logistics show better performance and payoff for the players, however, horizontal cooperative game in hotel revenue management has not been demonstrated. This paper aims to develop hotel revenue management models under duopoly cooperative schemes (IS & MPS), which are compared to models under non-cooperative scheme too. Each scheme has five models, Capacity Allocation Model; Demand Model; Revenue Model; Optimal Price Model; and Equilibrium Price Model. Capacity Allocation Model and Demand Model employs self-hotel and competitor’s full and discount price as predictors under non-linear relation. Optimal price is obtained by assuming revenue maximization motive. Equilibrium price is observed by interacting self-hotel’s and competitor’s optimal price under reaction equation. Equilibrium is analyzed using game theory approach. The sequence applies for three schemes. MPS Scheme differently aims to optimize total players’ payoff. The case study in which theoretical models are applied observes two hotels offering homogenous product in Indonesia during a year. The Capacity Allocation, Demand, and Revenue Models are built using multiple regression and statistically tested for validation. Case study data confirms that price behaves within demand model in a non-linear manner. IS Models can represent the actual demand and revenue data better than Non-IS Models. Furthermore, IS enables hotels to earn significantly higher revenue. Thus, duopoly hotel players in general, might have reasonable incentives to share information horizontally. During off-peak season, MPS Models are able to predict the optimal equal price for both hotels. However, Nash equilibrium may not always exist depending on actual payoff of adhering or betraying mutual agreement. To optimize performance, horizontal cooperative game may be chosen over non-cooperative game. Mathematical models can be used to detect collusion among business players. Empirical testing can be used as policy input for market regulator in preventing unethical business practices potentially harming society welfare.

Keywords: horizontal cooperative game theory, hotel revenue management, information sharing, mutual price setting

Procedia PDF Downloads 292
5821 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 484
5820 Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers

Authors: Naohiro Nakamura

Abstract:

Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated.

Keywords: three-dimensional analysis, E-defense, full-scale experimen, vibration control damper

Procedia PDF Downloads 197
5819 Porcelain Paste Processing by Robocasting 3D: Parameters Tuning

Authors: A. S. V. Carvalho, J. Luis, L. S. O. Pires, J. M. Oliveira

Abstract:

Additive manufacturing technologies (AM) experienced a remarkable growth in the latest years due to the development and diffusion of a wide range of three-dimensional (3D) printing techniques. Nowadays we can find techniques available for non-industrial users, like fused filament fabrication, but techniques like 3D printing, polyjet, selective laser sintering and stereolithography are mainly spread in the industry. Robocasting (R3D) shows a great potential due to its ability to shape materials with a wide range of viscosity. Industrial porcelain compositions showing different rheological behaviour can be prepared and used as candidate materials to be processed by R3D. The use of this AM technique in industry is very residual. In this work, a specific porcelain composition with suitable rheological properties will be processed by R3D, and a systematic study of the printing parameters tuning will be shown. The porcelain composition was formulated based on an industrial spray dried porcelain powder. The powder particle size and morphology was analysed. The powders were mixed with water and an organic binder on a ball mill at 200 rpm/min for 24 hours. The batch viscosity was adjusted by the addition of an acid solution and mixed again. The paste density, viscosity, zeta potential, particle size distribution and pH were determined. In a R3D system, different speed and pressure settings were studied to access their impact on the fabrication of porcelain models. These models were dried at 80 °C, during 24 hours and sintered in air at 1350 °C for 2 hours. The stability of the models, its walls and surface quality were studied and their physical properties were accessed. The microstructure and layer adhesion were observed by SEM. The studied processing parameters have a high impact on the models quality. Moreover, they have a high impact on the stacking of the filaments. The adequate tuning of the parameters has a huge influence on the final properties of the porcelain models. This work contributes to a better assimilation of AM technologies in ceramic industry. Acknowledgments: The RoboCer3D project – project of additive rapid manufacturing through 3D printing ceramic material (POCI-01-0247-FEDER-003350) financed by Compete 2020, PT 2020, European Regional Development Fund – FEDER through the International and Competitive Operational Program (POCI) under the PT2020 partnership agreement.

Keywords: additive manufacturing, porcelain, robocasting, R3D

Procedia PDF Downloads 165
5818 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu

Abstract:

In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 143
5817 Global Emission Inventories of Air Pollutants from Combustion Sources

Authors: Shu Tao

Abstract:

Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.

Keywords: air pollutants, combustion, emission inventory, sectorial information

Procedia PDF Downloads 375
5816 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem

Authors: Tarek Aboueldahab, Hanan Farag

Abstract:

Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.

Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation

Procedia PDF Downloads 103
5815 Long Memory and ARFIMA Modelling: The Case of CPI Inflation for Ghana and South Africa

Authors: A. Boateng, La Gil-Alana, M. Lesaoana; Hj. Siweya, A. Belete

Abstract:

This study examines long memory or long-range dependence in the CPI inflation rates of Ghana and South Africa using Whittle methods and autoregressive fractionally integrated moving average (ARFIMA) models. Standard I(0)/I(1) methods such as Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were also employed. Our findings indicate that long memory exists in the CPI inflation rates of both countries. After processing fractional differencing and determining the short memory components, the models were specified as ARFIMA (4,0.35,2) and ARFIMA (3,0.49,3) respectively for Ghana and South Africa. Consequently, the CPI inflation rates of both countries are fractionally integrated and mean reverting. The implication of this result will assist in policy formulation and identification of inflationary pressures in an economy.

Keywords: Consumer Price Index (CPI) inflation rates, Whittle method, long memory, ARFIMA model

Procedia PDF Downloads 373
5814 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions

Procedia PDF Downloads 483
5813 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 148
5812 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 305